• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_COMPILER_MLIR_TOSA_TRANSFORMS_LEGALIZE_UTILS_H
17 #define TENSORFLOW_COMPILER_MLIR_TOSA_TRANSFORMS_LEGALIZE_UTILS_H
18 
19 #include <climits>
20 #include <cstddef>
21 #include <cstdint>
22 #include <iterator>
23 #include <numeric>
24 
25 #include "mlir/Dialect/Quant/QuantTypes.h"  // from @llvm-project
26 #include "mlir/IR/BuiltinAttributes.h"  // from @llvm-project
27 #include "mlir/IR/BuiltinTypes.h"  // from @llvm-project
28 #include "mlir/IR/PatternMatch.h"  // from @llvm-project
29 #include "mlir/Support/LLVM.h"  // from @llvm-project
30 #include "tensorflow/core/framework/kernel_shape_util.h"
31 #include "tensorflow/core/kernels/conv_grad_shape_utils.h"
32 #include "tensorflow/core/util/padding.h"
33 #include "tensorflow/core/util/tensor_format.h"
34 
35 namespace mlir {
36 namespace tosa {
37 
38 // Create a TOSA rescale op from TFLite scaling, zero points and rounding mode
39 Value buildRescale(PatternRewriter& rewriter, Operation* op,
40                    ShapedType output_type, Value input_val, double scale,
41                    int64_t input_zp, int64_t output_zp, bool double_round,
42                    bool scale32);
43 
44 // Creates TOSA rescale op with int32 output
45 Value buildRescaleToInt32(PatternRewriter& rewriter, Operation* op,
46                           Value input_val, double input_scale,
47                           int64_t input_zp);
48 
49 // Creates TOSA rescale op with int32 input
50 Value buildRescaleFromInt32(PatternRewriter& rewriter, Operation* op,
51                             ShapedType output_type, Value input_val,
52                             double output_scale, int64_t output_zp);
53 
54 // Creates a TOSA rescale op based on conv2d parameters.
55 Value buildRescaleOpConvOutput(PatternRewriter& rewriter, Operation* op,
56                                Value conv_val, ShapedType input_type,
57                                ShapedType weight_type, ShapedType output_type);
58 
59 // Create a 8-bit TOSA TABLE constant tensor
60 Value getTosaConst8bitTable(PatternRewriter& rewriter, Operation* op,
61                             double input_scale, int32_t input_zp,
62                             double output_scale, int32_t output_zp,
63                             std::function<double(double)> func);
64 
65 // Create a 16-bit TOSA TABLE constant tensor
66 Value getTosaConst16bitTable(PatternRewriter& rewriter, Operation* op,
67                              std::function<double(double)> func, double min,
68                              double max);
69 
70 // Create a 32-bit TOSA TABLE constant tensor
71 // Output is restricted to [-1.0, 1.0] as s0.31 format
72 void getTosaConst32bitTable(PatternRewriter& rewriter, Operation* op,
73                             double input_scale, int32_t input_zp,
74                             std::function<double(double)> func,
75                             Value& upper_const, Value& lower_const);
76 
77 // Create a 32-bit float constant operator from a float
78 Value getTosaConstTensorSingleF32(PatternRewriter& rewriter, Operation* op,
79                                   float val);
80 
81 // Create a 32-bit integer constant operator from an int
82 Value getTosaConstTensorSingleI32(PatternRewriter& rewriter, Operation* op,
83                                   int32_t val);
84 
85 // Create a vector from a 32-bit value tensor.  Returns vector size on success
86 // or -1 on error.
87 LogicalResult getVectorFromValue32(Value val, SmallVectorImpl<int32_t>& vec);
88 
89 // Calculates the TOSA padding values based on TF operators padded with
90 // SAME/VALID.
91 bool getPaddingValuesFromPadType(tensorflow::Padding tf_pad,
92                                  tensorflow::TensorFormat data_format_tf,
93                                  uint32_t first_filter_spatial_dim,
94                                  ShapedType input_type, ShapedType filter_type,
95                                  ArrayAttr strides, ArrayAttr dilations,
96                                  PatternRewriter& rewriter,
97                                  ArrayAttr& explicit_pad);
98 
99 // Calculates the TOSA padding values for explicit-padded TF operators.
100 ArrayAttr getPaddingValuesFromExplicitPadAttr(
101     ArrayAttr explicit_pad, tensorflow::TensorFormat data_format_tf,
102     PatternRewriter& rewriter);
103 
104 // Calculates the TOSA padding values for transposeConv2d
105 bool getTransposeConv2dPaddingValues(
106     tensorflow::Padding tf_pad, tensorflow::TensorFormat data_format_tf,
107     uint32_t first_filter_spatial_dim, ShapedType input_type,
108     ShapedType filter_type, ShapedType output_type, ArrayAttr strides,
109     ArrayAttr dilations, PatternRewriter& rewriter, ArrayAttr& explicit_pad);
110 
111 // Templated function to create a constant op for given type and shape.
112 // T: storage C type.
113 // Default template creates a constant tensor in T.
114 // To create INT48 TOSA constant, need to pass in llvm::APInt instead.
115 template <typename T>
116 llvm::Optional<Value> getConstTensor(PatternRewriter& rewriter, Operation* op,
117                                      ArrayRef<T> vec, ArrayRef<int64_t> shape);
118 
119 // Check if scale32 mode is used for given output_element_type
120 bool isScale32(mlir::quant::UniformQuantizedType output_element_type);
121 
122 }  // namespace tosa
123 }  // namespace mlir
124 
125 #endif  // TENSORFLOW_COMPILER_MLIR_TOSA_TRANSFORMS_LEGALIZE_UTILS_H
126