• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Helpers.h"
25 #include "arm_compute/core/TensorShape.h"
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "tests/AssetsLibrary.h"
29 #include "tests/Globals.h"
30 #include "tests/IAccessor.h"
31 #include "tests/framework/Asserts.h"
32 #include "tests/framework/Fixture.h"
33 #include "tests/validation/Helpers.h"
34 #include "tests/validation/fixtures/ConvolutionLayerFixture.h"
35 #include "tests/validation/reference/ConvolutionLayer.h"
36 #include "tests/validation/reference/Permute.h"
37 
38 #include <random>
39 
40 namespace arm_compute
41 {
42 namespace test
43 {
44 namespace validation
45 {
46 using namespace arm_compute::misc::shape_calculator;
47 
48 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
49 class DirectConvolutionValidationGenericFixture : public framework::Fixture
50 {
51 public:
52     using TBias = typename std::conditional < std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, int32_t, T >::type;
53 
54     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int pad_x,int pad_y,unsigned int kernel_size,unsigned int num_kernels,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)55     void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels,
56                DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
57     {
58         _quantization_info = quantization_info;
59         _data_type         = data_type;
60 
61         TensorShape         weights_shape(kernel_size, kernel_size, input_shape.z(), num_kernels);
62         const TensorShape   bias_shape(num_kernels);
63         const PadStrideInfo info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR);
64         const DataType      bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
65 
66         TensorInfo input_info   = TensorInfo(input_shape, 1, data_type);
67         TensorInfo weights_info = TensorInfo(weights_shape, 1, data_type);
68 
69         const TensorShape output_shape = compute_deep_convolution_shape(input_info, weights_info, info);
70 
71         _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info, data_layout);
72         _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info);
73     }
74 
75     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape bias_shape,TensorShape output_shape,PadStrideInfo info,Size2D dilation,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)76     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
77                DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
78     {
79         ARM_COMPUTE_ERROR_ON(data_layout == DataLayout::UNKNOWN);
80         ARM_COMPUTE_UNUSED(dilation);
81 
82         _quantization_info = quantization_info;
83         _data_type         = data_type;
84 
85         const DataType bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
86 
87         _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info, data_layout);
88         _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, data_type, bias_data_type, quantization_info, act_info);
89     }
90 
91 protected:
92     template <typename U>
fill(U && tensor,int i)93     void fill(U &&tensor, int i)
94     {
95         switch(tensor.data_type())
96         {
97             case DataType::QASYMM8:
98             {
99                 std::uniform_int_distribution<uint8_t> distribution(0, 50);
100                 library->fill(tensor, distribution, i);
101                 break;
102             }
103             case DataType::QASYMM8_SIGNED:
104             {
105                 // Use small input range to avoid all the test results being saturated at the end.
106                 std::uniform_int_distribution<int8_t> distribution(-25, 25);
107                 library->fill(tensor, distribution, i);
108                 break;
109             }
110             case DataType::F16:
111             case DataType::F32:
112             {
113                 std::uniform_real_distribution<> distribution(-1.f, 1.f);
114                 library->fill(tensor, distribution, i);
115                 break;
116             }
117             case DataType::S32:
118             {
119                 std::uniform_int_distribution<int32_t> distribution(-5, 5);
120                 library->fill(tensor, distribution, i);
121                 break;
122             }
123             default:
124                 library->fill_tensor_uniform(tensor, i);
125         }
126     }
127 
compute_target(TensorShape input_shape,TensorShape weights_shape,const TensorShape & bias_shape,TensorShape output_shape,const PadStrideInfo & info,DataType data_type,DataType bias_data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,const DataLayout & data_layout)128     TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
129                               DataType data_type, DataType bias_data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, const DataLayout &data_layout)
130     {
131         if(data_layout == DataLayout::NHWC)
132         {
133             permute(input_shape, PermutationVector(2U, 0U, 1U));
134             permute(weights_shape, PermutationVector(2U, 0U, 1U));
135             permute(output_shape, PermutationVector(2U, 0U, 1U));
136         }
137 
138         // Create tensors
139         TensorType src     = create_tensor<TensorType>(input_shape, data_type, 1, quantization_info, data_layout);
140         TensorType weights = create_tensor<TensorType>(weights_shape, data_type, 1, quantization_info, data_layout);
141         TensorType bias    = create_tensor<TensorType>(bias_shape, bias_data_type, 1, quantization_info);
142         TensorType dst     = create_tensor<TensorType>(output_shape, data_type, 1, quantization_info, data_layout);
143 
144         // Create and configure function
145         FunctionType conv;
146         conv.configure(&src, &weights, &bias, &dst, info, act_info);
147 
148         ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
149         ARM_COMPUTE_EXPECT(weights.info()->is_resizable(), framework::LogLevel::ERRORS);
150         ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
151         ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
152 
153         // Allocate tensors
154         src.allocator()->allocate();
155         weights.allocator()->allocate();
156         bias.allocator()->allocate();
157         dst.allocator()->allocate();
158 
159         ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
160         ARM_COMPUTE_EXPECT(!weights.info()->is_resizable(), framework::LogLevel::ERRORS);
161         ARM_COMPUTE_EXPECT(!bias.info()->is_resizable(), framework::LogLevel::ERRORS);
162         ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
163 
164         // Fill tensors
165         fill(AccessorType(src), 0);
166         fill(AccessorType(weights), 1);
167         fill(AccessorType(bias), 2);
168 
169         // Compute NEConvolutionLayer function
170         conv.run();
171 
172         return dst;
173     }
174 
compute_reference(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & bias_shape,const TensorShape & output_shape,const PadStrideInfo & info,DataType data_type,DataType bias_data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info)175     SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
176                                       DataType data_type, DataType bias_data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
177     {
178         // Create reference
179         SimpleTensor<T>     src{ input_shape, data_type, 1, quantization_info };
180         SimpleTensor<T>     weights{ weights_shape, data_type, 1, quantization_info };
181         SimpleTensor<TBias> bias{ bias_shape, bias_data_type, 1, quantization_info };
182 
183         // Fill reference
184         fill(src, 0);
185         fill(weights, 1);
186         fill(bias, 2);
187 
188         SimpleTensor<T> dst = reference::convolution_layer<T>(src, weights, bias, output_shape, info);
189         return (act_info.enabled()) ? reference::activation_layer<T>(dst, act_info) : dst;
190     }
191     TensorType       _target{};
192     SimpleTensor<T>  _reference{};
193     QuantizationInfo _quantization_info{};
194     DataType         _data_type{};
195 };
196 
197 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
198 class DirectConvolutionValidationFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
199 {
200 public:
201     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int pad_x,int pad_y,unsigned int kernel_size,unsigned int num_kernels,DataType data_type,ActivationLayerInfo act_info,DataLayout data_layout)202     void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, ActivationLayerInfo act_info,
203                DataLayout data_layout)
204     {
205         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, QuantizationInfo(),
206                                                                                                     act_info, data_layout);
207     }
208 };
209 
210 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
211 class DirectConvolutionValidationQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
212 {
213 public:
214     template <typename...>
setup(TensorShape input_shape,int stride_x,int stride_y,int pad_x,int pad_y,unsigned int kernel_size,unsigned int num_kernels,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)215     void setup(TensorShape input_shape, int stride_x, int stride_y, int pad_x, int pad_y, unsigned int kernel_size, unsigned int num_kernels, DataType data_type, QuantizationInfo quantization_info,
216                ActivationLayerInfo act_info, DataLayout data_layout)
217     {
218         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, stride_x, stride_y, pad_x, pad_y, kernel_size, num_kernels, data_type, quantization_info,
219                                                                                                     act_info, data_layout);
220     }
221 };
222 
223 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
224 class DirectConvolutionValidationWithTensorShapesQuantizedFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
225 {
226 public:
227     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape bias_shape,TensorShape output_shape,PadStrideInfo info,Size2D dilation,DataType data_type,QuantizationInfo quantization_info,ActivationLayerInfo act_info,DataLayout data_layout)228     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
229                DataType data_type, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataLayout data_layout)
230     {
231         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, quantization_info,
232                                                                                                     act_info, data_layout);
233     }
234 };
235 
236 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
237 class DirectConvolutionValidationWithTensorShapesFixture : public DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
238 {
239 public:
240     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape bias_shape,TensorShape output_shape,PadStrideInfo info,Size2D dilation,DataType data_type,ActivationLayerInfo act_info)241     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation,
242                DataType data_type, ActivationLayerInfo act_info)
243     {
244         DirectConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, data_type, QuantizationInfo(),
245                                                                                                     act_info, DataLayout::NCHW);
246     }
247 };
248 
249 } // namespace validation
250 } // namespace test
251 } // namespace arm_compute
252