• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/trace_processor/importers/common/clock_tracker.h"
18 
19 #include <algorithm>
20 #include <atomic>
21 #include <cinttypes>
22 #include <queue>
23 
24 #include "perfetto/base/logging.h"
25 #include "perfetto/ext/base/hash.h"
26 #include "src/trace_processor/storage/trace_storage.h"
27 #include "src/trace_processor/types/trace_processor_context.h"
28 
29 #include "protos/perfetto/common/builtin_clock.pbzero.h"
30 #include "protos/perfetto/trace/clock_snapshot.pbzero.h"
31 
32 namespace perfetto {
33 namespace trace_processor {
34 
35 using Clock = protos::pbzero::ClockSnapshot::Clock;
36 
ClockTracker(TraceProcessorContext * ctx)37 ClockTracker::ClockTracker(TraceProcessorContext* ctx)
38     : context_(ctx),
39       trace_time_clock_id_(protos::pbzero::BUILTIN_CLOCK_BOOTTIME) {}
40 
41 ClockTracker::~ClockTracker() = default;
42 
AddSnapshot(const std::vector<ClockValue> & clocks)43 uint32_t ClockTracker::AddSnapshot(const std::vector<ClockValue>& clocks) {
44   const auto snapshot_id = cur_snapshot_id_++;
45 
46   // Clear the cache
47   cache_.fill({});
48 
49   // Compute the fingerprint of the snapshot by hashing all clock ids. This is
50   // used by the clock pathfinding logic.
51   base::Hash hasher;
52   for (const auto& clock : clocks)
53     hasher.Update(clock.clock_id);
54   const auto snapshot_hash = static_cast<SnapshotHash>(hasher.digest());
55 
56   // Add a new entry in each clock's snapshot vector.
57   for (const auto& clock : clocks) {
58     ClockId clock_id = clock.clock_id;
59     ClockDomain& domain = clocks_[clock_id];
60     if (domain.snapshots.empty()) {
61       if (clock.is_incremental && !ClockIsSeqScoped(clock_id)) {
62         PERFETTO_ELOG("Clock sync error: the global clock with id=%" PRIu64
63                       " cannot use incremental encoding; this is only "
64                       "supported for sequence-scoped clocks.",
65                       clock_id);
66         context_->storage->IncrementStats(stats::invalid_clock_snapshots);
67         return snapshot_id;
68       }
69       domain.unit_multiplier_ns = clock.unit_multiplier_ns;
70       domain.is_incremental = clock.is_incremental;
71     } else if (PERFETTO_UNLIKELY(
72                    domain.unit_multiplier_ns != clock.unit_multiplier_ns ||
73                    domain.is_incremental != clock.is_incremental)) {
74       PERFETTO_ELOG("Clock sync error: the clock domain with id=%" PRIu64
75                     " (unit=%" PRIu64
76                     ", incremental=%d), was previously registered with "
77                     "different properties (unit=%" PRIu64 ", incremental=%d).",
78                     clock_id, clock.unit_multiplier_ns, clock.is_incremental,
79                     domain.unit_multiplier_ns, domain.is_incremental);
80       context_->storage->IncrementStats(stats::invalid_clock_snapshots);
81       return snapshot_id;
82     }
83     const int64_t timestamp_ns =
84         clock.absolute_timestamp * domain.unit_multiplier_ns;
85     domain.last_timestamp_ns = timestamp_ns;
86 
87     ClockSnapshots& vect = domain.snapshots[snapshot_hash];
88     if (!vect.snapshot_ids.empty() &&
89         PERFETTO_UNLIKELY(vect.snapshot_ids.back() == snapshot_id)) {
90       PERFETTO_ELOG("Clock sync error: duplicate clock domain with id=%" PRIu64
91                     " at snapshot %" PRIu32 ".",
92                     clock_id, snapshot_id);
93       context_->storage->IncrementStats(stats::invalid_clock_snapshots);
94       return snapshot_id;
95     }
96 
97     // Clock ids in the range [64, 128) are sequence-scoped and must be
98     // translated to global ids via SeqScopedClockIdToGlobal() before calling
99     // this function.
100     PERFETTO_DCHECK(!IsReservedSeqScopedClockId(clock_id));
101 
102     // Snapshot IDs must be always monotonic.
103     PERFETTO_DCHECK(vect.snapshot_ids.empty() ||
104                     vect.snapshot_ids.back() < snapshot_id);
105 
106     if (!vect.timestamps_ns.empty() &&
107         timestamp_ns < vect.timestamps_ns.back()) {
108       // Clock is not monotonic.
109 
110       if (clock_id == trace_time_clock_id_) {
111         // The trace clock cannot be non-monotonic.
112         PERFETTO_ELOG("Clock sync error: the trace clock (id=%" PRIu64
113                       ") is not monotonic at snapshot %" PRIu32 ". %" PRId64
114                       " not >= %" PRId64 ".",
115                       clock_id, snapshot_id, timestamp_ns,
116                       vect.timestamps_ns.back());
117         context_->storage->IncrementStats(stats::invalid_clock_snapshots);
118         return snapshot_id;
119       }
120 
121       PERFETTO_DLOG("Detected non-monotonic clock with ID %" PRIu64, clock_id);
122 
123       // For the other clocks the best thing we can do is mark it as
124       // non-monotonic and refuse to use it as a source clock in the resolution
125       // graph. We can still use it as a target clock, but not viceversa.
126       // The concrete example is the CLOCK_REALTIME going 1h backwards during
127       // daylight saving. We can still answer the question "what was the
128       // REALTIME timestamp when BOOTTIME was X?" but we can't answer the
129       // opposite question because there can be two valid BOOTTIME(s) for the
130       // same REALTIME instant because of the 1:many relationship.
131       non_monotonic_clocks_.insert(clock_id);
132 
133       // Erase all edges from the graph that start from this clock (but keep the
134       // ones that end on this clock).
135       auto begin = graph_.lower_bound(ClockGraphEdge{clock_id, 0, 0});
136       auto end = graph_.lower_bound(ClockGraphEdge{clock_id + 1, 0, 0});
137       graph_.erase(begin, end);
138     }
139     vect.snapshot_ids.emplace_back(snapshot_id);
140     vect.timestamps_ns.emplace_back(timestamp_ns);
141   }
142 
143   // Create graph edges for all the possible tuples of clocks in this snapshot.
144   // If the snapshot contains clock a, b, c, d create edges [ab, ac, ad, bc, bd,
145   // cd] and the symmetrical ones [ba, ca, da, bc, db, dc].
146   // This is to store the information: Clock A is syncable to Clock B via the
147   // snapshots of type (hash).
148   // Clocks that were previously marked as non-monotonic won't be added as
149   // valid sources.
150   for (auto it1 = clocks.begin(); it1 != clocks.end(); ++it1) {
151     auto it2 = it1;
152     ++it2;
153     for (; it2 != clocks.end(); ++it2) {
154       if (!non_monotonic_clocks_.count(it1->clock_id))
155         graph_.emplace(it1->clock_id, it2->clock_id, snapshot_hash);
156 
157       if (!non_monotonic_clocks_.count(it2->clock_id))
158         graph_.emplace(it2->clock_id, it1->clock_id, snapshot_hash);
159     }
160   }
161   return snapshot_id;
162 }
163 
164 // Finds the shortest clock resolution path in the graph that allows to
165 // translate a timestamp from |src| to |target| clocks.
166 // The return value looks like the following: "If you want to convert a
167 // timestamp from clock C1 to C2 you need to first convert C1 -> C3 using the
168 // snapshot hash A, then convert C3 -> C2 via snapshot hash B".
FindPath(ClockId src,ClockId target)169 ClockTracker::ClockPath ClockTracker::FindPath(ClockId src, ClockId target) {
170   // This is a classic breadth-first search. Each node in the queue holds also
171   // the full path to reach that node.
172   // We assume the graph is acyclic, if it isn't the ClockPath::kMaxLen will
173   // stop the search anyways.
174   PERFETTO_CHECK(src != target);
175   std::queue<ClockPath> queue;
176   queue.emplace(src);
177 
178   while (!queue.empty()) {
179     ClockPath cur_path = queue.front();
180     queue.pop();
181 
182     const ClockId cur_clock_id = cur_path.last;
183     if (cur_clock_id == target)
184       return cur_path;
185 
186     if (cur_path.len >= ClockPath::kMaxLen)
187       continue;
188 
189     // Expore all the adjacent clocks.
190     // The lower_bound() below returns an iterator to the first edge that starts
191     // on |cur_clock_id|. The edges are sorted by (src, target, hash).
192     for (auto it = std::lower_bound(graph_.begin(), graph_.end(),
193                                     ClockGraphEdge(cur_clock_id, 0, 0));
194          it != graph_.end() && std::get<0>(*it) == cur_clock_id; ++it) {
195       ClockId next_clock_id = std::get<1>(*it);
196       SnapshotHash hash = std::get<2>(*it);
197       queue.push(ClockPath(cur_path, next_clock_id, hash));
198     }
199   }
200   return ClockPath();  // invalid path.
201 }
202 
ConvertSlowpath(ClockId src_clock_id,int64_t src_timestamp,ClockId target_clock_id)203 base::Optional<int64_t> ClockTracker::ConvertSlowpath(ClockId src_clock_id,
204                                                       int64_t src_timestamp,
205                                                       ClockId target_clock_id) {
206   PERFETTO_DCHECK(!IsReservedSeqScopedClockId(src_clock_id));
207   PERFETTO_DCHECK(!IsReservedSeqScopedClockId(target_clock_id));
208 
209   context_->storage->IncrementStats(stats::clock_sync_cache_miss);
210 
211   ClockPath path = FindPath(src_clock_id, target_clock_id);
212   if (!path.valid()) {
213     // Too many logs maybe emitted when path is invalid.
214     static std::atomic<uint32_t> dlog_count(0);
215     if (dlog_count++ < 10) {
216       PERFETTO_DLOG("No path from clock %" PRIu64 " to %" PRIu64
217                     " at timestamp %" PRId64,
218                     src_clock_id, target_clock_id, src_timestamp);
219     }
220     context_->storage->IncrementStats(stats::clock_sync_failure);
221     return base::nullopt;
222   }
223 
224   // We can cache only single-path resolutions between two clocks.
225   // Caching multi-path resolutions is harder because the (src,target) tuple
226   // is not enough as a cache key: at any step the |ns| value can yield to a
227   // different choice of the next snapshot. Multi-path resolutions don't seem
228   // too frequent these days, so we focus only on caching the more frequent
229   // one-step resolutions (typically from any clock to the trace clock).
230   const bool cacheable = path.len == 1;
231   CachedClockPath cache_entry{};
232 
233   // Iterate trough the path found and translate timestamps onto the new clock
234   // domain on each step, until the target domain is reached.
235   ClockDomain* src_domain = GetClock(src_clock_id);
236   int64_t ns = src_domain->ToNs(src_timestamp);
237   for (uint32_t i = 0; i < path.len; ++i) {
238     const ClockGraphEdge edge = path.at(i);
239     ClockDomain* cur_clock = GetClock(std::get<0>(edge));
240     ClockDomain* next_clock = GetClock(std::get<1>(edge));
241     const SnapshotHash hash = std::get<2>(edge);
242 
243     // Find the closest timestamp within the snapshots of the source clock.
244     const ClockSnapshots& cur_snap = cur_clock->GetSnapshot(hash);
245     const auto& ts_vec = cur_snap.timestamps_ns;
246     auto it = std::upper_bound(ts_vec.begin(), ts_vec.end(), ns);
247     if (it != ts_vec.begin())
248       --it;
249 
250     // Now lookup the snapshot id that matches the closest timestamp.
251     size_t index = static_cast<size_t>(std::distance(ts_vec.begin(), it));
252     PERFETTO_DCHECK(index < ts_vec.size());
253     PERFETTO_DCHECK(cur_snap.snapshot_ids.size() == ts_vec.size());
254     uint32_t snapshot_id = cur_snap.snapshot_ids[index];
255 
256     // And use that to retrieve the corresponding time in the next clock domain.
257     // The snapshot id must exist in the target clock domain. If it doesn't
258     // either the hash logic or the pathfinding logic are bugged.
259     // This can also happen if the checks in AddSnapshot fail and we skip part
260     // of the snapshot.
261     const ClockSnapshots& next_snap = next_clock->GetSnapshot(hash);
262 
263     // Using std::lower_bound because snapshot_ids is sorted, so we can do
264     // a binary search. std::find would do a linear scan.
265     auto next_it = std::lower_bound(next_snap.snapshot_ids.begin(),
266                                     next_snap.snapshot_ids.end(), snapshot_id);
267     if (next_it == next_snap.snapshot_ids.end() || *next_it != snapshot_id) {
268       PERFETTO_DFATAL("Snapshot does not exist in clock domain.");
269       continue;
270     }
271     size_t next_index = static_cast<size_t>(
272         std::distance(next_snap.snapshot_ids.begin(), next_it));
273     PERFETTO_DCHECK(next_index < next_snap.snapshot_ids.size());
274     int64_t next_timestamp_ns = next_snap.timestamps_ns[next_index];
275 
276     // The translated timestamp is the relative delta of the source timestamp
277     // from the closest snapshot found (ns - *it), plus the timestamp in
278     // the new clock domain for the same snapshot id.
279     const int64_t adj = next_timestamp_ns - *it;
280     ns += adj;
281 
282     // On the first iteration, keep track of the bounds for the cache entry.
283     // This will allow future Convert() calls to skip the pathfinder logic
284     // as long as the query stays within the bound.
285     if (cacheable) {
286       PERFETTO_DCHECK(i == 0);
287       const int64_t kInt64Min = std::numeric_limits<int64_t>::min();
288       const int64_t kInt64Max = std::numeric_limits<int64_t>::max();
289       cache_entry.min_ts_ns = it == ts_vec.begin() ? kInt64Min : *it;
290       auto ubound = it + 1;
291       cache_entry.max_ts_ns = ubound == ts_vec.end() ? kInt64Max : *ubound;
292       cache_entry.translation_ns = adj;
293     }
294 
295     // The last clock in the path must be the target clock.
296     PERFETTO_DCHECK(i < path.len - 1 || std::get<1>(edge) == target_clock_id);
297   }
298 
299   if (cacheable) {
300     cache_entry.src = src_clock_id;
301     cache_entry.src_domain = src_domain;
302     cache_entry.target = target_clock_id;
303     cache_[rnd_() % cache_.size()] = cache_entry;
304   }
305 
306   return ns;
307 }
308 
309 }  // namespace trace_processor
310 }  // namespace perfetto
311