1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #ifndef TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_ 17 #define TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_ 18 19 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" 20 #include "tensorflow/core/framework/types.h" 21 #include "tensorflow/core/util/tensor_format.h" 22 23 namespace tensorflow { 24 25 struct DepthwiseArgs { 26 // Input layer dimensions 27 int batch; 28 int in_rows; 29 int in_cols; 30 int in_depth; 31 int filter_rows; 32 int filter_cols; 33 int depth_multiplier; 34 int stride; 35 int pad_rows; // Amount of padding to the top of the input 36 int pad_cols; // Amount of padding to the left of the input 37 38 // Output layer dimensions 39 int out_rows; 40 int out_cols; 41 int out_depth; 42 DepthwiseArgsDepthwiseArgs43 DepthwiseArgs() 44 : batch(0), 45 in_rows(0), 46 in_cols(0), 47 in_depth(0), 48 filter_rows(0), 49 filter_cols(0), 50 depth_multiplier(0), 51 stride(0), 52 pad_rows(0), 53 pad_cols(0), 54 out_rows(0), 55 out_cols(0), 56 out_depth(0) {} 57 }; 58 59 // Forward declaration. 60 class OpKernelContext; 61 62 template <typename Device, typename T> 63 struct LaunchDepthwiseConvOp { 64 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 65 const T* input, const T* filter, T* output, 66 TensorFormat data_format); 67 }; 68 69 template <typename Device, typename T> 70 struct LaunchDepthwiseConvBackpropInputOp { 71 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 72 const T* out_backprop, const T* filter, T* in_backprop, 73 TensorFormat data_format); 74 }; 75 76 template <typename Device, typename T> 77 struct LaunchDepthwiseConvBackpropFilterOp { 78 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 79 const T* out_backprop, const T* input, T* filter_backprop, 80 TensorFormat data_format); 81 }; 82 83 #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM 84 template <typename T> 85 struct LaunchDepthwiseConvOp<Eigen::GpuDevice, T> { 86 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 87 const T* input, const T* filter, T* output, 88 TensorFormat data_format); 89 }; 90 91 template <typename T> 92 struct LaunchDepthwiseConvBackpropInputOp<Eigen::GpuDevice, T> { 93 void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args, 94 const T* out_backprop, const T* filter, T* in_backprop, 95 TensorFormat data_format); 96 }; 97 98 template <typename T> 99 struct LaunchDepthwiseConvBackpropFilterOp<Eigen::GpuDevice, T> { 100 void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args, 101 const T* out_backprop, const T* input, T* filter_backprop, 102 TensorFormat data_format); 103 }; 104 #endif 105 106 } // namespace tensorflow 107 108 namespace tensorflow { 109 namespace functor { 110 111 // Pads 'filter' to vector-register boundary along its inner dimension: 112 // filter_inner_dim_size = in_depth * depth_multiplier 113 // Requires 'filter' to have the following storage order: 114 // [filter_rows, filter_cols, in_depth, depth_multiplier] 115 // Returns zero-padded filter in 'padded_filter'. 116 // 117 // EX: 118 // in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4 119 // So we have a total of 3 * 2 = 6 filters, each of spatial size 2 x 2. 120 // 121 // filter [rows, cols, in_depth, depth_multiplier] 122 // [u0, v0, w0, x0] [y0, z0, u1, v1] [w1, x1, y1, z1] 123 // [u2, v2, w2, x2] [y2, z2, u3, v3] [w3, x3, y3, z3] 124 // 125 // padded_filter [rows, cols, in_depth, depth_multiplier] 126 // [u0, v0, w0, x0] [y0, z0, 0, 0] [u1, v1, w1, x1] [y1, z1, 0, 0] 127 // [u2, v2, w2, x2] [y2, z2, 0, 0] [u3, v3, w3, x3] [y3, z3, 0, 0] 128 129 template <typename T> 130 struct DepthwiseFilterPadOp { 131 void operator()(const DepthwiseArgs& args, const T* filter, 132 T* padded_filter) { 133 typedef typename Eigen::internal::packet_traits<T>::type Packet; 134 static const int64_t kPacketSize = (sizeof(Packet) / sizeof(T)); 135 136 // Calculate vectorized and scalar lengths of filter's inner dimension. 137 const int64_t filter_inner_dim_size = args.out_depth; 138 const int64_t vectorized_size = 139 (filter_inner_dim_size / kPacketSize) * kPacketSize; 140 const int64_t scalar_size = filter_inner_dim_size - vectorized_size; 141 // Calculate required padding and padded output buffer stride. 142 const int64_t pad_size = scalar_size > 0 ? kPacketSize - scalar_size : 0; 143 const int64_t padded_filter_stride = vectorized_size + kPacketSize; 144 145 const int64_t filter_spatial_size = args.filter_rows * args.filter_cols; 146 for (int64_t i = 0; i < filter_spatial_size; ++i) { 147 const int64_t input_base = i * filter_inner_dim_size; 148 const int64_t output_base = i * padded_filter_stride; 149 // Write vectorized length of filter's inner dimension to output. 150 for (int64_t j = 0; j < vectorized_size; j += kPacketSize) { 151 const auto v = Eigen::internal::ploadu<Packet>(filter + input_base + j); 152 Eigen::internal::pstoreu<T>(padded_filter + output_base + j, v); 153 } 154 // Write scalar length of filter's inner dimension to output. 155 for (int64_t j = 0; j < scalar_size; ++j) { 156 padded_filter[output_base + vectorized_size + j] = 157 filter[input_base + vectorized_size + j]; 158 } 159 // Pad the remainder of output to vector-register boundary. 160 for (int64_t j = 0; j < pad_size; ++j) { 161 padded_filter[output_base + vectorized_size + scalar_size + j] = 162 static_cast<T>(0); 163 } 164 } 165 } 166 }; 167 168 // Copies data from local region in 'input' specified by 'out_r' and 'out_'c' 169 // to 'input_buffer'. The copied data is replicated by factor 170 // 'args.depth_multiplier', and padded to vector register-width boundaries so 171 // that it is aligned for efficient traversal and vector multiply-add by the 172 // depthwise kernel. 173 // 174 // EX: 175 // in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4 176 // 177 // input: [batch, in_rows, in_cols, in_depth] 178 // 179 // [a0, a1, a2, b0, b1, b2, ..., e0, e1, e2, f0, f1, f2, ...] 180 // 181 // input_buffer (register boundaries shown): 182 // [a0, a0, a1, a1] [a2, a2, 0, 0] in_row = 0, in_col = 0 183 // [b0, b0, b1, b1] [b2, b2, 0, 0] in_row = 0, in_col = 1 184 // [e0, e0, e1, e1] [e2, e2, 0, 0] in_row = 1, in_col = 0 185 // [f0, f0, f1, f1] [f2, f2, 0, 0] in_row = 1, in_col = 1 186 // 187 // Returns replicated and padded data from specified input region in 188 // 'input_buffer'. 189 190 template <typename T> 191 struct DepthwiseInputCopyOp { 192 void operator()(const DepthwiseArgs& args, 193 const int64_t padded_filter_inner_dim_size, 194 const int64_t out_r, const int64_t out_c, const T* input, 195 T* input_buffer) { 196 typedef typename Eigen::internal::packet_traits<T>::type Packet; 197 static const int64_t kPacketSize = Eigen::internal::packet_traits<T>::size; 198 199 const int64_t kDepth = args.depth_multiplier; 200 // Calculate vectorized and scalar (residual) lengths for 'in_depth'. 201 const int64_t input_vectorized_size = 202 (args.in_depth / kPacketSize) * kPacketSize; 203 const int64_t input_scalar_size = args.in_depth - input_vectorized_size; 204 205 // Calculate output padding length. 206 const int64_t output_scalar_size = args.out_depth % kPacketSize; 207 const int64_t output_pad_size = 208 output_scalar_size > 0 ? kPacketSize - output_scalar_size : 0; 209 210 // Iterate through all rows x cols reading 'in_depth' from 'input' and 211 // replicating by 'depth_multiplier' into 'input_buffer' (otherwise 212 // zero-padding input buffer as needed). 213 auto* in_buf = input_buffer; 214 const int64_t in_r_start = out_r * args.stride - args.pad_rows; 215 const int64_t in_c_start = out_c * args.stride - args.pad_cols; 216 217 // TODO: add a ploaddup variant for depth == 2 if needed. 218 if (kDepth > 1 && kDepth <= kPacketSize) { 219 for (int64_t f_r = 0; f_r < args.filter_rows; ++f_r) { 220 const int64_t in_r = in_r_start + f_r; 221 222 for (int64_t f_c = 0; f_c < args.filter_cols; ++f_c) { 223 const int64_t in_c = in_c_start + f_c; 224 225 if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 && 226 in_c < args.in_cols) { 227 const auto* in = 228 input + (in_r * args.in_cols + in_c) * args.in_depth; 229 int64_t limit = args.in_depth; 230 // This will overwrite up to kPacketSize next elements, 231 // this is ok on all iterations except the last one, since 232 // we will write correct values on a next iteration. 233 if (f_c == args.filter_cols - 1) { 234 limit -= (kPacketSize - kDepth) / kDepth + 1; 235 if (limit < 0) { 236 limit = 0; 237 } 238 } 239 // Copy vectorized portion of inner dimension. 240 for (int64_t d = 0; d < limit; d++) { 241 const auto p = Eigen::internal::pset1<Packet>(in[d]); 242 Eigen::internal::pstoreu<T>(in_buf, p); 243 in_buf += kDepth; 244 } 245 246 // Copy the scalar portion. 247 for (int64_t d = limit; d < args.in_depth; d++) { 248 const auto value = in[d]; 249 for (int64_t dm = 0; dm < kDepth; dm++) { 250 in_buf[dm] = value; 251 } 252 in_buf += kDepth; 253 } 254 255 // Pad the remainder of the output to vector register boundary. 256 for (int64_t d = 0; d < output_pad_size; ++d) { 257 in_buf[d] = static_cast<T>(0); 258 } 259 in_buf += output_pad_size; 260 } else { 261 // Zero pad. 262 memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size); 263 in_buf += padded_filter_inner_dim_size; 264 } 265 } 266 } 267 } else if (kDepth > kPacketSize) { 268 // Calculate vectorized and scalar (residual) lengths for 269 // 'depth_multiplier'. This is used to efficiently replicate data for 270 // when 'depth_multiplier' > kPacketSize. 271 const int64_t dm_vectorized_size = (kDepth / kPacketSize) * kPacketSize; 272 273 for (int64_t f_r = 0; f_r < args.filter_rows; ++f_r) { 274 const int64_t in_r = in_r_start + f_r; 275 276 for (int64_t f_c = 0; f_c < args.filter_cols; ++f_c) { 277 const int64_t in_c = in_c_start + f_c; 278 279 if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 && 280 in_c < args.in_cols) { 281 const auto* in = 282 input + (in_r * args.in_cols + in_c) * args.in_depth; 283 // Copy vectorized portion of inner dimension. 284 for (int64_t d = 0; d < args.in_depth; d++) { 285 const auto p = Eigen::internal::pset1<Packet>(in[d]); 286 for (int64_t dm = 0; dm < dm_vectorized_size; dm += kPacketSize) { 287 Eigen::internal::pstoreu<T>(in_buf + dm, p); 288 } 289 // Overlapping store for the remainder. 290 Eigen::internal::pstoreu<T>(in_buf + kDepth - kPacketSize, p); 291 in_buf += kDepth; 292 } 293 // Pad the remainder of the output to vector register boundary. 294 for (int64_t d = 0; d < output_pad_size; ++d) { 295 in_buf[d] = static_cast<T>(0); 296 } 297 in_buf += output_pad_size; 298 } else { 299 // Zero pad. 300 memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size); 301 in_buf += padded_filter_inner_dim_size; 302 } 303 } 304 } 305 } else if (kDepth == 1) { 306 for (int64_t f_r = 0; f_r < args.filter_rows; ++f_r) { 307 const int64_t in_r = in_r_start + f_r; 308 309 for (int64_t f_c = 0; f_c < args.filter_cols; ++f_c) { 310 const int64_t in_c = in_c_start + f_c; 311 312 if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 && 313 in_c < args.in_cols) { 314 const auto* in = 315 input + (in_r * args.in_cols + in_c) * args.in_depth; 316 for (int64_t d = 0; d < input_vectorized_size; d += kPacketSize) { 317 const auto p = Eigen::internal::ploadu<Packet>(in + d); 318 Eigen::internal::pstoreu<T>(in_buf, p); 319 in_buf += kPacketSize; 320 } 321 for (int64_t d = 0; d < input_scalar_size; ++d) { 322 T v = in[input_vectorized_size + d]; 323 in_buf[d] = v; 324 } 325 in_buf += input_scalar_size; 326 327 // Pad the remainder of the output to vector register boundary. 328 for (int64_t d = 0; d < output_pad_size; ++d) { 329 in_buf[d] = static_cast<T>(0); 330 } 331 in_buf += output_pad_size; 332 } else { 333 // Zero pad. 334 memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size); 335 in_buf += padded_filter_inner_dim_size; 336 } 337 } 338 } 339 } 340 } 341 }; 342 343 } // namespace functor 344 } // namespace tensorflow 345 346 #endif // TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_ 347