• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10 
11 #include <xnnpack.h>
12 #include <xnnpack/log.h>
13 #include <xnnpack/params.h>
14 #include <xnnpack/subgraph.h>
15 
16 
create_divide_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata)17 static enum xnn_status create_divide_operator(
18   const struct xnn_node* node,
19   const struct xnn_value* values,
20   size_t num_values,
21   struct xnn_operator_data* opdata)
22 {
23   assert(node->compute_type == xnn_compute_type_fp32);
24 
25   assert(node->num_inputs == 2);
26   const uint32_t input1_id = node->inputs[0];
27   assert(input1_id != XNN_INVALID_VALUE_ID);
28   assert(input1_id < num_values);
29   const uint32_t input2_id = node->inputs[1];
30   assert(input2_id != XNN_INVALID_VALUE_ID);
31   assert(input2_id < num_values);
32 
33   assert(node->num_outputs == 1);
34   const uint32_t output_id = node->outputs[0];
35   assert(output_id != XNN_INVALID_VALUE_ID);
36   assert(output_id < num_values);
37 
38   const enum xnn_status status = xnn_create_divide_nd_f32(
39     node->activation.output_min,
40     node->activation.output_max,
41     node->flags,
42     &opdata->operator_object);
43   if (status == xnn_status_success) {
44     opdata->shape1.num_dims = values[input1_id].shape.num_dims;
45     opdata->shape2.num_dims = values[input2_id].shape.num_dims;
46     if (values[output_id].layout == xnn_layout_type_nchw) {
47       assert(values[input1_id].layout == xnn_layout_type_nchw);
48       assert(values[input2_id].layout == xnn_layout_type_nchw);
49       opdata->shape1.dim[0] = values[input1_id].shape.dim[0];
50       opdata->shape1.dim[1] = values[input1_id].shape.dim[values[input1_id].shape.num_dims - 1];
51       if (values[input1_id].shape.num_dims > 2) {
52         memcpy(&opdata->shape1.dim[2], &values[input1_id].shape.dim[1], (values[input1_id].shape.num_dims - 2) * sizeof(size_t));
53       }
54       opdata->shape2.dim[0] = values[input2_id].shape.dim[0];
55       opdata->shape2.dim[1] = values[input2_id].shape.dim[values[input2_id].shape.num_dims - 1];
56       if (values[input1_id].shape.num_dims > 2) {
57         memcpy(&opdata->shape2.dim[2], &values[input2_id].shape.dim[1], (values[input2_id].shape.num_dims - 2) * sizeof(size_t));
58       }
59     } else {
60       assert(values[output_id].layout == xnn_layout_type_nhwc);
61       assert(values[input1_id].layout == xnn_layout_type_nhwc);
62       assert(values[input2_id].layout == xnn_layout_type_nhwc);
63       memcpy(opdata->shape1.dim, values[input1_id].shape.dim, values[input1_id].shape.num_dims * sizeof(size_t));
64       memcpy(opdata->shape2.dim, values[input2_id].shape.dim, values[input2_id].shape.num_dims * sizeof(size_t));
65     }
66     opdata->inputs[0] = input1_id;
67     opdata->inputs[1] = input2_id;
68     opdata->outputs[0] = output_id;
69   }
70   return status;
71 }
72 
setup_divide_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)73 static enum xnn_status setup_divide_operator(
74   const struct xnn_operator_data* opdata,
75   const struct xnn_blob* blobs,
76   size_t num_blobs,
77   pthreadpool_t threadpool)
78 {
79   const uint32_t input1_id = opdata->inputs[0];
80   assert(input1_id != XNN_INVALID_VALUE_ID);
81   assert(input1_id < num_blobs);
82 
83   const uint32_t input2_id = opdata->inputs[1];
84   assert(input2_id != XNN_INVALID_VALUE_ID);
85   assert(input2_id < num_blobs);
86 
87   const uint32_t output_id = opdata->outputs[0];
88   assert(output_id != XNN_INVALID_VALUE_ID);
89   assert(output_id < num_blobs);
90 
91   const struct xnn_blob* input1_blob = blobs + input1_id;
92   const void* input1_data = input1_blob->data;
93   assert(input1_data != NULL);
94 
95   const struct xnn_blob* input2_blob = blobs + input2_id;
96   const void* input2_data = input2_blob->data;
97   assert(input2_data != NULL);
98 
99   const struct xnn_blob* output_blob = blobs + output_id;
100   void* output_data = output_blob->data;
101   assert(output_data != NULL);
102 
103   return xnn_setup_divide_nd_f32(
104     opdata->operator_object,
105     opdata->shape1.num_dims,
106     opdata->shape1.dim,
107     opdata->shape2.num_dims,
108     opdata->shape2.dim,
109     input1_data, input2_data, output_data,
110     threadpool);
111 }
112 
xnn_define_divide(xnn_subgraph_t subgraph,float output_min,float output_max,uint32_t input1_id,uint32_t input2_id,uint32_t output_id,uint32_t flags)113 enum xnn_status xnn_define_divide(
114   xnn_subgraph_t subgraph,
115   float output_min,
116   float output_max,
117   uint32_t input1_id,
118   uint32_t input2_id,
119   uint32_t output_id,
120   uint32_t flags)
121 {
122   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
123     xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
124       xnn_node_type_to_string(xnn_node_type_divide));
125     return xnn_status_uninitialized;
126   }
127 
128   if (isnan(output_min)) {
129     xnn_log_error(
130       "failed to define %s operator with NaN output lower bound: lower bound must be non-NaN",
131       xnn_node_type_to_string(xnn_node_type_divide));
132     return xnn_status_invalid_parameter;
133   }
134 
135   if (isnan(output_max)) {
136     xnn_log_error(
137       "failed to define %s operator with NaN output upper bound: upper bound must be non-NaN",
138       xnn_node_type_to_string(xnn_node_type_divide));
139     return xnn_status_invalid_parameter;
140   }
141 
142   if (output_min >= output_max) {
143     xnn_log_error(
144       "failed to define %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
145       xnn_node_type_to_string(xnn_node_type_divide), output_min, output_max);
146     return xnn_status_invalid_parameter;
147   }
148 
149   if (input1_id >= subgraph->num_values) {
150     xnn_log_error(
151       "failed to define %s operator with the first input ID #%" PRIu32 ": invalid Value ID",
152       xnn_node_type_to_string(xnn_node_type_divide), input1_id);
153     return xnn_status_invalid_parameter;
154   }
155 
156   const struct xnn_value* input1_value = &subgraph->values[input1_id];
157   if (input1_value->type != xnn_value_type_dense_tensor) {
158     xnn_log_error(
159       "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
160       xnn_node_type_to_string(xnn_node_type_divide), input1_id, input1_value->type);
161     return xnn_status_invalid_parameter;
162   }
163 
164   switch (input1_value->datatype) {
165     case xnn_datatype_fp32:
166       break;
167     default:
168       xnn_log_error(
169         "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
170         xnn_node_type_to_string(xnn_node_type_divide), input1_id,
171         xnn_datatype_to_string(input1_value->datatype), input1_value->datatype);
172       return xnn_status_invalid_parameter;
173   }
174 
175   if (input2_id >= subgraph->num_values) {
176     xnn_log_error(
177       "failed to define %s operator with the second input ID #%" PRIu32 ": invalid Value ID",
178       xnn_node_type_to_string(xnn_node_type_divide), input2_id);
179     return xnn_status_invalid_parameter;
180   }
181 
182   const struct xnn_value* input2_value = &subgraph->values[input2_id];
183   if (input2_value->type != xnn_value_type_dense_tensor) {
184     xnn_log_error(
185       "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
186       xnn_node_type_to_string(xnn_node_type_divide), input2_id, input2_value->type);
187     return xnn_status_invalid_parameter;
188   }
189 
190   switch (input2_value->datatype) {
191     case xnn_datatype_fp32:
192       break;
193     default:
194       xnn_log_error(
195         "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
196         xnn_node_type_to_string(xnn_node_type_divide), input2_id,
197         xnn_datatype_to_string(input2_value->datatype), input2_value->datatype);
198       return xnn_status_invalid_parameter;
199   }
200 
201   if (output_id >= subgraph->num_values) {
202     xnn_log_error(
203       "failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID",
204       xnn_node_type_to_string(xnn_node_type_divide), output_id);
205     return xnn_status_invalid_parameter;
206   }
207 
208   const struct xnn_value* output_value = &subgraph->values[output_id];
209   if (output_value->type != xnn_value_type_dense_tensor) {
210     xnn_log_error(
211       "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
212       xnn_node_type_to_string(xnn_node_type_divide), output_id, output_value->type);
213     return xnn_status_invalid_parameter;
214   }
215 
216   switch (output_value->datatype) {
217     case xnn_datatype_fp32:
218       break;
219     default:
220       xnn_log_error(
221         "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
222         xnn_node_type_to_string(xnn_node_type_divide), output_id,
223         xnn_datatype_to_string(output_value->datatype), output_value->datatype);
224       return xnn_status_invalid_parameter;
225   }
226 
227   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
228   if (node == NULL) {
229     return xnn_status_out_of_memory;
230   }
231 
232   node->type = xnn_node_type_divide;
233   node->compute_type = xnn_compute_type_fp32;
234   node->activation.output_min = output_min;
235   node->activation.output_max = output_max;
236   node->num_inputs = 2;
237   node->inputs[0] = input1_id;
238   node->inputs[1] = input2_id;
239   node->num_outputs = 1;
240   node->outputs[0] = output_id;
241   node->flags = flags;
242 
243   node->create = create_divide_operator;
244   node->setup = setup_divide_operator;
245 
246   return xnn_status_success;
247 }
248