• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEGenerateProposalsLayer.h"
25 
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/runtime/NEON/NEScheduler.h"
28 #include "src/core/NEON/kernels/NECopyKernel.h"
29 #include "src/core/NEON/kernels/NEFillBorderKernel.h"
30 #include "src/core/NEON/kernels/NEPadLayerKernel.h"
31 #include "src/core/helpers/AutoConfiguration.h"
32 
33 namespace arm_compute
34 {
NEGenerateProposalsLayer(std::shared_ptr<IMemoryManager> memory_manager)35 NEGenerateProposalsLayer::NEGenerateProposalsLayer(std::shared_ptr<IMemoryManager> memory_manager)
36     : _memory_group(memory_manager),
37       _permute_deltas(),
38       _flatten_deltas(),
39       _permute_scores(),
40       _flatten_scores(),
41       _compute_anchors(),
42       _bounding_box(),
43       _pad(),
44       _dequantize_anchors(),
45       _dequantize_deltas(),
46       _quantize_all_proposals(),
47       _cpp_nms(memory_manager),
48       _is_nhwc(false),
49       _is_qasymm8(false),
50       _deltas_permuted(),
51       _deltas_flattened(),
52       _deltas_flattened_f32(),
53       _scores_permuted(),
54       _scores_flattened(),
55       _all_anchors(),
56       _all_anchors_f32(),
57       _all_proposals(),
58       _all_proposals_quantized(),
59       _keeps_nms_unused(),
60       _classes_nms_unused(),
61       _proposals_4_roi_values(),
62       _all_proposals_to_use(nullptr),
63       _num_valid_proposals(nullptr),
64       _scores_out(nullptr)
65 {
66 }
67 
68 NEGenerateProposalsLayer::~NEGenerateProposalsLayer() = default;
69 
configure(const ITensor * scores,const ITensor * deltas,const ITensor * anchors,ITensor * proposals,ITensor * scores_out,ITensor * num_valid_proposals,const GenerateProposalsInfo & info)70 void NEGenerateProposalsLayer::configure(const ITensor *scores, const ITensor *deltas, const ITensor *anchors, ITensor *proposals, ITensor *scores_out, ITensor *num_valid_proposals,
71                                          const GenerateProposalsInfo &info)
72 {
73     ARM_COMPUTE_ERROR_ON_NULLPTR(scores, deltas, anchors, proposals, scores_out, num_valid_proposals);
74     ARM_COMPUTE_ERROR_THROW_ON(NEGenerateProposalsLayer::validate(scores->info(), deltas->info(), anchors->info(), proposals->info(), scores_out->info(), num_valid_proposals->info(), info));
75 
76     _is_nhwc                        = scores->info()->data_layout() == DataLayout::NHWC;
77     const DataType scores_data_type = scores->info()->data_type();
78     _is_qasymm8                     = scores_data_type == DataType::QASYMM8;
79     const int    num_anchors        = scores->info()->dimension(get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::CHANNEL));
80     const int    feat_width         = scores->info()->dimension(get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::WIDTH));
81     const int    feat_height        = scores->info()->dimension(get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::HEIGHT));
82     const int    total_num_anchors  = num_anchors * feat_width * feat_height;
83     const int    pre_nms_topN       = info.pre_nms_topN();
84     const int    post_nms_topN      = info.post_nms_topN();
85     const size_t values_per_roi     = info.values_per_roi();
86 
87     const QuantizationInfo scores_qinfo   = scores->info()->quantization_info();
88     const DataType         rois_data_type = (_is_qasymm8) ? DataType::QASYMM16 : scores_data_type;
89     const QuantizationInfo rois_qinfo     = (_is_qasymm8) ? QuantizationInfo(0.125f, 0) : scores->info()->quantization_info();
90 
91     // Compute all the anchors
92     _memory_group.manage(&_all_anchors);
93     _compute_anchors.configure(anchors, &_all_anchors, ComputeAnchorsInfo(feat_width, feat_height, info.spatial_scale()));
94 
95     const TensorShape flatten_shape_deltas(values_per_roi, total_num_anchors);
96     _deltas_flattened.allocator()->init(TensorInfo(flatten_shape_deltas, 1, scores_data_type, deltas->info()->quantization_info()));
97 
98     // Permute and reshape deltas
99     _memory_group.manage(&_deltas_flattened);
100     if(!_is_nhwc)
101     {
102         _memory_group.manage(&_deltas_permuted);
103         _permute_deltas.configure(deltas, &_deltas_permuted, PermutationVector{ 2, 0, 1 });
104         _flatten_deltas.configure(&_deltas_permuted, &_deltas_flattened);
105         _deltas_permuted.allocator()->allocate();
106     }
107     else
108     {
109         _flatten_deltas.configure(deltas, &_deltas_flattened);
110     }
111 
112     const TensorShape flatten_shape_scores(1, total_num_anchors);
113     _scores_flattened.allocator()->init(TensorInfo(flatten_shape_scores, 1, scores_data_type, scores_qinfo));
114 
115     // Permute and reshape scores
116     _memory_group.manage(&_scores_flattened);
117     if(!_is_nhwc)
118     {
119         _memory_group.manage(&_scores_permuted);
120         _permute_scores.configure(scores, &_scores_permuted, PermutationVector{ 2, 0, 1 });
121         _flatten_scores.configure(&_scores_permuted, &_scores_flattened);
122         _scores_permuted.allocator()->allocate();
123     }
124     else
125     {
126         _flatten_scores.configure(scores, &_scores_flattened);
127     }
128 
129     Tensor *anchors_to_use = &_all_anchors;
130     Tensor *deltas_to_use  = &_deltas_flattened;
131     if(_is_qasymm8)
132     {
133         _all_anchors_f32.allocator()->init(TensorInfo(_all_anchors.info()->tensor_shape(), 1, DataType::F32));
134         _deltas_flattened_f32.allocator()->init(TensorInfo(_deltas_flattened.info()->tensor_shape(), 1, DataType::F32));
135         _memory_group.manage(&_all_anchors_f32);
136         _memory_group.manage(&_deltas_flattened_f32);
137         // Dequantize anchors to float
138         _dequantize_anchors.configure(&_all_anchors, &_all_anchors_f32);
139         _all_anchors.allocator()->allocate();
140         anchors_to_use = &_all_anchors_f32;
141         // Dequantize deltas to float
142         _dequantize_deltas.configure(&_deltas_flattened, &_deltas_flattened_f32);
143         _deltas_flattened.allocator()->allocate();
144         deltas_to_use = &_deltas_flattened_f32;
145     }
146     // Bounding box transform
147     _memory_group.manage(&_all_proposals);
148     BoundingBoxTransformInfo bbox_info(info.im_width(), info.im_height(), 1.f);
149     _bounding_box.configure(anchors_to_use, &_all_proposals, deltas_to_use, bbox_info);
150     deltas_to_use->allocator()->allocate();
151     anchors_to_use->allocator()->allocate();
152 
153     _all_proposals_to_use = &_all_proposals;
154     if(_is_qasymm8)
155     {
156         _memory_group.manage(&_all_proposals_quantized);
157         // Requantize all_proposals to QASYMM16 with 0.125 scale and 0 offset
158         _all_proposals_quantized.allocator()->init(TensorInfo(_all_proposals.info()->tensor_shape(), 1, DataType::QASYMM16, QuantizationInfo(0.125f, 0)));
159         _quantize_all_proposals.configure(&_all_proposals, &_all_proposals_quantized);
160         _all_proposals.allocator()->allocate();
161         _all_proposals_to_use = &_all_proposals_quantized;
162     }
163     // The original layer implementation first selects the best pre_nms_topN anchors (thus having a lightweight sort)
164     // that are then transformed by bbox_transform. The boxes generated are then fed into a non-sorting NMS operation.
165     // Since we are reusing the NMS layer and we don't implement any CL/sort, we let NMS do the sorting (of all the input)
166     // and the filtering
167     const int   scores_nms_size = std::min<int>(std::min<int>(post_nms_topN, pre_nms_topN), total_num_anchors);
168     const float min_size_scaled = info.min_size() * info.im_scale();
169     _memory_group.manage(&_classes_nms_unused);
170     _memory_group.manage(&_keeps_nms_unused);
171 
172     // Note that NMS needs outputs preinitialized.
173     auto_init_if_empty(*scores_out->info(), TensorShape(scores_nms_size), 1, scores_data_type, scores_qinfo);
174     auto_init_if_empty(*_proposals_4_roi_values.info(), TensorShape(values_per_roi, scores_nms_size), 1, rois_data_type, rois_qinfo);
175     auto_init_if_empty(*num_valid_proposals->info(), TensorShape(1), 1, DataType::U32);
176 
177     // Initialize temporaries (unused) outputs
178     _classes_nms_unused.allocator()->init(TensorInfo(TensorShape(scores_nms_size), 1, scores_data_type, scores_qinfo));
179     _keeps_nms_unused.allocator()->init(*scores_out->info());
180 
181     // Save the output (to map and unmap them at run)
182     _scores_out          = scores_out;
183     _num_valid_proposals = num_valid_proposals;
184 
185     _memory_group.manage(&_proposals_4_roi_values);
186 
187     const BoxNMSLimitInfo box_nms_info(0.0f, info.nms_thres(), scores_nms_size, false, NMSType::LINEAR, 0.5f, 0.001f, true, min_size_scaled, info.im_width(), info.im_height());
188     _cpp_nms.configure(&_scores_flattened /*scores_in*/,
189                        _all_proposals_to_use /*boxes_in,*/,
190                        nullptr /* batch_splits_in*/,
191                        scores_out /* scores_out*/,
192                        &_proposals_4_roi_values /*boxes_out*/,
193                        &_classes_nms_unused /*classes*/,
194                        nullptr /*batch_splits_out*/,
195                        &_keeps_nms_unused /*keeps*/,
196                        num_valid_proposals /* keeps_size*/,
197                        box_nms_info);
198 
199     _keeps_nms_unused.allocator()->allocate();
200     _classes_nms_unused.allocator()->allocate();
201     _all_proposals_to_use->allocator()->allocate();
202     _scores_flattened.allocator()->allocate();
203 
204     // Add the first column that represents the batch id. This will be all zeros, as we don't support multiple images
205     _pad.configure(&_proposals_4_roi_values, proposals, PaddingList{ { 1, 0 } });
206     _proposals_4_roi_values.allocator()->allocate();
207 }
208 
validate(const ITensorInfo * scores,const ITensorInfo * deltas,const ITensorInfo * anchors,const ITensorInfo * proposals,const ITensorInfo * scores_out,const ITensorInfo * num_valid_proposals,const GenerateProposalsInfo & info)209 Status NEGenerateProposalsLayer::validate(const ITensorInfo *scores, const ITensorInfo *deltas, const ITensorInfo *anchors, const ITensorInfo *proposals, const ITensorInfo *scores_out,
210                                           const ITensorInfo *num_valid_proposals, const GenerateProposalsInfo &info)
211 {
212     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(scores, deltas, anchors, proposals, scores_out, num_valid_proposals);
213     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(scores, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
214     ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(scores, DataLayout::NCHW, DataLayout::NHWC);
215     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(scores, deltas);
216     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(scores, deltas);
217 
218     const int num_anchors       = scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::CHANNEL));
219     const int feat_width        = scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::WIDTH));
220     const int feat_height       = scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::HEIGHT));
221     const int num_images        = scores->dimension(3);
222     const int total_num_anchors = num_anchors * feat_width * feat_height;
223     const int values_per_roi    = info.values_per_roi();
224 
225     const bool is_qasymm8 = scores->data_type() == DataType::QASYMM8;
226 
227     ARM_COMPUTE_RETURN_ERROR_ON(num_images > 1);
228 
229     if(is_qasymm8)
230     {
231         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(anchors, 1, DataType::QSYMM16);
232         const UniformQuantizationInfo anchors_qinfo = anchors->quantization_info().uniform();
233         ARM_COMPUTE_RETURN_ERROR_ON(anchors_qinfo.scale != 0.125f);
234     }
235 
236     TensorInfo all_anchors_info(anchors->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
237     ARM_COMPUTE_RETURN_ON_ERROR(NEComputeAllAnchors::validate(anchors, &all_anchors_info, ComputeAnchorsInfo(feat_width, feat_height, info.spatial_scale())));
238 
239     TensorInfo deltas_permuted_info = deltas->clone()->set_tensor_shape(TensorShape(values_per_roi * num_anchors, feat_width, feat_height)).set_is_resizable(true);
240     TensorInfo scores_permuted_info = scores->clone()->set_tensor_shape(TensorShape(num_anchors, feat_width, feat_height)).set_is_resizable(true);
241     if(scores->data_layout() == DataLayout::NHWC)
242     {
243         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(deltas, &deltas_permuted_info);
244         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(scores, &scores_permuted_info);
245     }
246     else
247     {
248         ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(deltas, &deltas_permuted_info, PermutationVector{ 2, 0, 1 }));
249         ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(scores, &scores_permuted_info, PermutationVector{ 2, 0, 1 }));
250     }
251 
252     TensorInfo deltas_flattened_info(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
253     ARM_COMPUTE_RETURN_ON_ERROR(NEReshapeLayer::validate(&deltas_permuted_info, &deltas_flattened_info));
254 
255     TensorInfo scores_flattened_info(scores->clone()->set_tensor_shape(TensorShape(1, total_num_anchors)).set_is_resizable(true));
256     TensorInfo proposals_4_roi_values(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
257 
258     ARM_COMPUTE_RETURN_ON_ERROR(NEReshapeLayer::validate(&scores_permuted_info, &scores_flattened_info));
259 
260     TensorInfo *proposals_4_roi_values_to_use = &proposals_4_roi_values;
261     TensorInfo  proposals_4_roi_values_quantized(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
262     proposals_4_roi_values_quantized.set_data_type(DataType::QASYMM16).set_quantization_info(QuantizationInfo(0.125f, 0));
263     if(is_qasymm8)
264     {
265         TensorInfo all_anchors_f32_info(anchors->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true).set_data_type(DataType::F32));
266         ARM_COMPUTE_RETURN_ON_ERROR(NEDequantizationLayer::validate(&all_anchors_info, &all_anchors_f32_info));
267 
268         TensorInfo deltas_flattened_f32_info(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true).set_data_type(DataType::F32));
269         ARM_COMPUTE_RETURN_ON_ERROR(NEDequantizationLayer::validate(&deltas_flattened_info, &deltas_flattened_f32_info));
270 
271         TensorInfo proposals_4_roi_values_f32(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true).set_data_type(DataType::F32));
272         ARM_COMPUTE_RETURN_ON_ERROR(NEBoundingBoxTransform::validate(&all_anchors_f32_info, &proposals_4_roi_values_f32, &deltas_flattened_f32_info,
273                                                                      BoundingBoxTransformInfo(info.im_width(), info.im_height(), 1.f)));
274 
275         ARM_COMPUTE_RETURN_ON_ERROR(NEQuantizationLayer::validate(&proposals_4_roi_values_f32, &proposals_4_roi_values_quantized));
276         proposals_4_roi_values_to_use = &proposals_4_roi_values_quantized;
277     }
278     else
279     {
280         ARM_COMPUTE_RETURN_ON_ERROR(NEBoundingBoxTransform::validate(&all_anchors_info, &proposals_4_roi_values, &deltas_flattened_info,
281                                                                      BoundingBoxTransformInfo(info.im_width(), info.im_height(), 1.f)));
282     }
283 
284     ARM_COMPUTE_RETURN_ON_ERROR(NEPadLayer::validate(proposals_4_roi_values_to_use, proposals, PaddingList{ { 1, 0 } }));
285 
286     if(num_valid_proposals->total_size() > 0)
287     {
288         ARM_COMPUTE_RETURN_ERROR_ON(num_valid_proposals->num_dimensions() > 1);
289         ARM_COMPUTE_RETURN_ERROR_ON(num_valid_proposals->dimension(0) > 1);
290         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(num_valid_proposals, 1, DataType::U32);
291     }
292 
293     if(proposals->total_size() > 0)
294     {
295         ARM_COMPUTE_RETURN_ERROR_ON(proposals->num_dimensions() > 2);
296         ARM_COMPUTE_RETURN_ERROR_ON(proposals->dimension(0) != size_t(values_per_roi) + 1);
297         ARM_COMPUTE_RETURN_ERROR_ON(proposals->dimension(1) != size_t(total_num_anchors));
298         if(is_qasymm8)
299         {
300             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(proposals, 1, DataType::QASYMM16);
301             const UniformQuantizationInfo proposals_qinfo = proposals->quantization_info().uniform();
302             ARM_COMPUTE_RETURN_ERROR_ON(proposals_qinfo.scale != 0.125f);
303             ARM_COMPUTE_RETURN_ERROR_ON(proposals_qinfo.offset != 0);
304         }
305         else
306         {
307             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(proposals, scores);
308         }
309     }
310 
311     if(scores_out->total_size() > 0)
312     {
313         ARM_COMPUTE_RETURN_ERROR_ON(scores_out->num_dimensions() > 1);
314         ARM_COMPUTE_RETURN_ERROR_ON(scores_out->dimension(0) != size_t(total_num_anchors));
315         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(scores_out, scores);
316     }
317 
318     return Status{};
319 }
320 
run()321 void NEGenerateProposalsLayer::run()
322 {
323     // Acquire all the temporaries
324     MemoryGroupResourceScope scope_mg(_memory_group);
325 
326     // Compute all the anchors
327     _compute_anchors.run();
328 
329     // Transpose and reshape the inputs
330     if(!_is_nhwc)
331     {
332         _permute_deltas.run();
333         _permute_scores.run();
334     }
335 
336     _flatten_deltas.run();
337     _flatten_scores.run();
338 
339     if(_is_qasymm8)
340     {
341         _dequantize_anchors.run();
342         _dequantize_deltas.run();
343     }
344 
345     // Build the boxes
346     _bounding_box.run();
347 
348     if(_is_qasymm8)
349     {
350         _quantize_all_proposals.run();
351     }
352 
353     // Non maxima suppression
354     _cpp_nms.run();
355 
356     // Add dummy batch indexes
357     _pad.run();
358 }
359 } // namespace arm_compute
360