• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/kernels/tensor_map.h"
17 
18 #include "tensorflow/core/framework/tensor_shape.h"
19 #include "tensorflow/core/framework/tensor_shape.pb.h"
20 #include "tensorflow/core/framework/variant_op_registry.h"
21 #include "tensorflow/core/lib/core/coding.h"
22 
23 namespace tensorflow {
24 
~TensorMap()25 TensorMap::~TensorMap() {
26   if (tensors_) tensors_->Unref();
27 }
28 
Encode(VariantTensorData * data) const29 void TensorMap::Encode(VariantTensorData* data) const {
30   data->set_type_name(TypeName());
31 
32   absl::flat_hash_map<TensorKey, Tensor>::const_iterator map_it =
33       tensors().begin();
34   while (map_it != tensors().end()) {
35     Tensor k = map_it->first;
36     Tensor v = map_it->second;
37     // TODO: k should also not be DT_RESOURCE or DT_VARIANT
38     CHECK_NE(k.dtype(), DT_INVALID);
39     CHECK_NE(v.dtype(), DT_INVALID);
40     *data->add_tensors() = k;
41     *data->add_tensors() = v;
42     map_it++;
43   }
44 }
45 
TensorMapDeviceCopy(const TensorMap & from,TensorMap * to,const UnaryVariantOpRegistry::AsyncTensorDeviceCopyFn & copy)46 static Status TensorMapDeviceCopy(
47     const TensorMap& from, TensorMap* to,
48     const UnaryVariantOpRegistry::AsyncTensorDeviceCopyFn& copy) {
49   for (const std::pair<TensorKey, Tensor>& p : from.tensors()) {
50     TensorKey to_key(p.first.dtype());
51     Tensor to_val(p.second.dtype());
52     TF_RETURN_IF_ERROR(copy(p.first, &to_key));
53     TF_RETURN_IF_ERROR(copy(p.second, &to_val));
54     to->tensors().emplace(to_key, to_val);
55   }
56   return Status::OK();
57 }
58 
59 #define REGISTER_LIST_COPY(DIRECTION)                                        \
60   INTERNAL_REGISTER_UNARY_VARIANT_DEVICE_COPY_FUNCTION(TensorMap, DIRECTION, \
61                                                        TensorMapDeviceCopy)
62 
63 REGISTER_LIST_COPY(VariantDeviceCopyDirection::HOST_TO_DEVICE);
64 REGISTER_LIST_COPY(VariantDeviceCopyDirection::DEVICE_TO_HOST);
65 REGISTER_LIST_COPY(VariantDeviceCopyDirection::DEVICE_TO_DEVICE);
66 
67 REGISTER_UNARY_VARIANT_DECODE_FUNCTION(TensorMap, TensorMap::kTypeName);
68 
Decode(const VariantTensorData & data)69 bool TensorMap::Decode(const VariantTensorData& data) {
70   // TODO(srbs): Change the signature to Decode(VariantTensorData data) so
71   // that we do not have to copy each tensor individually below. This would
72   // require changing VariantTensorData::tensors() as well.
73   std::vector<Tensor>::const_iterator tensors_it = data.tensors().begin();
74 
75   while (tensors_it != data.tensors().end()) {
76     if (std::next(tensors_it) == data.tensors().end()) {
77       return false;
78     }
79     tensors().emplace(tensors_it[0], tensors_it[1]);
80     tensors_it += 2;
81   }
82   return true;
83 }
84 
85 const char TensorMap::kTypeName[] = "tensorflow::TensorMap";
86 
87 }  // namespace tensorflow
88