• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLFFT1D.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/runtime/CL/CLScheduler.h"
29 #include "src/core/CL/kernels/CLFFTDigitReverseKernel.h"
30 #include "src/core/CL/kernels/CLFFTRadixStageKernel.h"
31 #include "src/core/CL/kernels/CLFFTScaleKernel.h"
32 #include "src/core/utils/helpers/fft.h"
33 #include "support/MemorySupport.h"
34 
35 namespace arm_compute
36 {
CLFFT1D(std::shared_ptr<IMemoryManager> memory_manager)37 CLFFT1D::CLFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
38     : _memory_group(std::move(memory_manager)),
39       _digit_reverse_kernel(support::cpp14::make_unique<CLFFTDigitReverseKernel>()),
40       _fft_kernels(),
41       _scale_kernel(support::cpp14::make_unique<CLFFTScaleKernel>()),
42       _digit_reversed_input(),
43       _digit_reverse_indices(),
44       _num_ffts(0),
45       _run_scale(false)
46 {
47 }
48 
49 CLFFT1D::~CLFFT1D() = default;
50 
configure(const ICLTensor * input,ICLTensor * output,const FFT1DInfo & config)51 void CLFFT1D::configure(const ICLTensor *input, ICLTensor *output, const FFT1DInfo &config)
52 {
53     configure(CLKernelLibrary::get().get_compile_context(), input, output, config);
54 }
55 
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * output,const FFT1DInfo & config)56 void CLFFT1D::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const FFT1DInfo &config)
57 {
58     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
59     ARM_COMPUTE_ERROR_THROW_ON(CLFFT1D::validate(input->info(), output->info(), config));
60 
61     // Decompose size to radix factors
62     const auto         supported_radix   = CLFFTRadixStageKernel::supported_radix();
63     const unsigned int N                 = input->info()->tensor_shape()[config.axis];
64     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
65     ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
66 
67     // Flags
68     _run_scale        = config.direction == FFTDirection::Inverse;
69     const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
70 
71     // Configure digit reverse
72     FFTDigitReverseKernelInfo digit_reverse_config;
73     digit_reverse_config.axis      = config.axis;
74     digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
75     TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
76     _digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
77     _memory_group.manage(&_digit_reversed_input);
78     _digit_reverse_kernel->configure(compile_context, input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
79 
80     // Create and configure FFT kernels
81     unsigned int Nx = 1;
82     _num_ffts       = decomposed_vector.size();
83     _fft_kernels.reserve(_num_ffts);
84     for(unsigned int i = 0; i < _num_ffts; ++i)
85     {
86         const unsigned int radix_for_stage = decomposed_vector.at(i);
87 
88         FFTRadixStageKernelInfo fft_kernel_info;
89         fft_kernel_info.axis           = config.axis;
90         fft_kernel_info.radix          = radix_for_stage;
91         fft_kernel_info.Nx             = Nx;
92         fft_kernel_info.is_first_stage = (i == 0);
93         _fft_kernels.emplace_back(support::cpp14::make_unique<CLFFTRadixStageKernel>());
94         _fft_kernels.back()->configure(compile_context, &_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
95 
96         Nx *= radix_for_stage;
97     }
98 
99     // Configure scale kernel
100     if(_run_scale)
101     {
102         FFTScaleKernelInfo scale_config;
103         scale_config.scale     = static_cast<float>(N);
104         scale_config.conjugate = config.direction == FFTDirection::Inverse;
105         is_c2r ? _scale_kernel->configure(compile_context, &_digit_reversed_input, output, scale_config) : _scale_kernel->configure(output, nullptr, scale_config);
106     }
107 
108     // Allocate tensors
109     _digit_reversed_input.allocator()->allocate();
110     _digit_reverse_indices.allocator()->allocate();
111 
112     // Init digit reverse indices
113     const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
114     _digit_reverse_indices.map(CLScheduler::get().queue(), true);
115     std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
116     _digit_reverse_indices.unmap(CLScheduler::get().queue());
117 }
118 
validate(const ITensorInfo * input,const ITensorInfo * output,const FFT1DInfo & config)119 Status CLFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
120 {
121     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
122     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
123     ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() != 1 && input->num_channels() != 2);
124     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
125 
126     // Check if FFT is decomposable
127     const auto         supported_radix   = CLFFTRadixStageKernel::supported_radix();
128     const unsigned int N                 = input->tensor_shape()[config.axis];
129     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
130     ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
131 
132     // Checks performed when output is configured
133     if((output != nullptr) && (output->total_size() != 0))
134     {
135         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
136         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() != 1 && output->num_channels() != 2);
137         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
138         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
139     }
140 
141     return Status{};
142 }
143 
run()144 void CLFFT1D::run()
145 {
146     MemoryGroupResourceScope scope_mg(_memory_group);
147 
148     // Run digit reverse
149     CLScheduler::get().enqueue(*_digit_reverse_kernel, false);
150 
151     // Run radix kernels
152     for(unsigned int i = 0; i < _num_ffts; ++i)
153     {
154         CLScheduler::get().enqueue(*_fft_kernels[i], i == (_num_ffts - 1) && !_run_scale);
155     }
156 
157     // Run output scaling
158     if(_run_scale)
159     {
160         CLScheduler::get().enqueue(*_scale_kernel, true);
161     }
162 }
163 } // namespace arm_compute
164