• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CPP/functions/CPPDetectionOutputLayer.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Validate.h"
29 #include "src/core/helpers/AutoConfiguration.h"
30 
31 #include <list>
32 
33 namespace arm_compute
34 {
35 namespace
36 {
validate_arguments(const ITensorInfo * input_loc,const ITensorInfo * input_conf,const ITensorInfo * input_priorbox,const ITensorInfo * output,DetectionOutputLayerInfo info)37 Status validate_arguments(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
38 {
39     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
40     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_loc, 1, DataType::F32);
41     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, input_conf, input_priorbox);
42     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_loc->num_dimensions() > 2, "The location input tensor should be [C1, N].");
43     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_conf->num_dimensions() > 2, "The location input tensor should be [C2, N].");
44     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_priorbox->num_dimensions() > 3, "The priorbox input tensor should be [C3, 2, N].");
45 
46     ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.eta() <= 0.f && info.eta() > 1.f, "Eta should be between 0 and 1");
47 
48     const int num_priors = input_priorbox->tensor_shape()[0] / 4;
49     ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_loc_classes() * 4)) != input_loc->tensor_shape()[0], "Number of priors must match number of location predictions.");
50     ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_classes())) != input_conf->tensor_shape()[0], "Number of priors must match number of confidence predictions.");
51 
52     // Validate configured output
53     if(output->total_size() != 0)
54     {
55         const unsigned int max_size = info.keep_top_k() * (input_loc->num_dimensions() > 1 ? input_loc->dimension(1) : 1);
56         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), TensorShape(7U, max_size));
57         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, output);
58     }
59 
60     return Status{};
61 }
62 
63 /** Function used to sort pair<float, T> in descend order based on the score (first) value.
64  */
65 template <typename T>
SortScorePairDescend(const std::pair<float,T> & pair1,const std::pair<float,T> & pair2)66 bool SortScorePairDescend(const std::pair<float, T> &pair1,
67                           const std::pair<float, T> &pair2)
68 {
69     return pair1.first > pair2.first;
70 }
71 
72 /** Get location predictions from input_loc.
73  *
74  * @param[in]  input_loc                The input location prediction.
75  * @param[in]  num                      The number of images.
76  * @param[in]  num_priors               number of predictions per class.
77  * @param[in]  num_loc_classes          number of location classes. It is 1 if share_location is true,
78  *                                      and is equal to number of classes needed to predict otherwise.
79  * @param[in]  share_location           If true, all classes share the same location prediction.
80  * @param[out] all_location_predictions All the location predictions.
81  *
82  */
retrieve_all_loc_predictions(const ITensor * input_loc,const int num,const int num_priors,const int num_loc_classes,const bool share_location,std::vector<LabelBBox> & all_location_predictions)83 void retrieve_all_loc_predictions(const ITensor *input_loc, const int num,
84                                   const int num_priors, const int num_loc_classes,
85                                   const bool share_location, std::vector<LabelBBox> &all_location_predictions)
86 {
87     for(int i = 0; i < num; ++i)
88     {
89         for(int c = 0; c < num_loc_classes; ++c)
90         {
91             int label = share_location ? -1 : c;
92             if(all_location_predictions[i].find(label) == all_location_predictions[i].end())
93             {
94                 all_location_predictions[i][label].resize(num_priors);
95             }
96             else
97             {
98                 ARM_COMPUTE_ERROR_ON(all_location_predictions[i][label].size() != static_cast<size_t>(num_priors));
99                 break;
100             }
101         }
102     }
103     for(int i = 0; i < num; ++i)
104     {
105         for(int p = 0; p < num_priors; ++p)
106         {
107             for(int c = 0; c < num_loc_classes; ++c)
108             {
109                 const int label    = share_location ? -1 : c;
110                 const int base_ptr = i * num_priors * num_loc_classes * 4 + p * num_loc_classes * 4 + c * 4;
111                 //xmin, ymin, xmax, ymax
112                 all_location_predictions[i][label][p][0] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr)));
113                 all_location_predictions[i][label][p][1] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 1)));
114                 all_location_predictions[i][label][p][2] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 2)));
115                 all_location_predictions[i][label][p][3] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 3)));
116             }
117         }
118     }
119 }
120 
121 /** Get confidence predictions from input_conf.
122  *
123  * @param[in]  input_loc                The input location prediction.
124  * @param[in]  num                      The number of images.
125  * @param[in]  num_priors               Number of predictions per class.
126  * @param[in]  num_loc_classes          Number of location classes. It is 1 if share_location is true,
127  *                                      and is equal to number of classes needed to predict otherwise.
128  * @param[out] all_location_predictions All the location predictions.
129  *
130  */
retrieve_all_conf_scores(const ITensor * input_conf,const int num,const int num_priors,const int num_classes,std::vector<std::map<int,std::vector<float>>> & all_confidence_scores)131 void retrieve_all_conf_scores(const ITensor *input_conf, const int num,
132                               const int num_priors, const int                 num_classes,
133                               std::vector<std::map<int, std::vector<float>>> &all_confidence_scores)
134 {
135     std::vector<float> tmp_buffer;
136     tmp_buffer.resize(num * num_priors * num_classes);
137     for(int i = 0; i < num; ++i)
138     {
139         for(int c = 0; c < num_classes; ++c)
140         {
141             for(int p = 0; p < num_priors; ++p)
142             {
143                 tmp_buffer[i * num_classes * num_priors + c * num_priors + p] =
144                     *reinterpret_cast<float *>(input_conf->ptr_to_element(Coordinates(i * num_classes * num_priors + p * num_classes + c)));
145             }
146         }
147     }
148     for(int i = 0; i < num; ++i)
149     {
150         for(int c = 0; c < num_classes; ++c)
151         {
152             all_confidence_scores[i][c].resize(num_priors);
153             all_confidence_scores[i][c].assign(&tmp_buffer[i * num_classes * num_priors + c * num_priors],
154                                                &tmp_buffer[i * num_classes * num_priors + c * num_priors + num_priors]);
155         }
156     }
157 }
158 
159 /** Get prior boxes from input_priorbox.
160  *
161  * @param[in]  input_priorbox           The input location prediction.
162  * @param[in]  num_priors               Number of priors.
163  * @param[in]  num_loc_classes          number of location classes. It is 1 if share_location is true,
164  *                                      and is equal to number of classes needed to predict otherwise.
165  * @param[out] all_prior_bboxes         If true, all classes share the same location prediction.
166  * @param[out] all_location_predictions All the location predictions.
167  *
168  */
retrieve_all_priorbox(const ITensor * input_priorbox,const int num_priors,std::vector<BBox> & all_prior_bboxes,std::vector<std::array<float,4>> & all_prior_variances)169 void retrieve_all_priorbox(const ITensor     *input_priorbox,
170                            const int          num_priors,
171                            std::vector<BBox> &all_prior_bboxes,
172                            std::vector<std::array<float, 4>> &all_prior_variances)
173 {
174     for(int i = 0; i < num_priors; ++i)
175     {
176         all_prior_bboxes[i] =
177         {
178             {
179                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4))),
180                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 1))),
181                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 2))),
182                 *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 3)))
183             }
184         };
185     }
186 
187     std::array<float, 4> var({ { 0, 0, 0, 0 } });
188     for(int i = 0; i < num_priors; ++i)
189     {
190         for(int j = 0; j < 4; ++j)
191         {
192             var[j] = *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates((num_priors + i) * 4 + j)));
193         }
194         all_prior_variances[i] = var;
195     }
196 }
197 
198 /** Decode a bbox according to a prior bbox.
199  *
200  * @param[in]  prior_bbox                 The input prior bounding boxes.
201  * @param[in]  prior_variance             The corresponding input variance.
202  * @param[in]  code_type                  The detection output code type used to decode the results.
203  * @param[in]  variance_encoded_in_target If true, the variance is encoded in target.
204  * @param[in]  clip_bbox                  If true, the results should be between 0.f and 1.f.
205  * @param[in]  bbox                       The input bbox to decode
206  * @param[out] decode_bbox                The decoded bboxes.
207  *
208  */
DecodeBBox(const BBox & prior_bbox,const std::array<float,4> & prior_variance,const DetectionOutputLayerCodeType code_type,const bool variance_encoded_in_target,const bool clip_bbox,const BBox & bbox,BBox & decode_bbox)209 void DecodeBBox(const BBox &prior_bbox, const std::array<float, 4> &prior_variance,
210                 const DetectionOutputLayerCodeType code_type, const bool variance_encoded_in_target,
211                 const bool clip_bbox, const BBox &bbox, BBox &decode_bbox)
212 {
213     // if the variance is encoded in target, we simply need to add the offset predictions
214     // otherwise we need to scale the offset accordingly.
215     switch(code_type)
216     {
217         case DetectionOutputLayerCodeType::CORNER:
218         {
219             decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]);
220             decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]);
221             decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]);
222             decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]);
223 
224             break;
225         }
226         case DetectionOutputLayerCodeType::CENTER_SIZE:
227         {
228             const float prior_width  = prior_bbox[2] - prior_bbox[0];
229             const float prior_height = prior_bbox[3] - prior_bbox[1];
230 
231             // Check if the prior width and height are right
232             ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
233             ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
234 
235             const float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.;
236             const float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.;
237 
238             const float decode_bbox_center_x = (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width + prior_center_x;
239             const float decode_bbox_center_y = (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height + prior_center_y;
240             const float decode_bbox_width    = (variance_encoded_in_target ? std::exp(bbox[2]) : std::exp(prior_variance[2] * bbox[2])) * prior_width;
241             const float decode_bbox_height   = (variance_encoded_in_target ? std::exp(bbox[3]) : std::exp(prior_variance[3] * bbox[3])) * prior_height;
242 
243             decode_bbox[0] = (decode_bbox_center_x - decode_bbox_width / 2.f);
244             decode_bbox[1] = (decode_bbox_center_y - decode_bbox_height / 2.f);
245             decode_bbox[2] = (decode_bbox_center_x + decode_bbox_width / 2.f);
246             decode_bbox[3] = (decode_bbox_center_y + decode_bbox_height / 2.f);
247 
248             break;
249         }
250         case DetectionOutputLayerCodeType::CORNER_SIZE:
251         {
252             const float prior_width  = prior_bbox[2] - prior_bbox[0];
253             const float prior_height = prior_bbox[3] - prior_bbox[1];
254 
255             // Check if the prior width and height are greater than 0
256             ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
257             ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
258 
259             decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width;
260             decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height;
261             decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]) * prior_width;
262             decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]) * prior_height;
263 
264             break;
265         }
266         default:
267             ARM_COMPUTE_ERROR("Unsupported Detection Output Code Type.");
268     }
269 
270     if(clip_bbox)
271     {
272         for(auto &d_bbox : decode_bbox)
273         {
274             d_bbox = utility::clamp(d_bbox, 0.f, 1.f);
275         }
276     }
277 }
278 
279 /** Do non maximum suppression given bboxes and scores.
280  *
281  * @param[in]  bboxes          The input bounding boxes.
282  * @param[in]  scores          The corresponding input confidence.
283  * @param[in]  score_threshold The threshold used to filter detection results.
284  * @param[in]  nms_threshold   The threshold used in non maximum suppression.
285  * @param[in]  eta             Adaptation rate for nms threshold.
286  * @param[in]  top_k           If not -1, keep at most top_k picked indices.
287  * @param[out] indices         The kept indices of bboxes after nms.
288  *
289  */
ApplyNMSFast(const std::vector<BBox> & bboxes,const std::vector<float> & scores,const float score_threshold,const float nms_threshold,const float eta,const int top_k,std::vector<int> & indices)290 void ApplyNMSFast(const std::vector<BBox> &bboxes,
291                   const std::vector<float> &scores, const float score_threshold,
292                   const float nms_threshold, const float eta, const int top_k,
293                   std::vector<int> &indices)
294 {
295     ARM_COMPUTE_ERROR_ON_MSG(bboxes.size() != scores.size(), "bboxes and scores have different size.");
296 
297     // Get top_k scores (with corresponding indices).
298     std::list<std::pair<float, int>> score_index_vec;
299 
300     // Generate index score pairs.
301     for(size_t i = 0; i < scores.size(); ++i)
302     {
303         if(scores[i] > score_threshold)
304         {
305             score_index_vec.emplace_back(std::make_pair(scores[i], i));
306         }
307     }
308 
309     // Sort the score pair according to the scores in descending order
310     score_index_vec.sort(SortScorePairDescend<int>);
311 
312     // Keep top_k scores if needed.
313     const int score_index_vec_size = score_index_vec.size();
314     if(top_k > -1 && top_k < score_index_vec_size)
315     {
316         score_index_vec.resize(top_k);
317     }
318 
319     // Do nms.
320     float adaptive_threshold = nms_threshold;
321     indices.clear();
322 
323     while(!score_index_vec.empty())
324     {
325         const int idx  = score_index_vec.front().second;
326         bool      keep = true;
327         for(int kept_idx : indices)
328         {
329             if(keep)
330             {
331                 // Compute the jaccard (intersection over union IoU) overlap between two bboxes.
332                 BBox intersect_bbox = std::array<float, 4>({ 0, 0, 0, 0 });
333                 if(bboxes[kept_idx][0] > bboxes[idx][2] || bboxes[kept_idx][2] < bboxes[idx][0] || bboxes[kept_idx][1] > bboxes[idx][3] || bboxes[kept_idx][3] < bboxes[idx][1])
334                 {
335                     intersect_bbox = std::array<float, 4>({ { 0, 0, 0, 0 } });
336                 }
337                 else
338                 {
339                     intersect_bbox = std::array<float, 4>({ {
340                             std::max(bboxes[idx][0], bboxes[kept_idx][0]),
341                             std::max(bboxes[idx][1], bboxes[kept_idx][1]),
342                             std::min(bboxes[idx][2], bboxes[kept_idx][2]),
343                             std::min(bboxes[idx][3], bboxes[kept_idx][3])
344                         }
345                     });
346                 }
347 
348                 float intersect_width  = intersect_bbox[2] - intersect_bbox[0];
349                 float intersect_height = intersect_bbox[3] - intersect_bbox[1];
350 
351                 float overlap = 0.f;
352                 if(intersect_width > 0 && intersect_height > 0)
353                 {
354                     float intersect_size = intersect_width * intersect_height;
355                     float bbox1_size     = (bboxes[idx][2] < bboxes[idx][0]
356                                             || bboxes[idx][3] < bboxes[idx][1]) ?
357                                            0.f :
358                                            (bboxes[idx][2] - bboxes[idx][0]) * (bboxes[idx][3] - bboxes[idx][1]); //BBoxSize(bboxes[idx]);
359                     float bbox2_size = (bboxes[kept_idx][2] < bboxes[kept_idx][0]
360                                         || bboxes[kept_idx][3] < bboxes[kept_idx][1]) ?
361                                        0.f :
362                                        (bboxes[kept_idx][2] - bboxes[kept_idx][0]) * (bboxes[kept_idx][3] - bboxes[kept_idx][1]); // BBoxSize(bboxes[kept_idx]);
363                     overlap = intersect_size / (bbox1_size + bbox2_size - intersect_size);
364                 }
365                 keep = (overlap <= adaptive_threshold);
366             }
367             else
368             {
369                 break;
370             }
371         }
372         if(keep)
373         {
374             indices.push_back(idx);
375         }
376         score_index_vec.erase(score_index_vec.begin());
377         if(keep && eta < 1.f && adaptive_threshold > 0.5f)
378         {
379             adaptive_threshold *= eta;
380         }
381     }
382 }
383 } // namespace
384 
CPPDetectionOutputLayer()385 CPPDetectionOutputLayer::CPPDetectionOutputLayer()
386     : _input_loc(nullptr), _input_conf(nullptr), _input_priorbox(nullptr), _output(nullptr), _info(), _num_priors(), _num(), _all_location_predictions(), _all_confidence_scores(), _all_prior_bboxes(),
387       _all_prior_variances(), _all_decode_bboxes(), _all_indices()
388 {
389 }
390 
configure(const ITensor * input_loc,const ITensor * input_conf,const ITensor * input_priorbox,ITensor * output,DetectionOutputLayerInfo info)391 void CPPDetectionOutputLayer::configure(const ITensor *input_loc, const ITensor *input_conf, const ITensor *input_priorbox, ITensor *output, DetectionOutputLayerInfo info)
392 {
393     ARM_COMPUTE_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
394     // Output auto initialization if not yet initialized
395     // Since the number of bboxes to kept is unknown before nms, the shape is set to the maximum
396     // The maximum is keep_top_k * input_loc_size[1]
397     // Each row is a 7 dimension std::vector, which stores [image_id, label, confidence, xmin, ymin, xmax, ymax]
398     const unsigned int max_size = info.keep_top_k() * (input_loc->info()->num_dimensions() > 1 ? input_loc->info()->dimension(1) : 1);
399     auto_init_if_empty(*output->info(), input_loc->info()->clone()->set_tensor_shape(TensorShape(7U, max_size)));
400 
401     // Perform validation step
402     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_loc->info(), input_conf->info(), input_priorbox->info(), output->info(), info));
403 
404     _input_loc      = input_loc;
405     _input_conf     = input_conf;
406     _input_priorbox = input_priorbox;
407     _output         = output;
408     _info           = info;
409     _num_priors     = input_priorbox->info()->dimension(0) / 4;
410     _num            = (_input_loc->info()->num_dimensions() > 1 ? _input_loc->info()->dimension(1) : 1);
411 
412     _all_location_predictions.resize(_num);
413     _all_confidence_scores.resize(_num);
414     _all_prior_bboxes.resize(_num_priors);
415     _all_prior_variances.resize(_num_priors);
416     _all_decode_bboxes.resize(_num);
417 
418     for(int i = 0; i < _num; ++i)
419     {
420         for(int c = 0; c < _info.num_loc_classes(); ++c)
421         {
422             const int label = _info.share_location() ? -1 : c;
423             if(label == _info.background_label_id())
424             {
425                 // Ignore background class.
426                 continue;
427             }
428             _all_decode_bboxes[i][label].resize(_num_priors);
429         }
430     }
431     _all_indices.resize(_num);
432 
433     Coordinates coord;
434     coord.set_num_dimensions(output->info()->num_dimensions());
435     output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
436 }
437 
validate(const ITensorInfo * input_loc,const ITensorInfo * input_conf,const ITensorInfo * input_priorbox,const ITensorInfo * output,DetectionOutputLayerInfo info)438 Status CPPDetectionOutputLayer::validate(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
439 {
440     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_loc, input_conf, input_priorbox, output, info));
441     return Status{};
442 }
443 
run()444 void CPPDetectionOutputLayer::run()
445 {
446     // Retrieve all location predictions.
447     retrieve_all_loc_predictions(_input_loc, _num, _num_priors, _info.num_loc_classes(), _info.share_location(), _all_location_predictions);
448 
449     // Retrieve all confidences.
450     retrieve_all_conf_scores(_input_conf, _num, _num_priors, _info.num_classes(), _all_confidence_scores);
451 
452     // Retrieve all prior bboxes.
453     retrieve_all_priorbox(_input_priorbox, _num_priors, _all_prior_bboxes, _all_prior_variances);
454 
455     // Decode all loc predictions to bboxes
456     const bool clip_bbox = false;
457     for(int i = 0; i < _num; ++i)
458     {
459         for(int c = 0; c < _info.num_loc_classes(); ++c)
460         {
461             const int label = _info.share_location() ? -1 : c;
462             if(label == _info.background_label_id())
463             {
464                 // Ignore background class.
465                 continue;
466             }
467             ARM_COMPUTE_ERROR_ON_MSG_VAR(_all_location_predictions[i].find(label) == _all_location_predictions[i].end(), "Could not find location predictions for label %d.", label);
468 
469             const std::vector<BBox> &label_loc_preds = _all_location_predictions[i].find(label)->second;
470 
471             const int num_bboxes = _all_prior_bboxes.size();
472             ARM_COMPUTE_ERROR_ON(_all_prior_variances[i].size() != 4);
473 
474             for(int j = 0; j < num_bboxes; ++j)
475             {
476                 DecodeBBox(_all_prior_bboxes[j], _all_prior_variances[j], _info.code_type(), _info.variance_encoded_in_target(), clip_bbox, label_loc_preds[j], _all_decode_bboxes[i][label][j]);
477             }
478         }
479     }
480 
481     int num_kept = 0;
482 
483     for(int i = 0; i < _num; ++i)
484     {
485         const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
486         const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
487 
488         std::map<int, std::vector<int>> indices;
489         int num_det = 0;
490         for(int c = 0; c < _info.num_classes(); ++c)
491         {
492             if(c == _info.background_label_id())
493             {
494                 // Ignore background class
495                 continue;
496             }
497             const int label = _info.share_location() ? -1 : c;
498             if(conf_scores.find(c) == conf_scores.end() || decode_bboxes.find(label) == decode_bboxes.end())
499             {
500                 ARM_COMPUTE_ERROR_VAR("Could not find predictions for label %d.", label);
501             }
502             const std::vector<float> &scores = conf_scores.find(c)->second;
503             const std::vector<BBox> &bboxes = decode_bboxes.find(label)->second;
504 
505             ApplyNMSFast(bboxes, scores, _info.confidence_threshold(), _info.nms_threshold(), _info.eta(), _info.top_k(), indices[c]);
506 
507             num_det += indices[c].size();
508         }
509 
510         int num_to_add = 0;
511         if(_info.keep_top_k() > -1 && num_det > _info.keep_top_k())
512         {
513             std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
514             for(auto const &it : indices)
515             {
516                 const int               label         = it.first;
517                 const std::vector<int> &label_indices = it.second;
518 
519                 if(conf_scores.find(label) == conf_scores.end())
520                 {
521                     ARM_COMPUTE_ERROR_VAR("Could not find predictions for label %d.", label);
522                 }
523 
524                 const std::vector<float> &scores = conf_scores.find(label)->second;
525                 for(auto idx : label_indices)
526                 {
527                     ARM_COMPUTE_ERROR_ON(idx > static_cast<int>(scores.size()));
528                     score_index_pairs.emplace_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
529                 }
530             }
531 
532             // Keep top k results per image.
533             std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend<std::pair<int, int>>);
534             score_index_pairs.resize(_info.keep_top_k());
535 
536             // Store the new indices.
537 
538             std::map<int, std::vector<int>> new_indices;
539             for(auto score_index_pair : score_index_pairs)
540             {
541                 int label = score_index_pair.second.first;
542                 int idx   = score_index_pair.second.second;
543                 new_indices[label].push_back(idx);
544             }
545             _all_indices[i] = new_indices;
546             num_to_add      = _info.keep_top_k();
547         }
548         else
549         {
550             _all_indices[i] = indices;
551             num_to_add      = num_det;
552         }
553         num_kept += num_to_add;
554     }
555 
556     //Update the valid region of the ouput to mark the exact number of detection
557     _output->info()->set_valid_region(ValidRegion(Coordinates(0, 0), TensorShape(7, num_kept)));
558 
559     int count = 0;
560     for(int i = 0; i < _num; ++i)
561     {
562         const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
563         const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
564         for(auto &it : _all_indices[i])
565         {
566             const int                 label     = it.first;
567             const std::vector<float> &scores    = conf_scores.find(label)->second;
568             const int                 loc_label = _info.share_location() ? -1 : label;
569             if(conf_scores.find(label) == conf_scores.end() || decode_bboxes.find(loc_label) == decode_bboxes.end())
570             {
571                 // Either if there are no confidence predictions
572                 // or there are no location predictions for current label.
573                 ARM_COMPUTE_ERROR_VAR("Could not find predictions for the label %d.", label);
574             }
575             const std::vector<BBox> &bboxes  = decode_bboxes.find(loc_label)->second;
576             const std::vector<int> &indices = it.second;
577 
578             for(auto idx : indices)
579             {
580                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7))))     = i;
581                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 1)))) = label;
582                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 2)))) = scores[idx];
583                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 3)))) = bboxes[idx][0];
584                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 4)))) = bboxes[idx][1];
585                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 5)))) = bboxes[idx][2];
586                 *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 6)))) = bboxes[idx][3];
587 
588                 ++count;
589             }
590         }
591     }
592 }
593 } // namespace arm_compute
594