• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEFFT1D.h"
25 
26 #include "arm_compute/core/ITensor.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/runtime/NEON/NEScheduler.h"
29 #include "src/core/NEON/kernels/NEFFTDigitReverseKernel.h"
30 #include "src/core/NEON/kernels/NEFFTRadixStageKernel.h"
31 #include "src/core/NEON/kernels/NEFFTScaleKernel.h"
32 #include "src/core/utils/helpers/fft.h"
33 #include "support/MemorySupport.h"
34 
35 namespace arm_compute
36 {
37 NEFFT1D::~NEFFT1D() = default;
38 
NEFFT1D(std::shared_ptr<IMemoryManager> memory_manager)39 NEFFT1D::NEFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
40     : _memory_group(std::move(memory_manager)), _digit_reverse_kernel(), _fft_kernels(), _scale_kernel(), _digit_reversed_input(), _digit_reverse_indices(), _num_ffts(0), _axis(0), _run_scale(false)
41 {
42 }
43 
configure(const ITensor * input,ITensor * output,const FFT1DInfo & config)44 void NEFFT1D::configure(const ITensor *input, ITensor *output, const FFT1DInfo &config)
45 {
46     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
47     ARM_COMPUTE_ERROR_THROW_ON(NEFFT1D::validate(input->info(), output->info(), config));
48 
49     // Decompose size to radix factors
50     const auto         supported_radix   = NEFFTRadixStageKernel::supported_radix();
51     const unsigned int N                 = input->info()->tensor_shape()[config.axis];
52     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
53     ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
54 
55     // Flags
56     _run_scale = config.direction == FFTDirection::Inverse;
57 
58     const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
59 
60     // Configure digit reverse
61     FFTDigitReverseKernelInfo digit_reverse_config;
62     digit_reverse_config.axis      = config.axis;
63     digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
64     TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
65     _digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
66     _memory_group.manage(&_digit_reversed_input);
67     _digit_reverse_kernel = arm_compute::support::cpp14::make_unique<NEFFTDigitReverseKernel>();
68     _digit_reverse_kernel->configure(input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
69 
70     // Create and configure FFT kernels
71     unsigned int Nx = 1;
72     _num_ffts       = decomposed_vector.size();
73     _fft_kernels.resize(_num_ffts);
74     _axis = config.axis;
75 
76     for(unsigned int i = 0; i < _num_ffts; ++i)
77     {
78         const unsigned int radix_for_stage = decomposed_vector.at(i);
79 
80         FFTRadixStageKernelInfo fft_kernel_info;
81         fft_kernel_info.axis           = config.axis;
82         fft_kernel_info.radix          = radix_for_stage;
83         fft_kernel_info.Nx             = Nx;
84         fft_kernel_info.is_first_stage = (i == 0);
85         _fft_kernels[i]                = arm_compute::support::cpp14::make_unique<NEFFTRadixStageKernel>();
86         _fft_kernels[i]->configure(&_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
87 
88         Nx *= radix_for_stage;
89     }
90 
91     // Configure scale kernel
92     if(_run_scale)
93     {
94         FFTScaleKernelInfo scale_config;
95         scale_config.scale     = static_cast<float>(N);
96         scale_config.conjugate = config.direction == FFTDirection::Inverse;
97         _scale_kernel          = arm_compute::support::cpp14::make_unique<NEFFTScaleKernel>();
98         is_c2r ? _scale_kernel->configure(&_digit_reversed_input, output, scale_config) : _scale_kernel->configure(output, nullptr, scale_config);
99     }
100 
101     // Allocate tensors
102     _digit_reversed_input.allocator()->allocate();
103     _digit_reverse_indices.allocator()->allocate();
104 
105     // Init digit reverse indices
106     const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
107     std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
108 }
109 
validate(const ITensorInfo * input,const ITensorInfo * output,const FFT1DInfo & config)110 Status NEFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
111 {
112     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
113     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
114     ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
115     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
116 
117     // Check if FFT is decomposable
118     const auto         supported_radix   = NEFFTRadixStageKernel::supported_radix();
119     const unsigned int N                 = input->tensor_shape()[config.axis];
120     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
121     ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
122 
123     // Checks performed when output is configured
124     if((output != nullptr) && (output->total_size() != 0))
125     {
126         // All combinations are supported except real input with real output (i.e., both input channels set to 1)
127         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
128         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() > 2);
129         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
130         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
131     }
132 
133     return Status{};
134 }
135 
run()136 void NEFFT1D::run()
137 {
138     MemoryGroupResourceScope scope_mg(_memory_group);
139 
140     NEScheduler::get().schedule(_digit_reverse_kernel.get(), (_axis == 0 ? Window::DimY : Window::DimZ));
141 
142     for(unsigned int i = 0; i < _num_ffts; ++i)
143     {
144         NEScheduler::get().schedule(_fft_kernels[i].get(), (_axis == 0 ? Window::DimY : Window::DimX));
145     }
146 
147     // Run output scaling
148     if(_run_scale)
149     {
150         NEScheduler::get().schedule(_scale_kernel.get(), Window::DimY);
151     }
152 }
153 } // namespace arm_compute
154