• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "arm_compute/runtime/NEON/NEScheduler.h"
29 #include "src/core/NEON/kernels/NEFillBorderKernel.h"
30 #include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
31 #include "src/core/NEON/kernels/NESoftmaxLayerKernel.h"
32 #include "src/core/helpers/SoftmaxHelpers.h"
33 #include "support/MemorySupport.h"
34 
35 namespace arm_compute
36 {
37 template <bool IS_LOG>
38 NESoftmaxLayerGeneric<IS_LOG>::~NESoftmaxLayerGeneric() = default;
39 
40 template <bool IS_LOG>
NESoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)41 NESoftmaxLayerGeneric<IS_LOG>::NESoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
42     : _memory_group(std::move(memory_manager)), _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _fill_border_kernel(), _max(), _tmp(), _input_permuted(), _output_permuted(),
43       _needs_permute(false)
44 {
45 }
46 
47 template <bool IS_LOG>
configure(ITensor * input,ITensor * output,float beta,int32_t axis)48 void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, float beta, int32_t axis)
49 {
50     // Perform validation step
51     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
52     ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayerGeneric::validate(input->info(), output->info(), beta, axis));
53 
54     const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
55 
56     _needs_permute = actual_axis > 0;
57 
58     if(_needs_permute)
59     {
60         // Add to the memory manager _input_permuted
61         _memory_group.manage(&_input_permuted);
62 
63         _permute_input.configure(input, &_input_permuted, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
64     }
65 
66     // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case)
67     // or it is the original input case (2D case)
68     ITensor *tmp_input = (_needs_permute ? &_input_permuted : input);
69 
70     // Create intermediate tensors shapes
71     const TensorInfo input_info    = tmp_input->info()->clone()->reset_padding().set_is_resizable(true);
72     DataType         tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->info()->data_type()) ? DataType::F32 : tmp_input->info()->data_type();
73     TensorInfo       tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
74 
75     // Init intermediate tensors
76     TensorShape max_sum_shape = tmp_input->info()->tensor_shape();
77     max_sum_shape.set(0, 1);
78     _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
79     _tmp.allocator()->init(tensor_info_tmp);
80 
81     // Manage intermediate buffers
82     _memory_group.manage(&_max);
83     _memory_group.manage(&_tmp);
84 
85     // Configure kernels
86     _max_kernel     = arm_compute::support::cpp14::make_unique<NELogits1DMaxKernel>();
87     _softmax_kernel = arm_compute::support::cpp14::make_unique<NELogits1DSoftmaxKernel<IS_LOG>>();
88     _max_kernel->configure(tmp_input, &_max);
89     if(_needs_permute)
90     {
91         // Add to the memory manager _output_permuted
92         _memory_group.manage(&_output_permuted);
93 
94         // The normalization kernel stores the result in a permuted output tensor
95         _softmax_kernel->configure(tmp_input, &_max, &_output_permuted, beta, &_tmp);
96         _input_permuted.allocator()->allocate();
97 
98         // Re-permute the permuted output into the requested (4D) output
99         _permute_output.configure(&_output_permuted, output, softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis));
100 
101         // Allocate the intermediate permuted tensors
102         _output_permuted.allocator()->allocate();
103     }
104     else
105     {
106         // Softmax 2D case
107         _fill_border_kernel = arm_compute::support::cpp14::make_unique<NEFillBorderKernel>();
108         _fill_border_kernel->configure(tmp_input, _max_kernel->border_size(), BorderMode::REPLICATE);
109         _softmax_kernel->configure(tmp_input, &_max, output, beta, &_tmp);
110     }
111 
112     // Allocate intermediate buffers
113     _max.allocator()->allocate();
114     _tmp.allocator()->allocate();
115 }
116 
117 template <bool IS_LOG>
validate(const ITensorInfo * input,const ITensorInfo * output,float beta,int32_t axis)118 Status NESoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, int32_t axis)
119 {
120     // Perform validation step
121     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
122     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
123     ARM_COMPUTE_UNUSED(beta);
124     ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-input->num_dimensions()) || static_cast<int32_t>(input->num_dimensions()) <= axis);
125 
126     // Create intermediate tensor info
127     DataType         tmp_data_type = input->data_type();
128     const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
129 
130     TensorShape max_sum_shape = input->tensor_shape();
131     max_sum_shape.set(0, 1);
132     const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true));
133     const TensorInfo dont_care;
134 
135     const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->num_dimensions())));
136 
137     const bool needs_permute = actual_axis > 0;
138 
139     if(needs_permute)
140     {
141         const PermutationVector permutation_vector = softmax_helpers::get_permutation_vector_from_softmax_axis(actual_axis);
142         const TensorShape       permuted_shape     = misc::shape_calculator::compute_permutation_output_shape(*input, permutation_vector);
143         TensorInfo              input_permuted(input->clone()->set_tensor_shape(permuted_shape));
144         ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(input, &input_permuted, permutation_vector));
145         TensorInfo output_permuted(output->clone()->set_tensor_shape(permuted_shape));
146         ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(&output_permuted, output, permutation_vector));
147     }
148 
149     ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum));
150     ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DSoftmaxKernel<IS_LOG>::validate(&tensor_info_tmp, &tensor_info_max_sum, output, beta, &dont_care));
151 
152     return Status{};
153 }
154 
155 template <bool IS_LOG>
run()156 void           NESoftmaxLayerGeneric<IS_LOG>::run()
157 {
158     MemoryGroupResourceScope scope_mg(_memory_group);
159 
160     if(_needs_permute)
161     {
162         _permute_input.run();
163     }
164     else
165     {
166         NEScheduler::get().schedule(_fill_border_kernel.get(), Window::DimY);
167     }
168 
169     NEScheduler::get().schedule(_max_kernel.get(), Window::DimY);
170     NEScheduler::get().schedule(_softmax_kernel.get(), Window::DimY);
171 
172     if(_needs_permute)
173     {
174         _permute_output.run();
175     }
176 }
177 
178 template class NESoftmaxLayerGeneric<false>;
179 template class NESoftmaxLayerGeneric<true>;
180 
181 } // namespace arm_compute
182