• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLCropResize.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/runtime/CL/CLScheduler.h"
28 #include "src/core/CL/kernels/CLCopyKernel.h"
29 #include "src/core/CL/kernels/CLCropKernel.h"
30 #include "src/core/CL/kernels/CLFillBorderKernel.h"
31 #include "src/core/CL/kernels/CLMemsetKernel.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 
35 #include "support/MemorySupport.h"
36 
37 #include <cstddef>
38 
39 namespace arm_compute
40 {
41 namespace
42 {
configure_crop(const ICLTensor * input,ICLTensor * crop_boxes,ICLTensor * box_ind,ICLTensor * output,uint32_t crop_box_ind,Coordinates & start,Coordinates & end,uint32_t & batch_index)43 inline void configure_crop(const ICLTensor *input, ICLTensor *crop_boxes, ICLTensor *box_ind, ICLTensor *output, uint32_t crop_box_ind, Coordinates &start, Coordinates &end, uint32_t &batch_index)
44 {
45     batch_index = *(reinterpret_cast<int32_t *>(box_ind->ptr_to_element(Coordinates(crop_box_ind))));
46 
47     // _crop_box_ind is used to index crop_boxes and retrieve the appropriate crop box.
48     // The crop box is specified by normalized coordinates [y0, x0, y1, x1].
49     const float x0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(1, crop_box_ind)));
50     const float y0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(0, crop_box_ind)));
51     const float x1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(3, crop_box_ind)));
52     const float y1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(2, crop_box_ind)));
53     // The normalized coordinates are scaled to retrieve the floating point image coordinates which are rounded to integers.
54     start = Coordinates(std::floor(x0 * (input->info()->tensor_shape()[1] - 1) + 0.5f),
55                         std::floor(y0 * (input->info()->tensor_shape()[2] - 1) + 0.5f));
56     end = Coordinates(std::floor(x1 * (input->info()->tensor_shape()[1] - 1) + 0.5f),
57                       std::floor(y1 * (input->info()->tensor_shape()[2] - 1) + 0.5f));
58     const TensorShape out_shape(input->info()->tensor_shape()[0], static_cast<uint32_t>(abs(end[0] - start[0])) + 1, static_cast<uint32_t>(abs(end[1] - start[1])) + 1);
59     output->info()->set_tensor_shape(out_shape);
60 }
61 } // namespace
62 
CLCropResize()63 CLCropResize::CLCropResize()
64     : _input(nullptr), _boxes(nullptr), _box_ind(nullptr), _output(nullptr), _num_boxes(0), _method(), _extrapolation_value(0), _scale(), _copy(), _crop_results(), _scaled_results(), _internal_kernels()
65 {
66 }
67 
68 CLCropResize::~CLCropResize() = default;
69 
validate(const ITensorInfo * input,ITensorInfo * boxes,ITensorInfo * box_ind,const ITensorInfo * output,Coordinates2D crop_size,InterpolationPolicy method,float extrapolation_value)70 Status CLCropResize::validate(const ITensorInfo *input, ITensorInfo *boxes, ITensorInfo *box_ind, const ITensorInfo *output,
71                               Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value)
72 {
73     ARM_COMPUTE_RETURN_ERROR_ON(crop_size.x <= 0 || crop_size.y <= 0);
74     ARM_COMPUTE_RETURN_ERROR_ON(method == InterpolationPolicy::AREA);
75     ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[0] != 4);
76     ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]);
77     TensorInfo temp_info;
78     ARM_COMPUTE_RETURN_ON_ERROR(CLCropKernel::validate(input->clone().get(), &temp_info, { 0, 0 }, { 1, 1 }, input->dimension(3) - 1, extrapolation_value));
79     if(output->total_size() > 0)
80     {
81         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32);
82         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
83         TensorShape out_shape(input->tensor_shape()[0], crop_size.x, crop_size.y, boxes->tensor_shape()[1]);
84         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), out_shape);
85     }
86     return Status{};
87 }
88 
configure(const ICLTensor * input,ICLTensor * boxes,ICLTensor * box_ind,ICLTensor * output,Coordinates2D crop_size,InterpolationPolicy method,float extrapolation_value)89 void CLCropResize::configure(const ICLTensor *input, ICLTensor *boxes, ICLTensor *box_ind, ICLTensor *output, Coordinates2D crop_size,
90                              InterpolationPolicy method, float extrapolation_value)
91 {
92     configure(CLKernelLibrary::get().get_compile_context(), input, boxes, box_ind, output, crop_size, method, extrapolation_value);
93 }
94 
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * boxes,ICLTensor * box_ind,ICLTensor * output,Coordinates2D crop_size,InterpolationPolicy method,float extrapolation_value)95 void CLCropResize::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *boxes, ICLTensor *box_ind, ICLTensor *output, Coordinates2D crop_size,
96                              InterpolationPolicy method, float extrapolation_value)
97 {
98     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, boxes, box_ind);
99     ARM_COMPUTE_ERROR_THROW_ON(CLCropResize::validate(input->info(), boxes->info(), box_ind->info(), output->info(), crop_size, method, extrapolation_value));
100 
101     TensorShape output_shape = TensorShape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y, boxes->info()->tensor_shape()[1]);
102     auto_init_if_empty(*output->info(), output_shape, 1, DataType::F32);
103 
104     _num_boxes = boxes->info()->tensor_shape()[1];
105     TensorShape out_shape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y);
106 
107     _input               = input;
108     _boxes               = boxes;
109     _box_ind             = box_ind;
110     _output              = output;
111     _method              = method;
112     _extrapolation_value = extrapolation_value;
113 
114     // For each crop box:
115     // - The initial cropped image is produced as specified by boxes[i] from the 3D image input[box_ind[i]].
116     //   Possibly using a CLCropKernel and up to four CLMemsetKernels.
117     // - A tensor is required to hold this initial cropped image.
118     // - A scale function is used to resize the cropped image to the size specified by crop_size.
119     // - A tensor is required to hold the final scaled image before it is copied into the 4D output
120     //   that will hold all final cropped and scaled 3D images using CLCopyKernel.
121 
122     // The contents of _boxes and _box_ind are required to calculate the shape
123     // of the initial cropped image and thus are required to configure the
124     // kernels used for cropping and scaling.
125     _boxes->map(CLScheduler::get().queue());
126     _box_ind->map(CLScheduler::get().queue());
127     for(unsigned int num_box = 0; num_box < _num_boxes; ++num_box)
128     {
129         auto       crop_tensor = support::cpp14::make_unique<CLTensor>();
130         TensorInfo crop_result_info(1, DataType::F32);
131         crop_result_info.set_data_layout(DataLayout::NHWC);
132         crop_tensor->allocator()->init(crop_result_info);
133         _crop_results.emplace_back(std::move(crop_tensor));
134 
135         auto       scale_tensor = support::cpp14::make_unique<CLTensor>();
136         TensorInfo scaled_result_info(out_shape, 1, DataType::F32);
137         scaled_result_info.set_data_layout(DataLayout::NHWC);
138         scale_tensor->allocator()->init(scaled_result_info);
139         _scaled_results.emplace_back(std::move(scale_tensor));
140 
141         // Size of the crop box in _boxes has to be given before the configure
142         uint32_t    batch_index;
143         Coordinates start{};
144         Coordinates end{};
145         configure_crop(_input, _boxes, _box_ind, _crop_results[num_box].get(), num_box, start, end, batch_index);
146 
147         auto scale_kernel = support::cpp14::make_unique<CLScale>();
148         scale_kernel->configure(compile_context, _crop_results[num_box].get(), _scaled_results[num_box].get(), ScaleKernelInfo{ _method, BorderMode::CONSTANT, PixelValue(_extrapolation_value), SamplingPolicy::TOP_LEFT });
149         _scale.emplace_back(std::move(scale_kernel));
150 
151         Window win = calculate_max_window(*_output->info());
152         win.set(3, Window::Dimension(num_box, num_box + 1, 1));
153 
154         auto copy_kernel = support::cpp14::make_unique<CLCopyKernel>();
155         copy_kernel->configure(compile_context, _scaled_results[num_box].get(), _output, &win);
156         _copy.emplace_back(std::move(copy_kernel));
157 
158         _crop_results[num_box]->allocator()->allocate();
159         _scaled_results[num_box]->allocator()->allocate();
160 
161         bool is_width_flipped  = end[0] < start[0];
162         bool is_height_flipped = end[1] < start[1];
163         /** The number of rows out of bounds at the start and end of _crop_results[num_box].get(). */
164         std::array<int32_t, 2> rows_out_of_bounds{ 0 };
165         /** The number of columns out of bounds at the start and end of _crop_results[num_box].get(). */
166         std::array<int32_t, 2> cols_out_of_bounds{ 0 };
167         if(is_height_flipped)
168         {
169             rows_out_of_bounds[0] = start[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(start[1] - _input->info()->dimension(2) + 1, _crop_results[num_box].get()->info()->dimension(2)) : 0;
170             rows_out_of_bounds[1] = end[1] < 0 ? std::min(-end[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2))) : 0;
171         }
172         else
173         {
174             rows_out_of_bounds[0] = start[1] < 0 ? std::min(-start[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2))) : 0;
175             rows_out_of_bounds[1] = end[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(end[1] - _input->info()->dimension(2) + 1, _crop_results[num_box].get()->info()->dimension(2)) : 0;
176         }
177         if(is_width_flipped)
178         {
179             cols_out_of_bounds[0] = start[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(start[0] - _input->info()->dimension(1) + 1, _crop_results[num_box].get()->info()->dimension(1)) : 0;
180             cols_out_of_bounds[1] = end[0] < 0 ? std::min(-end[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1))) : 0;
181         }
182         else
183         {
184             cols_out_of_bounds[0] = start[0] < 0 ? std::min(-start[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1))) : 0;
185             cols_out_of_bounds[1] = end[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(end[0] - _input->info()->dimension(1) + 1, _crop_results[num_box].get()->info()->dimension(1)) : 0;
186         }
187 
188         Window full_window = calculate_max_window(*_crop_results[num_box].get()->info());
189 
190         //  Full _crop_results[num_box].get() window:
191         //  --------------------------------
192         //  |          Out of bounds       |
193         //  |          rows before         |
194         //  |------------------------------|
195         //  | Out of | In         | Out of |
196         //  | bounds | bounds     | bounds |
197         //  | cols   | elements   | cols   |
198         //  | before | copied     | after  |
199         //  |        | from input |        |
200         //  |------------------------------|
201         //  |        Out of bounds         |
202         //  |        rows after            |
203         //  |------------------------------|
204         // Use a separate _crop_results[num_box].get() window for each section of the full _crop_results[num_box].get() window.
205         // Fill all _crop_results[num_box].get() rows that have no elements that are within the input bounds
206         // with the extrapolation value using memset.
207         // First for the rows before the in bounds rows.
208         if(rows_out_of_bounds[0] > 0)
209         {
210             Window slice_fill_rows_before(full_window);
211             slice_fill_rows_before.set(2, Window::Dimension(0, rows_out_of_bounds[0], 1));
212             auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>();
213             kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_rows_before);
214             _internal_kernels.push_back(std::move(kernel));
215         }
216 
217         Window slice_in(full_window);
218         slice_in.set(2, Window::Dimension(rows_out_of_bounds[0], _crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], 1));
219         slice_in.set(1, Window::Dimension(cols_out_of_bounds[0], _crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], 1));
220 
221         int rows_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2)) - rows_out_of_bounds[0] - rows_out_of_bounds[1];
222         if(rows_in_bounds > 0)
223         {
224             // Fill all elements that share a row with an in bounds element with the extrapolation value.
225             if(cols_out_of_bounds[0] > 0)
226             {
227                 Window slice_fill_cols_before(slice_in);
228                 slice_fill_cols_before.set(1, Window::Dimension(0, cols_out_of_bounds[0], 1));
229                 auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>();
230                 kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_cols_before);
231                 _internal_kernels.push_back(std::move(kernel));
232             }
233 
234             if(cols_out_of_bounds[1] > 0)
235             {
236                 Window slice_fill_cols_after(slice_in);
237                 slice_fill_cols_after.set(1, Window::Dimension(_crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], _crop_results[num_box].get()->info()->dimension(1), 1));
238                 auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>();
239                 kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_cols_after);
240                 _internal_kernels.push_back(std::move(kernel));
241             }
242 
243             // Copy all elements within the input bounds from the input tensor.
244             int cols_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1)) - cols_out_of_bounds[0] - cols_out_of_bounds[1];
245             if(cols_in_bounds > 0)
246             {
247                 Coordinates2D start_in{ is_width_flipped ? start[0] - cols_out_of_bounds[0] : start[0] + cols_out_of_bounds[0],
248                                         is_height_flipped ? start[1] - rows_out_of_bounds[0] : start[1] + rows_out_of_bounds[0] };
249                 Coordinates2D end_in{ is_width_flipped ? start_in.x - cols_in_bounds + 1 : start_in.x + cols_in_bounds - 1,
250                                       is_height_flipped ? start_in.y - rows_in_bounds + 1 : start_in.y + rows_in_bounds - 1 };
251                 auto kernel = arm_compute::support::cpp14::make_unique<CLCropKernel>();
252 
253                 kernel->configure(compile_context, _input, _crop_results[num_box].get(), start_in, end_in, batch_index, extrapolation_value, &slice_in);
254                 _internal_kernels.push_back(std::move(kernel));
255             }
256         }
257 
258         // Fill all rows after the in bounds elements with the extrapolation value.
259         if(rows_out_of_bounds[1] > 0)
260         {
261             Window slice_fill_rows_after(full_window);
262             slice_fill_rows_after.set(2, Window::Dimension(_crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], _crop_results[num_box].get()->info()->dimension(2), 1));
263             auto kernel = arm_compute::support::cpp14::make_unique<CLMemsetKernel>();
264             kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_rows_after);
265             _internal_kernels.push_back(std::move(kernel));
266         }
267     }
268     _boxes->unmap(CLScheduler::get().queue());
269     _box_ind->unmap(CLScheduler::get().queue());
270     CLScheduler::get().sync();
271 }
272 
run()273 void CLCropResize::run()
274 {
275     ARM_COMPUTE_ERROR_ON_MSG(_output == nullptr, "Unconfigured function");
276 
277     for(unsigned int i = 0; i < _internal_kernels.size(); ++i)
278     {
279         CLScheduler::get().enqueue(*(_internal_kernels[i]));
280     }
281 
282     CLScheduler::get().sync();
283     for(auto &kernel : _scale)
284     {
285         kernel->run();
286     }
287     CLScheduler::get().sync();
288     for(auto &kernel : _copy)
289     {
290         CLScheduler::get().enqueue(*kernel, true);
291     }
292     CLScheduler::get().sync();
293 }
294 } // namespace arm_compute