1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Size2D.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
31 #include "arm_compute/runtime/NEON/NEScheduler.h"
32 #include "src/core/NEON/kernels/NEConvertFullyConnectedWeightsKernel.h"
33 #include "src/core/NEON/kernels/NEConvertQuantizedSignednessKernel.h"
34 #include "src/core/NEON/kernels/NEFlattenLayerKernel.h"
35 #include "src/core/NEON/kernels/NEFlattenLayerKernel.h"
36 #include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
37 #include "src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
38 #include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
39 #include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.h"
40 #include "src/core/NEON/kernels/NEGEMMLowpReductionKernel.h"
41 #include "src/core/NEON/kernels/NEGEMMMatrixAdditionKernel.h"
42 #include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
43 #include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
44 #include "src/core/NEON/kernels/NETransposeKernel.h"
45
46 #include "support/MemorySupport.h"
47
48 #include <algorithm>
49 #include <cmath>
50
51 namespace arm_compute
52 {
53 using namespace arm_compute::misc::shape_calculator;
54
55 namespace
56 {
57 // Get min, max bound of a quantized assymetric output tensor, with the effect of fused activation
get_quantized_asymmetric_output_min_max(const QuantizationInfo & q_info,const ActivationLayerInfo & act_info,DataType data_type)58 std::pair<PixelValue, PixelValue> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
59 {
60 PixelValue type_min{};
61 PixelValue type_max{};
62 std::tie(type_min, type_max) = get_min_max(data_type);
63 const UniformQuantizationInfo q_unif = q_info.uniform();
64
65 if(act_info.enabled())
66 {
67 switch(act_info.activation())
68 {
69 case ActivationLayerInfo::ActivationFunction::RELU:
70 type_min = PixelValue(q_unif.offset);
71 break;
72 case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
73 type_min = PixelValue(q_unif.offset);
74 type_max = PixelValue(act_info.a(), data_type, q_info);
75 break;
76 case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
77 type_min = PixelValue(act_info.b(), data_type, q_info);
78 type_max = PixelValue(act_info.a(), data_type, q_info);
79 break;
80 default:
81 ARM_COMPUTE_ERROR("Activation function not supported.");
82 break;
83 }
84 }
85
86 return std::make_pair(type_min, type_max);
87 }
88
get_gemmlowp_output_stage_info(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,const ActivationLayerInfo & act,GEMMLowpOutputStageInfo & gemmlowp_output_stage_info)89 Status get_gemmlowp_output_stage_info(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const ActivationLayerInfo &act,
90 GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
91 {
92 const auto data_type = input->data_type();
93 const QuantizationInfo oq_info = output->quantization_info();
94 const UniformQuantizationInfo iq_unif = input->quantization_info().uniform();
95 const UniformQuantizationInfo wq_unif = weights->quantization_info().uniform();
96 const UniformQuantizationInfo oq_unif = oq_info.uniform();
97
98 float multiplier = (iq_unif.scale * wq_unif.scale) / oq_unif.scale;
99 int32_t output_multiplier;
100 int32_t output_shift;
101
102 ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
103
104 PixelValue type_min{};
105 PixelValue type_max{};
106 std::tie(type_min, type_max) = get_quantized_asymmetric_output_min_max(oq_info, act, data_type);
107
108 gemmlowp_output_stage_info.gemmlowp_multiplier = output_multiplier;
109 gemmlowp_output_stage_info.gemmlowp_shift = output_shift;
110 gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
111 gemmlowp_output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
112 gemmlowp_output_stage_info.gemmlowp_min_bound = type_min.get<int32_t>();
113 gemmlowp_output_stage_info.gemmlowp_max_bound = type_max.get<int32_t>();
114
115 return Status{};
116 }
117
validate_mm(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const ActivationLayerInfo & act)118 Status validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const ActivationLayerInfo &act)
119 {
120 if(is_data_type_quantized_asymmetric(input->data_type()))
121 {
122 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
123 // Extract and negate input and weights offset
124 const QuantizationInfo input_quantization_info(input->quantization_info().uniform().scale, -input->quantization_info().uniform().offset);
125 const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
126
127 GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
128 ARM_COMPUTE_RETURN_ON_ERROR(get_gemmlowp_output_stage_info(input, weights, output, act, gemmlowp_output_stage_info));
129
130 GEMMInfo gemm_info;
131 gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
132
133 // Validate gemmlowp function
134 ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(&input->clone()->set_quantization_info(input_quantization_info),
135 &weights->clone()->set_quantization_info(weights_quantization_info),
136 biases,
137 output,
138 gemm_info));
139 }
140 else
141 {
142 ARM_COMPUTE_RETURN_ON_ERROR(NEGEMM::validate(input, weights, biases, output, 1.f, 1.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */)));
143 }
144
145 return Status{};
146 }
147 } // namespace
148
configure(const ITensor * input,ITensor * output)149 void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output)
150 {
151 auto k = arm_compute::support::cpp14::make_unique<NETransposeKernel>();
152 k->configure(input, output);
153 _kernel = std::move(k);
154 }
155
validate(const ITensorInfo * input,const ITensorInfo * output)156 Status NEFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output)
157 {
158 return NETransposeKernel::validate(input, output);
159 }
160
161 NEFullyConnectedLayer::~NEFullyConnectedLayer() = default;
162
NEFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager,IWeightsManager * weights_manager)163 NEFullyConnectedLayer::NEFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
164 : _memory_group(std::move(memory_manager)), _weights_manager(weights_manager), _flatten_kernel(), _convert_weights(), _convert_weights_managed(), _reshape_weights_function(),
165 _reshape_weights_managed_function(), _mm_gemm(nullptr, weights_manager), _mm_gemmlowp(nullptr, weights_manager), _flatten_output(), _converted_weights_output(), _reshape_weights_output(),
166 _original_weights(nullptr), _are_weights_converted(true), _are_weights_reshaped(false), _is_fc_after_conv(false), _is_quantized_asymmetric(false), _is_prepared(false)
167 {
168 }
169
configure_mm(const ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,const ActivationLayerInfo & act)170 void NEFullyConnectedLayer::configure_mm(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act)
171 {
172 if(_is_quantized_asymmetric)
173 {
174 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
175 // Extract and negate input and weights offset
176 const QuantizationInfo input_quantization_info = input->info()->quantization_info();
177 const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
178
179 input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
180 weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
181
182 // Configure gemmlowp function and output stage for asymmetric quantized types
183 GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
184 const Status status = get_gemmlowp_output_stage_info(input->info(), weights->info(), output->info(), act, gemmlowp_output_stage_info);
185 ARM_COMPUTE_ERROR_ON(status.error_code() != ErrorCode::OK);
186
187 GEMMInfo gemm_info;
188 gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
189 gemm_info.set_activation_info(act);
190 _mm_gemmlowp.configure(input, weights, biases, output, gemm_info);
191
192 // Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
193 input->info()->set_quantization_info(input_quantization_info);
194 weights->info()->set_quantization_info(weights_quantization_info);
195 }
196 else
197 {
198 // Configure matrix multiply kernel
199 GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
200 gemm_info.set_activation_info(act);
201 _mm_gemm.configure(input, weights, biases, output, 1.f, 1.0f, gemm_info);
202 }
203 }
204
configure_conv_fc(const ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,const ActivationLayerInfo & act)205 void NEFullyConnectedLayer::configure_conv_fc(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act)
206 {
207 ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
208
209 // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
210
211 // Initialize output tensor for flatten
212 TensorShape shape_flatten = compute_flatten_shape(input->info());
213 _flatten_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));
214
215 // Configure flatten kernel
216 _memory_group.manage(&_flatten_output);
217
218 _flatten_kernel = arm_compute::support::cpp14::make_unique<NEFlattenLayerKernel>();
219 _flatten_kernel->configure(input, &_flatten_output);
220
221 // Configure matrix multiply kernel
222 configure_mm(&_flatten_output, weights, biases, output, act);
223
224 // Allocate the output tensor for flatten once all the configure methods have been called
225 _flatten_output.allocator()->allocate();
226 }
227
configure_fc_fc(const ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,const ActivationLayerInfo & act)228 void NEFullyConnectedLayer::configure_fc_fc(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const ActivationLayerInfo &act)
229 {
230 ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
231
232 // Configure matrix multiply kernel
233 configure_mm(input, weights, biases, output, act);
234 }
235
configure(const ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,FullyConnectedLayerInfo fc_info)236 void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output,
237 FullyConnectedLayerInfo fc_info)
238 {
239 // Perform validate step
240 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
241 ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayer::validate(input->info(),
242 weights->info(),
243 biases != nullptr ? biases->info() : nullptr,
244 output->info(),
245 fc_info));
246
247 _are_weights_converted = true;
248 _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
249 _is_fc_after_conv = true;
250 _is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type());
251 _original_weights = weights;
252
253 if(_weights_manager)
254 {
255 _weights_manager->manage(weights);
256 }
257
258 // With the Fully Connected layer we can have 4 different cases:
259 // 1) Convolution layer -> Fully Connected layer without batches
260 // 2) Fully Connected layer -> Fully Connected layer without batches
261 // 3) Convolution layer -> Fully Connected layer with batches
262 // 4) Fully Connected layer -> Fully Connected layer with batches
263
264 const ITensor *weights_to_use = weights;
265
266 // Check if we have a fully connected layer with batches
267 const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
268 if(is_batched_fc_layer)
269 {
270 _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
271 input->info()->tensor_shape().cend(),
272 output->info()->tensor_shape().cbegin() + 1));
273 }
274 else
275 {
276 _is_fc_after_conv = input->info()->num_dimensions() > 1;
277 }
278
279 // Reshape weights if needed
280 if(!_are_weights_reshaped)
281 {
282 if(_weights_manager && _weights_manager->are_weights_managed(weights))
283 {
284 _reshape_weights_managed_function.configure(weights);
285 weights_to_use = _weights_manager->acquire(weights, &_reshape_weights_managed_function);
286 }
287 else
288 {
289 // Reshape the weights
290 _reshape_weights_function.configure(weights, &_reshape_weights_output);
291 weights_to_use = &_reshape_weights_output;
292 }
293 }
294
295 // Convert weights if needed
296 if(_is_fc_after_conv && (input->info()->data_layout() != fc_info.weights_trained_layout))
297 {
298 if(_weights_manager && _weights_manager->are_weights_managed(weights_to_use))
299 {
300 _convert_weights_managed.configure(weights_to_use,
301 input->info()->tensor_shape(),
302 fc_info.weights_trained_layout);
303 weights_to_use = _weights_manager->acquire(weights, &_convert_weights_managed);
304 }
305 else
306 {
307 // Convert weights
308 _convert_weights.configure(weights_to_use,
309 &_converted_weights_output,
310 input->info()->tensor_shape(),
311 fc_info.weights_trained_layout);
312
313 weights_to_use = &_converted_weights_output;
314 }
315 _are_weights_converted = false;
316 }
317
318 if(_is_fc_after_conv)
319 {
320 // Fully Connected layer after a Convolution Layer without batches
321 configure_conv_fc(input, weights_to_use, biases, output, fc_info.activation_info);
322 }
323 else
324 {
325 // Fully Connected layer after a Fully Connected Layer without batches
326 configure_fc_fc(input, weights_to_use, biases, output, fc_info.activation_info);
327 }
328
329 _are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights;
330 }
331
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,FullyConnectedLayerInfo fc_info)332 Status NEFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
333 FullyConnectedLayerInfo fc_info)
334 {
335 ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
336 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
337 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
338 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
339 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
340 ARM_COMPUTE_RETURN_ERROR_ON(biases != nullptr && biases->num_dimensions() > 1);
341
342 bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
343 bool is_fc_after_conv = true;
344
345 const ITensorInfo &flatten_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(input)));
346 const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
347 const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
348
349 // With the Fully Connected layer we can have 4 different cases:
350 // 1) Convolution layer -> Fully Connected layer without batches
351 // 2) Fully Connected layer -> Fully Connected layer without batches
352 // 3) Convolution layer -> Fully Connected layer with batches
353 // 4) Fully Connected layer -> Fully Connected layer with batches
354
355 const ITensorInfo *input_to_use = input;
356 const ITensorInfo *weights_to_use = weights;
357
358 // Check if we have a fully connected layer with batches
359 const bool is_batched_fc_layer = output->dimension(1) > 1;
360
361 if(is_batched_fc_layer)
362 {
363 is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->tensor_shape().cbegin() + 3,
364 input->tensor_shape().cend(),
365 output->tensor_shape().cbegin() + 1));
366 }
367 else
368 {
369 is_fc_after_conv = input->num_dimensions() > 1;
370 }
371
372 if(!weights_reshaped)
373 {
374 // Validate reshape weights kernel
375 ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayerReshapeWeights::validate(weights, &reshaped_weights));
376 weights_to_use = &reshaped_weights;
377 }
378
379 if(is_fc_after_conv && (input->data_layout() != fc_info.weights_trained_layout))
380 {
381 // Validate convert weights kernel
382 ARM_COMPUTE_RETURN_ON_ERROR(NEConvertFullyConnectedWeights::validate(weights_to_use,
383 &converted_weights,
384 input->tensor_shape(),
385 fc_info.weights_trained_layout));
386 weights_to_use = &converted_weights;
387 }
388
389 if(is_fc_after_conv)
390 {
391 // Fully Connected layer after a Convolution Layer without batches
392 ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (input->dimension(0) * input->dimension(1) * input->dimension(2))));
393
394 // Validate flatten kernel
395 ARM_COMPUTE_RETURN_ON_ERROR(NEFlattenLayerKernel::validate(input, &flatten_input));
396 input_to_use = &flatten_input;
397 }
398 else
399 {
400 // Fully Connected layer after a Fully Connected Layer without batches
401 ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != weights_to_use->dimension(1));
402 }
403 // Validate matrix multiply kernel
404 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(input_to_use, weights_to_use, biases, output, fc_info.activation_info));
405
406 return Status{};
407 }
408
run()409 void NEFullyConnectedLayer::run()
410 {
411 prepare();
412
413 MemoryGroupResourceScope scope_mg(_memory_group);
414
415 // Linearize input if it comes from a convolutional layer
416 if(_is_fc_after_conv)
417 {
418 NEScheduler::get().schedule(_flatten_kernel.get(), Window::DimY);
419 }
420
421 // Run matrix multiply
422 if(_is_quantized_asymmetric)
423 {
424 _mm_gemmlowp.run();
425 }
426 else
427 {
428 _mm_gemm.run();
429 }
430 }
431
prepare()432 void NEFullyConnectedLayer::prepare()
433 {
434 if(!_is_prepared)
435 {
436 if(!_weights_manager)
437 {
438 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
439 }
440
441 auto release_unused = [](Tensor * w)
442 {
443 if(!w->is_used())
444 {
445 w->allocator()->free();
446 }
447 };
448
449 // Pointer to current weights
450 const ITensor *cur_weights = _original_weights;
451
452 // Reshape of the weights (happens only once)
453 if(!_are_weights_reshaped)
454 {
455 if(_weights_manager && _weights_manager->are_weights_managed(_original_weights))
456 {
457 cur_weights = _weights_manager->run(cur_weights, &_reshape_weights_managed_function);
458 }
459 else
460 {
461 // Reshape of the weights (happens only once)
462 if(!_are_weights_reshaped)
463 {
464 // Run reshape weights kernel and mark weights as unused
465 _reshape_weights_output.allocator()->allocate();
466 _reshape_weights_function.run();
467 }
468 cur_weights->mark_as_unused();
469 cur_weights = &_reshape_weights_output;
470 }
471 _are_weights_reshaped = true;
472 }
473
474 // Convert weights if needed (happens only once)
475 if(!_are_weights_converted)
476 {
477 if(_weights_manager && _weights_manager->are_weights_managed(cur_weights))
478 {
479 _weights_manager->run(cur_weights, &_convert_weights_managed);
480 }
481 else
482 {
483 _converted_weights_output.allocator()->allocate();
484 _convert_weights.run();
485 cur_weights->mark_as_unused();
486 }
487
488 _are_weights_converted = true;
489 }
490
491 // Release reshaped weights if unused
492 release_unused(&_reshape_weights_output);
493
494 // Prepare GEMM prepare and release unused weights
495 if(!_is_quantized_asymmetric)
496 {
497 _mm_gemm.prepare();
498 }
499
500 // Release converted weights if unused
501 release_unused(&_reshape_weights_output);
502 release_unused(&_converted_weights_output);
503
504 _is_prepared = true;
505 }
506 }
507 } // namespace arm_compute
508