• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_SIMPLE_TENSOR_H
25 #define ARM_COMPUTE_TEST_SIMPLE_TENSOR_H
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/Utils.h"
30 #include "support/MemorySupport.h"
31 #include "tests/IAccessor.h"
32 #include "tests/Utils.h"
33 
34 #include <algorithm>
35 #include <array>
36 #include <cstddef>
37 #include <cstdint>
38 #include <functional>
39 #include <memory>
40 #include <stdexcept>
41 #include <utility>
42 
43 namespace arm_compute
44 {
45 namespace test
46 {
47 class RawTensor;
48 
49 /** Simple tensor object that stores elements in a consecutive chunk of memory.
50  *
51  * It can be created by either loading an image from a file which also
52  * initialises the content of the tensor or by explcitly specifying the size.
53  * The latter leaves the content uninitialised.
54  *
55  * Furthermore, the class provides methods to convert the tensor's values into
56  * different image format.
57  */
58 template <typename T>
59 class SimpleTensor : public IAccessor
60 {
61 public:
62     /** Create an uninitialised tensor. */
63     SimpleTensor() = default;
64 
65     /** Create an uninitialised tensor of the given @p shape and @p format.
66      *
67      * @param[in] shape  Shape of the new raw tensor.
68      * @param[in] format Format of the new raw tensor.
69      */
70     SimpleTensor(TensorShape shape, Format format);
71 
72     /** Create an uninitialised tensor of the given @p shape and @p data type.
73      *
74      * @param[in] shape             Shape of the new raw tensor.
75      * @param[in] data_type         Data type of the new raw tensor.
76      * @param[in] num_channels      (Optional) Number of channels (default = 1).
77      * @param[in] quantization_info (Optional) Quantization info for asymmetric quantization (default = empty).
78      * @param[in] data_layout       (Optional) Data layout of the tensor (default = NCHW).
79      */
80     SimpleTensor(TensorShape shape, DataType data_type,
81                  int              num_channels      = 1,
82                  QuantizationInfo quantization_info = QuantizationInfo(),
83                  DataLayout       data_layout       = DataLayout::NCHW);
84 
85     /** Create a deep copy of the given @p tensor.
86      *
87      * @param[in] tensor To be copied tensor.
88      */
89     SimpleTensor(const SimpleTensor &tensor);
90 
91     /** Create a deep copy of the given @p tensor.
92      *
93      * @param[in] tensor To be copied tensor.
94      *
95      * @return a copy of the given tensor.
96      */
97     SimpleTensor &operator=(SimpleTensor tensor);
98     /** Allow instances of this class to be move constructed */
99     SimpleTensor(SimpleTensor &&) = default;
100     /** Default destructor. */
101     ~SimpleTensor() = default;
102 
103     /** Tensor value type */
104     using value_type = T;
105     /** Tensor buffer pointer type */
106     using Buffer = std::unique_ptr<value_type[]>;
107 
108     friend class RawTensor;
109 
110     /** Return value at @p offset in the buffer.
111      *
112      * @param[in] offset Offset within the buffer.
113      *
114      * @return value in the buffer.
115      */
116     T &operator[](size_t offset);
117 
118     /** Return constant value at @p offset in the buffer.
119      *
120      * @param[in] offset Offset within the buffer.
121      *
122      * @return constant value in the buffer.
123      */
124     const T &operator[](size_t offset) const;
125 
126     /** Shape of the tensor.
127      *
128      * @return the shape of the tensor.
129      */
130     TensorShape shape() const override;
131     /** Size of each element in the tensor in bytes.
132      *
133      * @return the size of each element in the tensor in bytes.
134      */
135     size_t element_size() const override;
136     /** Total size of the tensor in bytes.
137      *
138      * @return the total size of the tensor in bytes.
139      */
140     size_t size() const override;
141     /** Image format of the tensor.
142      *
143      * @return the format of the tensor.
144      */
145     Format format() const override;
146     /** Data layout of the tensor.
147      *
148      * @return the data layout of the tensor.
149      */
150     DataLayout data_layout() const override;
151     /** Data type of the tensor.
152      *
153      * @return the data type of the tensor.
154      */
155     DataType data_type() const override;
156     /** Number of channels of the tensor.
157      *
158      * @return the number of channels of the tensor.
159      */
160     int num_channels() const override;
161     /** Number of elements of the tensor.
162      *
163      * @return the number of elements of the tensor.
164      */
165     int num_elements() const override;
166     /** Available padding around the tensor.
167      *
168      * @return the available padding around the tensor.
169      */
170     PaddingSize padding() const override;
171     /** Quantization info in case of asymmetric quantized type
172      *
173      * @return
174      */
175     QuantizationInfo quantization_info() const override;
176 
177     /** Constant pointer to the underlying buffer.
178      *
179      * @return a constant pointer to the data.
180      */
181     const T *data() const;
182 
183     /** Pointer to the underlying buffer.
184      *
185      * @return a pointer to the data.
186      */
187     T *data();
188 
189     /** Read only access to the specified element.
190      *
191      * @param[in] coord Coordinates of the desired element.
192      *
193      * @return A pointer to the desired element.
194      */
195     const void *operator()(const Coordinates &coord) const override;
196 
197     /** Access to the specified element.
198      *
199      * @param[in] coord Coordinates of the desired element.
200      *
201      * @return A pointer to the desired element.
202      */
203     void *operator()(const Coordinates &coord) override;
204 
205     /** Swaps the content of the provided tensors.
206      *
207      * @param[in, out] tensor1 Tensor to be swapped.
208      * @param[in, out] tensor2 Tensor to be swapped.
209      */
210     template <typename U>
211     friend void swap(SimpleTensor<U> &tensor1, SimpleTensor<U> &tensor2);
212 
213 protected:
214     Buffer           _buffer{ nullptr };
215     TensorShape      _shape{};
216     Format           _format{ Format::UNKNOWN };
217     DataType         _data_type{ DataType::UNKNOWN };
218     int              _num_channels{ 0 };
219     QuantizationInfo _quantization_info{};
220     DataLayout       _data_layout{ DataLayout::UNKNOWN };
221 };
222 
223 template <typename T1, typename T2>
copy_tensor(const SimpleTensor<T2> & tensor)224 SimpleTensor<T1> copy_tensor(const SimpleTensor<T2> &tensor)
225 {
226     SimpleTensor<T1> st(tensor.shape(), tensor.data_type(),
227                         tensor.num_channels(),
228                         tensor.quantization_info(),
229                         tensor.data_layout());
230     for(size_t n = 0; n < size_t(st.num_elements()); n++)
231     {
232         st.data()[n] = static_cast<T1>(tensor.data()[n]);
233     }
234     return st;
235 }
236 
237 template <typename T1, typename T2, typename std::enable_if<std::is_same<T1, T2>::value, int>::type = 0>
copy_tensor(const SimpleTensor<half> & tensor)238 SimpleTensor<T1> copy_tensor(const SimpleTensor<half> &tensor)
239 {
240     SimpleTensor<T1> st(tensor.shape(), tensor.data_type(),
241                         tensor.num_channels(),
242                         tensor.quantization_info(),
243                         tensor.data_layout());
244     memcpy((void *)st.data(), (const void *)tensor.data(), size_t(st.num_elements() * sizeof(T1)));
245     return st;
246 }
247 
248 template < typename T1, typename T2, typename std::enable_if < (std::is_same<T1, half>::value || std::is_same<T2, half>::value), int >::type = 0 >
copy_tensor(const SimpleTensor<half> & tensor)249 SimpleTensor<T1> copy_tensor(const SimpleTensor<half> &tensor)
250 {
251     SimpleTensor<T1> st(tensor.shape(), tensor.data_type(),
252                         tensor.num_channels(),
253                         tensor.quantization_info(),
254                         tensor.data_layout());
255     for(size_t n = 0; n < size_t(st.num_elements()); n++)
256     {
257         st.data()[n] = half_float::detail::half_cast<T1, T2>(tensor.data()[n]);
258     }
259     return st;
260 }
261 
262 template <typename T>
SimpleTensor(TensorShape shape,Format format)263 SimpleTensor<T>::SimpleTensor(TensorShape shape, Format format)
264     : _buffer(nullptr),
265       _shape(shape),
266       _format(format),
267       _quantization_info(),
268       _data_layout(DataLayout::NCHW)
269 {
270     _num_channels = num_channels();
271     _buffer       = support::cpp14::make_unique<T[]>(num_elements() * _num_channels);
272 }
273 
274 template <typename T>
SimpleTensor(TensorShape shape,DataType data_type,int num_channels,QuantizationInfo quantization_info,DataLayout data_layout)275 SimpleTensor<T>::SimpleTensor(TensorShape shape, DataType data_type, int num_channels, QuantizationInfo quantization_info, DataLayout data_layout)
276     : _buffer(nullptr),
277       _shape(shape),
278       _data_type(data_type),
279       _num_channels(num_channels),
280       _quantization_info(quantization_info),
281       _data_layout(data_layout)
282 {
283     _buffer = support::cpp14::make_unique<T[]>(this->_shape.total_size() * _num_channels);
284 }
285 
286 template <typename T>
SimpleTensor(const SimpleTensor & tensor)287 SimpleTensor<T>::SimpleTensor(const SimpleTensor &tensor)
288     : _buffer(nullptr),
289       _shape(tensor.shape()),
290       _format(tensor.format()),
291       _data_type(tensor.data_type()),
292       _num_channels(tensor.num_channels()),
293       _quantization_info(tensor.quantization_info()),
294       _data_layout(tensor.data_layout())
295 {
296     _buffer = support::cpp14::make_unique<T[]>(tensor.num_elements() * _num_channels);
297     std::copy_n(tensor.data(), this->_shape.total_size() * _num_channels, _buffer.get());
298 }
299 
300 template <typename T>
301 SimpleTensor<T> &SimpleTensor<T>::operator=(SimpleTensor tensor)
302 {
303     swap(*this, tensor);
304 
305     return *this;
306 }
307 
308 template <typename T>
309 T &SimpleTensor<T>::operator[](size_t offset)
310 {
311     return _buffer[offset];
312 }
313 
314 template <typename T>
315 const T &SimpleTensor<T>::operator[](size_t offset) const
316 {
317     return _buffer[offset];
318 }
319 
320 template <typename T>
shape()321 TensorShape SimpleTensor<T>::shape() const
322 {
323     return _shape;
324 }
325 
326 template <typename T>
element_size()327 size_t SimpleTensor<T>::element_size() const
328 {
329     return num_channels() * element_size_from_data_type(data_type());
330 }
331 
332 template <typename T>
quantization_info()333 QuantizationInfo SimpleTensor<T>::quantization_info() const
334 {
335     return _quantization_info;
336 }
337 
338 template <typename T>
size()339 size_t SimpleTensor<T>::size() const
340 {
341     const size_t size = std::accumulate(_shape.cbegin(), _shape.cend(), 1, std::multiplies<size_t>());
342     return size * element_size();
343 }
344 
345 template <typename T>
format()346 Format SimpleTensor<T>::format() const
347 {
348     return _format;
349 }
350 
351 template <typename T>
data_layout()352 DataLayout SimpleTensor<T>::data_layout() const
353 {
354     return _data_layout;
355 }
356 
357 template <typename T>
data_type()358 DataType SimpleTensor<T>::data_type() const
359 {
360     if(_format != Format::UNKNOWN)
361     {
362         return data_type_from_format(_format);
363     }
364     else
365     {
366         return _data_type;
367     }
368 }
369 
370 template <typename T>
num_channels()371 int SimpleTensor<T>::num_channels() const
372 {
373     switch(_format)
374     {
375         case Format::U8:
376         case Format::U16:
377         case Format::S16:
378         case Format::U32:
379         case Format::S32:
380         case Format::F16:
381         case Format::F32:
382             return 1;
383         // Because the U and V channels are subsampled
384         // these formats appear like having only 2 channels:
385         case Format::YUYV422:
386         case Format::UYVY422:
387             return 2;
388         case Format::UV88:
389             return 2;
390         case Format::RGB888:
391             return 3;
392         case Format::RGBA8888:
393             return 4;
394         case Format::UNKNOWN:
395             return _num_channels;
396         //Doesn't make sense for planar formats:
397         case Format::NV12:
398         case Format::NV21:
399         case Format::IYUV:
400         case Format::YUV444:
401         default:
402             return 0;
403     }
404 }
405 
406 template <typename T>
num_elements()407 int SimpleTensor<T>::num_elements() const
408 {
409     return _shape.total_size();
410 }
411 
412 template <typename T>
padding()413 PaddingSize SimpleTensor<T>::padding() const
414 {
415     return PaddingSize(0);
416 }
417 
418 template <typename T>
data()419 const T *SimpleTensor<T>::data() const
420 {
421     return _buffer.get();
422 }
423 
424 template <typename T>
data()425 T *SimpleTensor<T>::data()
426 {
427     return _buffer.get();
428 }
429 
430 template <typename T>
operator()431 const void *SimpleTensor<T>::operator()(const Coordinates &coord) const
432 {
433     return _buffer.get() + coord2index(_shape, coord) * _num_channels;
434 }
435 
436 template <typename T>
operator()437 void *SimpleTensor<T>::operator()(const Coordinates &coord)
438 {
439     return _buffer.get() + coord2index(_shape, coord) * _num_channels;
440 }
441 
442 template <typename U>
swap(SimpleTensor<U> & tensor1,SimpleTensor<U> & tensor2)443 void swap(SimpleTensor<U> &tensor1, SimpleTensor<U> &tensor2)
444 {
445     // Use unqualified call to swap to enable ADL. But make std::swap available
446     // as backup.
447     using std::swap;
448     swap(tensor1._shape, tensor2._shape);
449     swap(tensor1._format, tensor2._format);
450     swap(tensor1._data_type, tensor2._data_type);
451     swap(tensor1._num_channels, tensor2._num_channels);
452     swap(tensor1._quantization_info, tensor2._quantization_info);
453     swap(tensor1._buffer, tensor2._buffer);
454 }
455 } // namespace test
456 } // namespace arm_compute
457 #endif /* ARM_COMPUTE_TEST_SIMPLE_TENSOR_H */
458