• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_DEPTHWISE_CONVOLUTION_FIXTURE
25 #define ARM_COMPUTE_TEST_DEPTHWISE_CONVOLUTION_FIXTURE
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "tests/AssetsLibrary.h"
31 #include "tests/Globals.h"
32 #include "tests/IAccessor.h"
33 #include "tests/framework/Asserts.h"
34 #include "tests/framework/Fixture.h"
35 #include "tests/validation/Helpers.h"
36 #include "tests/validation/reference/ActivationLayer.h"
37 #include "tests/validation/reference/DepthwiseConvolutionLayer.h"
38 
39 #include "utils/Utils.h"
40 
41 #include <random>
42 
43 namespace arm_compute
44 {
45 namespace test
46 {
47 namespace validation
48 {
49 using namespace arm_compute::misc::shape_calculator;
50 
51 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
52 class DepthwiseConvolutionLayerValidationGenericFixture : public framework::Fixture
53 {
54 public:
55     using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;
56 
57 public:
58     template <typename...>
setup(TensorShape in_shape,Size2D kernel_size,PadStrideInfo pad_stride_info,Size2D dilation,unsigned int depth_multiplier,DataType input_data_type,DataType weights_data_type,QuantizationInfo input_quantization_info,QuantizationInfo weights_quantization_info,QuantizationInfo output_quantization_info,DataLayout data_layout,ActivationLayerInfo act_info)59     void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation,
60                unsigned int depth_multiplier, DataType input_data_type, DataType weights_data_type,
61                QuantizationInfo input_quantization_info, QuantizationInfo weights_quantization_info, QuantizationInfo output_quantization_info,
62                DataLayout data_layout, ActivationLayerInfo act_info)
63     {
64         const DataType bias_data_type = is_data_type_quantized(input_data_type) ? DataType::S32 : input_data_type;
65 
66         TensorShape weights_shape(kernel_size.width, kernel_size.height);
67 
68         const TensorInfo  in_info(in_shape, 1, input_data_type);
69         const TensorInfo  we_info(weights_shape, 1, weights_data_type);
70         const TensorShape out_shape = compute_depthwise_convolution_shape(in_info, we_info, pad_stride_info, depth_multiplier, dilation);
71 
72         weights_shape.set(2, out_shape.z());
73         const TensorShape biases_shape(weights_shape[2]);
74 
75         _target = compute_target(in_shape, weights_shape, biases_shape, out_shape, pad_stride_info, dilation, depth_multiplier,
76                                  input_data_type, weights_data_type, bias_data_type, input_quantization_info, weights_quantization_info, output_quantization_info, data_layout, act_info);
77         _reference = compute_reference(in_shape, weights_shape, biases_shape, out_shape, pad_stride_info, dilation, depth_multiplier,
78                                        input_data_type, weights_data_type, bias_data_type, input_quantization_info, weights_quantization_info, output_quantization_info, act_info);
79     }
80 
81 protected:
82     template <typename U>
fill(U && tensor,int i)83     void fill(U &&tensor, int i)
84     {
85         switch(tensor.data_type())
86         {
87             case DataType::QASYMM8:
88             {
89                 std::uniform_int_distribution<uint8_t> distribution(0, 10);
90                 library->fill(tensor, distribution, i);
91                 break;
92             }
93             case DataType::QASYMM8_SIGNED:
94             case DataType::QSYMM8_PER_CHANNEL:
95             {
96                 std::uniform_int_distribution<int8_t> distribution(-10, 10);
97                 library->fill(tensor, distribution, i);
98                 break;
99             }
100             case DataType::F32:
101             case DataType::F16:
102             {
103                 std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
104                 library->fill(tensor, distribution, i);
105                 break;
106             }
107             case DataType::S32:
108             {
109                 std::uniform_int_distribution<int32_t> distribution(-100, 100);
110                 library->fill(tensor, distribution, i);
111                 break;
112             }
113             default:
114                 library->fill_tensor_uniform(tensor, i);
115         }
116     }
117 
compute_target(TensorShape input_shape,TensorShape weights_shape,TensorShape biases_shape,TensorShape output_shape,PadStrideInfo & pad_stride_info,Size2D dilation,unsigned int depth_multiplier,const DataType input_data_type,const DataType weights_data_type,const DataType bias_data_type,const QuantizationInfo & input_quantization_info,const QuantizationInfo & weights_quantization_info,const QuantizationInfo & output_quantization_info,const DataLayout data_layout,const ActivationLayerInfo & act_info)118     TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, TensorShape biases_shape, TensorShape output_shape, PadStrideInfo &pad_stride_info, Size2D dilation,
119                               unsigned int depth_multiplier, const DataType input_data_type, const DataType weights_data_type, const DataType bias_data_type,
120                               const QuantizationInfo &input_quantization_info, const QuantizationInfo &weights_quantization_info, const QuantizationInfo &output_quantization_info,
121                               const DataLayout data_layout, const ActivationLayerInfo &act_info)
122     {
123         if(data_layout == DataLayout::NHWC)
124         {
125             permute(input_shape, PermutationVector(2U, 0U, 1U));
126             permute(weights_shape, PermutationVector(2U, 0U, 1U));
127             permute(output_shape, PermutationVector(2U, 0U, 1U));
128         }
129 
130         // Create tensors
131         TensorType src     = create_tensor<TensorType>(input_shape, input_data_type, 1, input_quantization_info, data_layout);
132         TensorType weights = create_tensor<TensorType>(weights_shape, weights_data_type, 1, weights_quantization_info, data_layout);
133         TensorType biases  = create_tensor<TensorType>(biases_shape, bias_data_type, 1, input_quantization_info, data_layout);
134         TensorType dst     = create_tensor<TensorType>(output_shape, input_data_type, 1, output_quantization_info, data_layout);
135 
136         // Create Depthwise Convolution configure function
137         FunctionType dwc;
138         dwc.configure(&src, &weights, &biases, &dst, pad_stride_info, depth_multiplier, act_info, dilation);
139 
140         ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
141         ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
142         ARM_COMPUTE_EXPECT(biases.info()->is_resizable(), framework::LogLevel::ERRORS);
143         ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
144 
145         // Allocate tensors
146         src.allocator()->allocate();
147         weights.allocator()->allocate();
148         biases.allocator()->allocate();
149         dst.allocator()->allocate();
150 
151         ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
152         ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
153         ARM_COMPUTE_EXPECT(!biases.info()->is_resizable(), framework::LogLevel::ERRORS);
154         ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
155 
156         // Fill tensors
157         fill(AccessorType(src), 0);
158         fill(AccessorType(weights), 1);
159         fill(AccessorType(biases), 2);
160 
161         // Compute function
162         dwc.run();
163 
164         return dst;
165     }
166 
compute_reference(const TensorShape & in_shape,const TensorShape & weights_shape,const TensorShape & biases_shape,const TensorShape & out_shape,const PadStrideInfo & pad_stride_info,const Size2D & dilation,unsigned int depth_multiplier,const DataType input_data_type,const DataType weights_data_type,const DataType bias_data_type,const QuantizationInfo & input_quantization_info,const QuantizationInfo & weights_quantization_info,const QuantizationInfo & output_quantization_info,const ActivationLayerInfo & act_info)167     SimpleTensor<T> compute_reference(const TensorShape &in_shape, const TensorShape &weights_shape, const TensorShape &biases_shape, const TensorShape &out_shape,
168                                       const PadStrideInfo &pad_stride_info, const Size2D &dilation, unsigned int depth_multiplier,
169                                       const DataType input_data_type, const DataType weights_data_type, const DataType bias_data_type,
170                                       const QuantizationInfo &input_quantization_info, const QuantizationInfo &weights_quantization_info, const QuantizationInfo &output_quantization_info,
171                                       const ActivationLayerInfo &act_info)
172     {
173         SimpleTensor<T>     src{ in_shape, input_data_type, 1, input_quantization_info };
174         SimpleTensor<TW>    weights{ weights_shape, weights_data_type, 1, weights_quantization_info };
175         SimpleTensor<TBias> biases{ biases_shape, bias_data_type, 1, input_quantization_info };
176 
177         fill(src, 0);
178         fill(weights, 1);
179         fill(biases, 2);
180 
181         SimpleTensor<T> depth_out = reference::depthwise_convolution(src, weights, biases, out_shape, pad_stride_info, depth_multiplier, dilation, output_quantization_info);
182         return (act_info.enabled()) ? reference::activation_layer<T>(depth_out, act_info) : depth_out;
183     }
184 
185     TensorType      _target{};
186     SimpleTensor<T> _reference{};
187 };
188 
189 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
190 class DepthwiseConvolutionLayerValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
191 {
192 public:
193     template <typename...>
setup(TensorShape in_shape,Size2D kernel_size,PadStrideInfo pad_stride_info,Size2D dilation,unsigned int depth_multiplier,DataType data_type,DataLayout data_layout,ActivationLayerInfo act_info)194     void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType data_type, DataLayout data_layout,
195                ActivationLayerInfo act_info)
196     {
197         DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier,
198                                                                                                                data_type, data_type, QuantizationInfo(), QuantizationInfo(), QuantizationInfo(),
199                                                                                                                data_layout, act_info);
200     }
201 };
202 
203 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
204 class DepthwiseConvolutionLayerNativeValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
205 {
206 public:
207     template <typename...>
setup(size_t width,size_t height,size_t channel,size_t batch,Size2D kernel_size,size_t depth_multiplier,Size2D dilation,Size2D stride,bool padding_valid,DataType data_type,DataLayout data_layout)208     void setup(size_t width, size_t height, size_t channel, size_t batch, Size2D kernel_size, size_t depth_multiplier, Size2D dilation, Size2D stride, bool padding_valid, DataType data_type,
209                DataLayout data_layout)
210     {
211         const TensorShape src_shape(width, height, channel, batch);
212         const TensorShape weights_shape(kernel_size.width, kernel_size.height, channel * depth_multiplier);
213         const TensorShape biases_shape(weights_shape.z());
214 
215         PadStrideInfo conv_info;
216         if(padding_valid)
217         {
218             conv_info = PadStrideInfo();
219         }
220         else
221         {
222             conv_info = calculate_same_pad(src_shape, weights_shape, PadStrideInfo(stride.width, stride.height), DataLayout::NCHW, dilation);
223         }
224 
225         _target    = compute_target(src_shape, weights_shape, biases_shape, conv_info, dilation, depth_multiplier, data_type, data_layout);
226         _reference = compute_reference(src_shape, weights_shape, biases_shape, conv_info, dilation, depth_multiplier, data_type);
227     }
228 
229 protected:
230     template <typename U>
fill(U && tensor,int i)231     void fill(U &&tensor, int i)
232     {
233         switch(tensor.data_type())
234         {
235             case DataType::F32:
236             {
237                 std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
238                 library->fill(tensor, distribution, i);
239                 break;
240             }
241             default:
242                 library->fill_tensor_uniform(tensor, i);
243         }
244     }
245 
compute_target(TensorShape input_shape,TensorShape weights_shape,TensorShape biases_shape,PadStrideInfo & conv_info,Size2D dilation,unsigned int depth_multiplier,const DataType data_type,const DataLayout data_layout)246     TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, TensorShape biases_shape, PadStrideInfo &conv_info, Size2D dilation,
247                               unsigned int depth_multiplier, const DataType data_type, const DataLayout data_layout)
248     {
249         if(data_layout == DataLayout::NHWC)
250         {
251             permute(input_shape, PermutationVector(2U, 0U, 1U));
252             permute(weights_shape, PermutationVector(2U, 0U, 1U));
253         }
254 
255         // Create tensors
256         TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, QuantizationInfo(), data_layout);
257         TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, QuantizationInfo(), data_layout);
258         TensorType biases  = create_tensor<TensorType>(biases_shape, data_type, 1, QuantizationInfo(), data_layout);
259         TensorType dst     = create_tensor<TensorType>(TensorShape(), data_type, 1, QuantizationInfo(), data_layout);
260 
261         // Create Depthwise Convolution configure function
262         FunctionType dwc;
263         dwc.configure(&src, &weights, &biases, &dst, conv_info, depth_multiplier, dilation);
264 
265         ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
266         ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
267         ARM_COMPUTE_EXPECT(biases.info()->is_resizable(), framework::LogLevel::ERRORS);
268         ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
269 
270         // Allocate tensors
271         src.allocator()->allocate();
272         weights.allocator()->allocate();
273         biases.allocator()->allocate();
274         dst.allocator()->allocate();
275 
276         ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
277         ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
278         ARM_COMPUTE_EXPECT(!biases.info()->is_resizable(), framework::LogLevel::ERRORS);
279         ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
280 
281         // Fill tensors
282         fill(AccessorType(src), 0);
283         fill(AccessorType(weights), 1);
284         fill(AccessorType(biases), 2);
285 
286         // Compute function
287         dwc.run();
288 
289         return dst;
290     }
291 
compute_reference(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & biases_shape,const PadStrideInfo & conv_info,const Size2D & dilation,unsigned int depth_multiplier,const DataType data_type)292     SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &biases_shape, const PadStrideInfo &conv_info,
293                                       const Size2D &dilation, unsigned int depth_multiplier, const DataType data_type)
294     {
295         SimpleTensor<T> src{ input_shape, data_type };
296         SimpleTensor<T> weights{ weights_shape, data_type };
297         SimpleTensor<T> biases{ biases_shape, data_type };
298 
299         fill(src, 0);
300         fill(weights, 1);
301         fill(biases, 2);
302 
303         const TensorShape dst_shape = compute_depthwise_convolution_shape(TensorInfo(input_shape, 1, data_type), TensorInfo(weights_shape, 1, data_type), conv_info,
304                                                                           depth_multiplier, dilation);
305         return reference::depthwise_convolution(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation);
306     }
307 
308     TensorType      _target{};
309     SimpleTensor<T> _reference{};
310 };
311 
312 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
313 class DepthwiseConvolutionLayerNativeConfigurableValidationFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
314 {
315 public:
316     template <typename...>
setup(size_t width,size_t height,size_t channel,size_t batch,Size2D kernel_size,size_t depth_multiplier,Size2D dilation,Size2D stride,bool padding_valid,DataType data_type,DataLayout data_layout,const ActivationLayerInfo & act_info,unsigned int n0)317     void setup(size_t width, size_t height, size_t channel, size_t batch, Size2D kernel_size, size_t depth_multiplier, Size2D dilation, Size2D stride, bool padding_valid, DataType data_type,
318                DataLayout data_layout, const ActivationLayerInfo &act_info, unsigned int n0)
319     {
320         const TensorShape src_shape(width, height, channel, batch);
321         const TensorShape weights_shape(kernel_size.width, kernel_size.height, channel * depth_multiplier);
322         const TensorShape biases_shape(weights_shape.z());
323 
324         PadStrideInfo conv_info;
325         if(padding_valid)
326         {
327             conv_info = PadStrideInfo();
328         }
329         else
330         {
331             conv_info = calculate_same_pad(src_shape, weights_shape, PadStrideInfo(stride.width, stride.height), DataLayout::NCHW, dilation);
332         }
333 
334         _target    = compute_target(src_shape, weights_shape, biases_shape, conv_info, dilation, depth_multiplier, data_type, data_layout, act_info, n0);
335         _reference = compute_reference(src_shape, weights_shape, biases_shape, conv_info, dilation, depth_multiplier, data_type, act_info);
336     }
337 
338 protected:
339     template <typename U>
fill(U && tensor,int i)340     void fill(U &&tensor, int i)
341     {
342         switch(tensor.data_type())
343         {
344             case DataType::F32:
345             {
346                 std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
347                 library->fill(tensor, distribution, i);
348                 break;
349             }
350             case DataType::F16:
351             {
352                 std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
353                 library->fill(tensor, distribution, i);
354                 break;
355             }
356             default:
357                 library->fill_tensor_uniform(tensor, i);
358         }
359     }
360 
compute_target(TensorShape input_shape,TensorShape weights_shape,TensorShape biases_shape,PadStrideInfo & conv_info,Size2D dilation,unsigned int depth_multiplier,const DataType data_type,const DataLayout data_layout,const ActivationLayerInfo & act_info,unsigned int n0)361     TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, TensorShape biases_shape, PadStrideInfo &conv_info, Size2D dilation,
362                               unsigned int depth_multiplier, const DataType data_type, const DataLayout data_layout, const ActivationLayerInfo &act_info, unsigned int n0)
363     {
364         if(data_layout == DataLayout::NHWC)
365         {
366             permute(input_shape, PermutationVector(2U, 0U, 1U));
367             permute(weights_shape, PermutationVector(2U, 0U, 1U));
368         }
369 
370         // Create tensors
371         TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, QuantizationInfo(), data_layout);
372         TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, QuantizationInfo(), data_layout);
373         TensorType biases  = create_tensor<TensorType>(biases_shape, data_type, 1, QuantizationInfo(), data_layout);
374         TensorType dst     = create_tensor<TensorType>(TensorShape(), data_type, 1, QuantizationInfo(), data_layout);
375 
376         DWCWeightsKernelInfo dwc_weights_info;
377         dwc_weights_info.n0 = n0;
378 
379         DWCKernelInfo dwc_info;
380         dwc_info.activation_info = act_info;
381 
382         // Create Depthwise Convolution configure function
383         FunctionType dwc;
384         dwc.configure(&src, &weights, &biases, &dst, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation);
385 
386         ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
387         ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
388         ARM_COMPUTE_EXPECT(biases.info()->is_resizable(), framework::LogLevel::ERRORS);
389         ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
390 
391         // Allocate tensors
392         src.allocator()->allocate();
393         weights.allocator()->allocate();
394         biases.allocator()->allocate();
395         dst.allocator()->allocate();
396 
397         ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
398         ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
399         ARM_COMPUTE_EXPECT(!biases.info()->is_resizable(), framework::LogLevel::ERRORS);
400         ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
401 
402         // Fill tensors
403         fill(AccessorType(src), 0);
404         fill(AccessorType(weights), 1);
405         fill(AccessorType(biases), 2);
406 
407         // Compute function
408         dwc.run();
409 
410         return dst;
411     }
412 
compute_reference(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & biases_shape,const PadStrideInfo & conv_info,const Size2D & dilation,unsigned int depth_multiplier,const DataType data_type,const ActivationLayerInfo & act_info)413     SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &biases_shape, const PadStrideInfo &conv_info,
414                                       const Size2D &dilation, unsigned int depth_multiplier, const DataType data_type, const ActivationLayerInfo &act_info)
415     {
416         SimpleTensor<T> src{ input_shape, data_type };
417         SimpleTensor<T> weights{ weights_shape, data_type };
418         SimpleTensor<T> biases{ biases_shape, data_type };
419 
420         fill(src, 0);
421         fill(weights, 1);
422         fill(biases, 2);
423 
424         const TensorShape dst_shape = compute_depthwise_convolution_shape(TensorInfo(input_shape, 1, data_type), TensorInfo(weights_shape, 1, data_type), conv_info,
425                                                                           depth_multiplier, dilation);
426         return reference::activation_layer(reference::depthwise_convolution(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation), act_info);
427     }
428 
429     TensorType      _target{};
430     SimpleTensor<T> _reference{};
431 };
432 
433 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
434 class DepthwiseConvolutionLayerValidationQuantizedFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
435 {
436 public:
437     template <typename...>
setup(TensorShape in_shape,Size2D kernel_size,PadStrideInfo pad_stride_info,Size2D dilation,unsigned int depth_multiplier,DataType data_type,QuantizationInfo input_quantization_info,QuantizationInfo output_quantization_info,DataLayout data_layout,ActivationLayerInfo act_info)438     void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType data_type,
439                QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, DataLayout data_layout, ActivationLayerInfo act_info)
440     {
441         DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier, data_type,
442                                                                                                                data_type, input_quantization_info, input_quantization_info, output_quantization_info,
443                                                                                                                data_layout, act_info);
444     }
445 };
446 
447 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
448 class DepthwiseConvolutionLayerValidationQuantizedPerChannelFixture : public DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
449 {
450 public:
451     template <typename...>
setup(TensorShape in_shape,Size2D kernel_size,PadStrideInfo pad_stride_info,Size2D dilation,unsigned int depth_multiplier,DataType input_data_type,DataType weights_data_type,QuantizationInfo input_quantization_info,QuantizationInfo output_quantization_info,DataLayout data_layout,ActivationLayerInfo act_info)452     void setup(TensorShape in_shape, Size2D kernel_size, PadStrideInfo pad_stride_info, Size2D dilation, unsigned int depth_multiplier, DataType input_data_type, DataType weights_data_type,
453                QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, DataLayout data_layout, ActivationLayerInfo act_info)
454     {
455         const float out_scale = output_quantization_info.uniform().scale;
456         const float in_scale  = input_quantization_info.uniform().scale;
457 
458         std::vector<float>               weights_scales{};
459         std::mt19937                     gen(library->seed());
460         std::uniform_real_distribution<> dis(0.01f, out_scale / in_scale);
461         for(size_t i = 0; i < in_shape.z() * depth_multiplier; ++i)
462         {
463             weights_scales.push_back(dis(gen));
464         }
465 
466         DepthwiseConvolutionLayerValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(in_shape, kernel_size, pad_stride_info, dilation, depth_multiplier,
467                                                                                                                 input_data_type, weights_data_type,
468                                                                                                                 input_quantization_info, QuantizationInfo(weights_scales), output_quantization_info,
469                                                                                                                 data_layout, act_info);
470     }
471 };
472 } // namespace validation
473 } // namespace test
474 } // namespace arm_compute
475 #endif /* ARM_COMPUTE_TEST_DEPTHWISE_CONVOLUTION_FIXTURE */
476