• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/TensorInfo.h"
25 
26 #include "arm_compute/runtime/CL/CLScheduler.h"
27 #include "arm_compute/runtime/CL/functions/CLMeanStdDev.h"
28 #include "src/core/CL/kernels/CLFillBorderKernel.h"
29 #include "src/core/CL/kernels/CLMeanStdDevKernel.h"
30 #include "src/core/CL/kernels/CLReductionOperationKernel.h"
31 #include "support/MemorySupport.h"
32 
33 using namespace arm_compute;
34 
CLMeanStdDev(std::shared_ptr<IMemoryManager> memory_manager)35 CLMeanStdDev::CLMeanStdDev(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
36     : _memory_group(std::move(memory_manager)),
37       _data_type(),
38       _num_pixels(),
39       _run_stddev(),
40       _reduction_operation_mean(),
41       _reduction_operation_stddev(),
42       _reduction_output_mean(),
43       _reduction_output_stddev(),
44       _mean(nullptr),
45       _stddev(nullptr),
46       _mean_stddev_kernel(support::cpp14::make_unique<CLMeanStdDevKernel>()),
47       _fill_border_kernel(support::cpp14::make_unique<CLFillBorderKernel>()),
48       _global_sum(),
49       _global_sum_squared()
50 {
51 }
52 
53 CLMeanStdDev::~CLMeanStdDev() = default;
54 
validate(ITensorInfo * input,float * mean,float * stddev)55 Status CLMeanStdDev::validate(ITensorInfo *input, float *mean, float *stddev)
56 {
57     ARM_COMPUTE_RETURN_ERROR_ON_TENSOR_NOT_2D(input);
58     if(is_data_type_float(input->data_type()))
59     {
60         ARM_COMPUTE_UNUSED(mean);
61         ARM_COMPUTE_UNUSED(stddev);
62 
63         TensorShape output_shape      = TensorShape{ 1, input->dimension(1) };
64         TensorInfo  output_shape_info = TensorInfo(output_shape, 1, DataType::U8);
65         return CLReductionOperation::validate(input, &output_shape_info, 0, ReductionOperation::SUM);
66     }
67     else
68     {
69         return CLMeanStdDevKernel::validate(input, mean, nullptr, stddev, nullptr);
70     }
71 }
72 
configure(ICLImage * input,float * mean,float * stddev)73 void CLMeanStdDev::configure(ICLImage *input, float *mean, float *stddev)
74 {
75     configure(CLKernelLibrary::get().get_compile_context(), input, mean, stddev);
76 }
77 
configure(const CLCompileContext & compile_context,ICLImage * input,float * mean,float * stddev)78 void CLMeanStdDev::configure(const CLCompileContext &compile_context, ICLImage *input, float *mean, float *stddev)
79 {
80     // In the case of F16/F32 we call reduction operation for calculating CLMeanStdDev
81     _data_type = input->info()->data_type();
82 
83     if(is_data_type_float(_data_type))
84     {
85         _num_pixels = input->info()->dimension(0) * input->info()->dimension(1);
86 
87         _memory_group.manage(&_reduction_output_mean);
88         _reduction_operation_mean.configure(compile_context, input, &_reduction_output_mean, 0, ReductionOperation::SUM);
89         _reduction_output_mean.allocator()->allocate();
90         _mean = mean;
91 
92         if(stddev != nullptr)
93         {
94             _memory_group.manage(&_reduction_output_stddev);
95             _reduction_operation_stddev.configure(compile_context, input, &_reduction_output_stddev, 0, ReductionOperation::SUM_SQUARE);
96             _reduction_output_stddev.allocator()->allocate();
97             _stddev     = stddev;
98             _run_stddev = true;
99         }
100     }
101     else
102     {
103         _global_sum = cl::Buffer(CLScheduler::get().context(), CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_WRITE, sizeof(cl_ulong));
104 
105         if(stddev != nullptr)
106         {
107             _global_sum_squared = cl::Buffer(CLScheduler::get().context(), CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_WRITE, sizeof(cl_ulong));
108         }
109 
110         _mean_stddev_kernel->configure(compile_context, input, mean, &_global_sum, stddev, &_global_sum_squared);
111         _fill_border_kernel->configure(compile_context, input, _mean_stddev_kernel->border_size(), BorderMode::CONSTANT, PixelValue(static_cast<uint8_t>(0)));
112     }
113 }
114 
115 template <typename T>
run_float()116 void CLMeanStdDev::run_float()
117 {
118     MemoryGroupResourceScope scope_mg(_memory_group);
119 
120     // Perform reduction on x-axis
121     _reduction_operation_mean.run();
122     if(_run_stddev)
123     {
124         _reduction_operation_stddev.run();
125         _reduction_output_stddev.map(true);
126     }
127 
128     _reduction_output_mean.map(true);
129 
130     auto mean = static_cast<T>(0);
131 
132     // Calculate final result for mean
133     for(unsigned int i = 0; i < _reduction_output_mean.info()->dimension(1); ++i)
134     {
135         mean += *reinterpret_cast<T *>(_reduction_output_mean.buffer() + _reduction_output_mean.info()->offset_element_in_bytes(Coordinates(0, i)));
136     }
137 
138     mean /= _num_pixels;
139     *_mean = mean;
140 
141     if(_run_stddev)
142     {
143         auto stddev = static_cast<T>(0);
144         // Calculate final result for stddev
145         for(unsigned int i = 0; i < _reduction_output_stddev.info()->dimension(1); ++i)
146         {
147             stddev += *reinterpret_cast<T *>(_reduction_output_stddev.buffer() + _reduction_output_stddev.info()->offset_element_in_bytes(Coordinates(0, i)));
148         }
149         *_stddev = std::sqrt((stddev / _num_pixels) - (mean * mean));
150 
151         _reduction_output_stddev.unmap();
152     }
153     _reduction_output_mean.unmap();
154 }
155 
run_int()156 void CLMeanStdDev::run_int()
157 {
158     CLScheduler::get().enqueue(*_fill_border_kernel);
159     CLScheduler::get().enqueue(*_mean_stddev_kernel);
160 }
161 
run()162 void CLMeanStdDev::run()
163 {
164     switch(_data_type)
165     {
166         case DataType::F16:
167             run_float<half>();
168             break;
169         case DataType::F32:
170             run_float<float>();
171             break;
172         case DataType::U8:
173             run_int();
174             break;
175         default:
176             ARM_COMPUTE_ERROR_ON("Not supported");
177     }
178 }
179