• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEGEMMLowpOutputStage.h"
25 
26 #include "arm_compute/core/ITensor.h"
27 #include "arm_compute/core/Validate.h"
28 #include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h"
29 #include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h"
30 #include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h"
31 #include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h"
32 #include "support/MemorySupport.h"
33 
34 namespace arm_compute
35 {
36 NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::~NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint() = default;
37 
configure(const ITensor * input,const ITensor * bias,ITensor * output,int result_fixedpoint_multiplier,int result_shift,int result_offset_after_shift,int min,int max)38 void NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift,
39                                                                     int result_offset_after_shift, int min, int max)
40 {
41     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel>();
42     k->configure(input, bias, output, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
43     _kernel = std::move(k);
44 }
45 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,int min,int max)46 Status NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
47 {
48     return NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(input, bias, output, min, max);
49 }
50 
51 NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPoint::~NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPoint() = default;
52 
configure(const ITensor * input,const ITensor * bias,ITensor * output,int result_fixedpoint_multiplier,int result_shift,int result_offset_after_shift,int min,int max)53 void NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPoint::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift,
54                                                                    int result_offset_after_shift, int min, int max)
55 {
56     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel>();
57     k->configure(input, bias, output, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max);
58     _kernel = std::move(k);
59 }
60 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,int min,int max)61 Status NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPoint::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
62 {
63     return NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::validate(input, bias, output, min, max);
64 }
65 
66 NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint::~NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint() = default;
67 
configure(const ITensor * input,const ITensor * bias,ITensor * output,int result_fixedpoint_multiplier,int result_shift,int min,int max)68 void NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int min, int max)
69 {
70     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel>();
71     k->configure(input, bias, output, result_fixedpoint_multiplier, result_shift, min, max);
72     _kernel = std::move(k);
73 }
74 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,int min,int max)75 Status NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
76 {
77     return NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::validate(input, bias, output, min, max);
78 }
79 
80 NEGEMMLowpOutputStage::~NEGEMMLowpOutputStage() = default;
81 
configure(const ITensor * input,const ITensor * bias,ITensor * output,const GEMMLowpOutputStageInfo & info)82 void NEGEMMLowpOutputStage::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo &info)
83 {
84     // Perform validate step
85     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
86     ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpOutputStage::validate(input->info(), bias != nullptr ? bias->info() : nullptr, output->info(), info));
87 
88     switch(info.type)
89     {
90         case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
91         {
92             switch(info.output_data_type)
93             {
94                 case DataType::QASYMM8:
95                 {
96                     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel>();
97                     k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_offset, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
98                     _kernel = std::move(k);
99                     break;
100                 }
101                 case DataType::QASYMM8_SIGNED:
102                 {
103                     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel>();
104                     k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_offset, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
105                     _kernel = std::move(k);
106                     break;
107                 }
108                 case DataType::QSYMM16:
109                 {
110                     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel>();
111                     k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
112                     _kernel = std::move(k);
113                     break;
114                 }
115                 default:
116                 {
117                     ARM_COMPUTE_ERROR("Unsupported output data type.");
118                     break;
119                 }
120             }
121             break;
122         }
123         case GEMMLowpOutputStageType::QUANTIZE_DOWN:
124         {
125             switch(info.output_data_type)
126             {
127                 case DataType::QASYMM8:
128                 case DataType::QASYMM8_SIGNED:
129                 {
130                     auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpQuantizeDownInt32ScaleKernel>();
131                     k->configure(input, bias, output, &info);
132                     _kernel = std::move(k);
133                     break;
134                 }
135                 default:
136                 {
137                     ARM_COMPUTE_ERROR("Unsupported output data type.");
138                     break;
139                 }
140             }
141             break;
142         }
143         default:
144             ARM_COMPUTE_ERROR("Unsupported GEMMLowpOutputStage type.");
145     }
146 }
147 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,const GEMMLowpOutputStageInfo & info)148 Status NEGEMMLowpOutputStage::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo &info)
149 {
150     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
151     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::UNKNOWN, "NEGEMMLowpQuantizeDownScaleByFixedPoint cannot be used with UNKNOWN output data type.");
152     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16);
153 
154     ARM_COMPUTE_RETURN_ERROR_ON((info.type != GEMMLowpOutputStageType::QUANTIZE_DOWN) && (info.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT));
155 
156     switch(info.type)
157     {
158         case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
159         {
160             switch(output->data_type())
161             {
162                 case DataType::QASYMM8:
163                     return NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
164                 case DataType::QASYMM8_SIGNED:
165                     return NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
166                 case DataType::QSYMM16:
167                     return NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
168                 default:
169                     return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported output data type.");
170             }
171         }
172         case GEMMLowpOutputStageType::QUANTIZE_DOWN:
173         {
174             switch(output->data_type())
175             {
176                 case DataType::QASYMM8:
177                 case DataType::QASYMM8_SIGNED:
178                     return NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(input, bias, output, &info);
179                 default:
180                     return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported output data type.");
181             }
182         }
183         default:
184             return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported GEMMLowpOutputStage type.");
185     }
186 }
187 } // namespace arm_compute
188