• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_THREAD_INL_H_
18 #define ART_RUNTIME_THREAD_INL_H_
19 
20 #include "thread.h"
21 
22 #include "arch/instruction_set.h"
23 #include "base/aborting.h"
24 #include "base/casts.h"
25 #include "base/mutex-inl.h"
26 #include "base/time_utils.h"
27 #include "jni/jni_env_ext.h"
28 #include "managed_stack-inl.h"
29 #include "obj_ptr.h"
30 #include "suspend_reason.h"
31 #include "thread-current-inl.h"
32 #include "thread_pool.h"
33 
34 namespace art {
35 
36 // Quickly access the current thread from a JNIEnv.
ThreadForEnv(JNIEnv * env)37 static inline Thread* ThreadForEnv(JNIEnv* env) {
38   JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
39   return full_env->GetSelf();
40 }
41 
AllowThreadSuspension()42 inline void Thread::AllowThreadSuspension() {
43   CheckSuspend();
44   // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
45   // to missing handles.
46   PoisonObjectPointers();
47 }
48 
CheckSuspend(bool implicit)49 inline void Thread::CheckSuspend(bool implicit) {
50   DCHECK_EQ(Thread::Current(), this);
51   while (true) {
52     StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
53     if (LIKELY(!state_and_flags.IsAnyOfFlagsSet(SuspendOrCheckpointRequestFlags()))) {
54       break;
55     } else if (state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest)) {
56       RunCheckpointFunction();
57     } else if (state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
58       FullSuspendCheck(implicit);
59       implicit = false;  // We do not need to `MadviseAwayAlternateSignalStack()` anymore.
60     } else {
61       DCHECK(state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest));
62       RunEmptyCheckpoint();
63     }
64   }
65   if (implicit) {
66     // For implicit suspend check we want to `madvise()` away
67     // the alternate signal stack to avoid wasting memory.
68     MadviseAwayAlternateSignalStack();
69   }
70 }
71 
CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)72 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
73   Thread* self = Thread::Current();
74   DCHECK_EQ(self, this);
75   for (;;) {
76     if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
77       RunEmptyCheckpoint();
78       // Check we hold only an expected mutex when accessing weak ref.
79       if (kIsDebugBuild) {
80         for (int i = kLockLevelCount - 1; i >= 0; --i) {
81           BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
82           if (held_mutex != nullptr &&
83               held_mutex != GetMutatorLock() &&
84               held_mutex != cond_var_mutex) {
85             CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
86                 << "Holding unexpected mutex " << held_mutex->GetName()
87                 << " when accessing weak ref";
88           }
89         }
90       }
91     } else {
92       break;
93     }
94   }
95 }
96 
CheckEmptyCheckpointFromMutex()97 inline void Thread::CheckEmptyCheckpointFromMutex() {
98   DCHECK_EQ(Thread::Current(), this);
99   for (;;) {
100     if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
101       RunEmptyCheckpoint();
102     } else {
103       break;
104     }
105   }
106 }
107 
SetState(ThreadState new_state)108 inline ThreadState Thread::SetState(ThreadState new_state) {
109   // Should only be used to change between suspended states.
110   // Cannot use this code to change into or from Runnable as changing to Runnable should
111   // fail if the `ThreadFlag::kSuspendRequest` is set and changing from Runnable might
112   // miss passing an active suspend barrier.
113   DCHECK_NE(new_state, ThreadState::kRunnable);
114   if (kIsDebugBuild && this != Thread::Current()) {
115     std::string name;
116     GetThreadName(name);
117     LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
118                << Thread::Current() << ") changing state to " << new_state;
119   }
120 
121   while (true) {
122     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
123     CHECK_NE(old_state_and_flags.GetState(), ThreadState::kRunnable)
124         << new_state << " " << *this << " " << *Thread::Current();
125     StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
126     bool done =
127         tls32_.state_and_flags.CompareAndSetWeakRelaxed(old_state_and_flags.GetValue(),
128                                                         new_state_and_flags.GetValue());
129     if (done) {
130       return static_cast<ThreadState>(old_state_and_flags.GetState());
131     }
132   }
133 }
134 
IsThreadSuspensionAllowable()135 inline bool Thread::IsThreadSuspensionAllowable() const {
136   if (tls32_.no_thread_suspension != 0) {
137     return false;
138   }
139   for (int i = kLockLevelCount - 1; i >= 0; --i) {
140     if (i != kMutatorLock &&
141         i != kUserCodeSuspensionLock &&
142         GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
143       return false;
144     }
145   }
146   // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
147   // have the mutex meaning we need to do this hack.
148   auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
149     return tls32_.user_code_suspend_count != 0;
150   };
151   if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
152     return false;
153   }
154   return true;
155 }
156 
AssertThreadSuspensionIsAllowable(bool check_locks)157 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
158   if (kIsDebugBuild) {
159     if (gAborting == 0) {
160       CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
161     }
162     if (check_locks) {
163       bool bad_mutexes_held = false;
164       for (int i = kLockLevelCount - 1; i >= 0; --i) {
165         // We expect no locks except the mutator lock. User code suspension lock is OK as long as
166         // we aren't going to be held suspended due to SuspendReason::kForUserCode.
167         if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
168           BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
169           if (held_mutex != nullptr) {
170             LOG(ERROR) << "holding \"" << held_mutex->GetName()
171                       << "\" at point where thread suspension is expected";
172             bad_mutexes_held = true;
173           }
174         }
175       }
176       // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
177       // user_code_suspend_count which would prevent the thread from ever waking up.  Thread
178       // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
179       // have the mutex meaning we need to do this hack.
180       auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
181         return tls32_.user_code_suspend_count != 0;
182       };
183       if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
184         LOG(ERROR) << "suspending due to user-code while holding \""
185                    << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
186                    << "wake up.";
187         bad_mutexes_held = true;
188       }
189       if (gAborting == 0) {
190         CHECK(!bad_mutexes_held);
191       }
192     }
193   }
194 }
195 
TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)196 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
197   DCHECK_NE(new_state, ThreadState::kRunnable);
198   while (true) {
199     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
200     DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
201     if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest))) {
202       RunCheckpointFunction();
203       continue;
204     }
205     if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
206       RunEmptyCheckpoint();
207       continue;
208     }
209     // Change the state but keep the current flags (kCheckpointRequest is clear).
210     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest));
211     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest));
212     StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
213 
214     // CAS the value, ensuring that prior memory operations are visible to any thread
215     // that observes that we are suspended.
216     bool done =
217         tls32_.state_and_flags.CompareAndSetWeakRelease(old_state_and_flags.GetValue(),
218                                                         new_state_and_flags.GetValue());
219     if (LIKELY(done)) {
220       break;
221     }
222   }
223 }
224 
PassActiveSuspendBarriers()225 inline void Thread::PassActiveSuspendBarriers() {
226   while (true) {
227     StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
228     if (LIKELY(!state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) &&
229                !state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest) &&
230                !state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier))) {
231       break;
232     } else if (state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
233       PassActiveSuspendBarriers(this);
234     } else {
235       // Impossible
236       LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
237     }
238   }
239 }
240 
TransitionFromRunnableToSuspended(ThreadState new_state)241 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
242   // Note: JNI stubs inline a fast path of this method that transitions to suspended if
243   // there are no flags set and then clears the `held_mutexes[kMutatorLock]` (this comes
244   // from a specialized `BaseMutex::RegisterAsLockedImpl(., kMutatorLock)` inlined from
245   // the `GetMutatorLock()->TransitionFromRunnableToSuspended(this)` below).
246   // Therefore any code added here (other than debug build assertions) should be gated
247   // on some flag being set, so that the JNI stub can take the slow path to get here.
248   AssertThreadSuspensionIsAllowable();
249   PoisonObjectPointersIfDebug();
250   DCHECK_EQ(this, Thread::Current());
251   // Change to non-runnable state, thereby appearing suspended to the system.
252   TransitionToSuspendedAndRunCheckpoints(new_state);
253   // Mark the release of the share of the mutator lock.
254   GetMutatorLock()->TransitionFromRunnableToSuspended(this);
255   // Once suspended - check the active suspend barrier flag
256   PassActiveSuspendBarriers();
257 }
258 
TransitionFromSuspendedToRunnable()259 inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
260   // Note: JNI stubs inline a fast path of this method that transitions to Runnable if
261   // there are no flags set and then stores the mutator lock to `held_mutexes[kMutatorLock]`
262   // (this comes from a specialized `BaseMutex::RegisterAsUnlockedImpl(., kMutatorLock)`
263   // inlined from the `GetMutatorLock()->TransitionFromSuspendedToRunnable(this)` below).
264   // Therefore any code added here (other than debug build assertions) should be gated
265   // on some flag being set, so that the JNI stub can take the slow path to get here.
266   StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
267   ThreadState old_state = old_state_and_flags.GetState();
268   DCHECK_NE(old_state, ThreadState::kRunnable);
269   while (true) {
270     GetMutatorLock()->AssertNotHeld(this);  // Otherwise we starve GC.
271     // Optimize for the return from native code case - this is the fast path.
272     // Atomically change from suspended to runnable if no suspend request pending.
273     constexpr uint32_t kCheckedFlags =
274         SuspendOrCheckpointRequestFlags() |
275         enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier) |
276         FlipFunctionFlags();
277     if (LIKELY(!old_state_and_flags.IsAnyOfFlagsSet(kCheckedFlags))) {
278       // CAS the value with a memory barrier.
279       StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable);
280       if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
281                                                                  new_state_and_flags.GetValue()))) {
282         // Mark the acquisition of a share of the mutator lock.
283         GetMutatorLock()->TransitionFromSuspendedToRunnable(this);
284         break;
285       }
286     } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
287       PassActiveSuspendBarriers(this);
288     } else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) ||
289                         old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
290       // Checkpoint flags should not be set while in suspended state.
291       static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
292       LOG(FATAL) << "Transitioning to Runnable with checkpoint flag,"
293                  // Note: Keeping unused flags. If they are set, it points to memory corruption.
294                  << " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue()
295                  << " state=" << old_state_and_flags.GetState();
296     } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
297       // Wait while our suspend count is non-zero.
298 
299       // We pass null to the MutexLock as we may be in a situation where the
300       // runtime is shutting down. Guarding ourselves from that situation
301       // requires to take the shutdown lock, which is undesirable here.
302       Thread* thread_to_pass = nullptr;
303       if (kIsDebugBuild && !IsDaemon()) {
304         // We know we can make our debug locking checks on non-daemon threads,
305         // so re-enable them on debug builds.
306         thread_to_pass = this;
307       }
308       MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
309       ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
310       // Reload state and flags after locking the mutex.
311       old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
312       DCHECK_EQ(old_state, old_state_and_flags.GetState());
313       while (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
314         // Re-check when Thread::resume_cond_ is notified.
315         Thread::resume_cond_->Wait(thread_to_pass);
316         // Reload state and flags after waiting.
317         old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
318         DCHECK_EQ(old_state, old_state_and_flags.GetState());
319       }
320       DCHECK_EQ(GetSuspendCount(), 0);
321     } else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) ||
322                UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kWaitingForFlipFunction))) {
323       // The thread should be suspended while another thread is running the flip function.
324       static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
325       LOG(FATAL) << "Transitioning to Runnable while another thread is running the flip function,"
326                  // Note: Keeping unused flags. If they are set, it points to memory corruption.
327                  << " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue()
328                  << " state=" << old_state_and_flags.GetState();
329     } else {
330       DCHECK(old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
331       // CAS the value with a memory barrier.
332       // Do not set `ThreadFlag::kRunningFlipFunction` as no other thread can run
333       // the flip function for a thread that is not suspended.
334       StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable)
335           .WithoutFlag(ThreadFlag::kPendingFlipFunction);
336       if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
337                                                                  new_state_and_flags.GetValue()))) {
338         // Mark the acquisition of a share of the mutator lock.
339         GetMutatorLock()->TransitionFromSuspendedToRunnable(this);
340         // Run the flip function.
341         RunFlipFunction(this, /*notify=*/ false);
342         break;
343       }
344     }
345     // Reload state and flags.
346     old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
347     DCHECK_EQ(old_state, old_state_and_flags.GetState());
348   }
349   return static_cast<ThreadState>(old_state);
350 }
351 
AllocTlab(size_t bytes)352 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
353   DCHECK_GE(TlabSize(), bytes);
354   ++tlsPtr_.thread_local_objects;
355   mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
356   tlsPtr_.thread_local_pos += bytes;
357   return ret;
358 }
359 
PushOnThreadLocalAllocationStack(mirror::Object * obj)360 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
361   DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
362   if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
363     // There's room.
364     DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
365               sizeof(StackReference<mirror::Object>),
366               reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
367     DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
368     tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
369     ++tlsPtr_.thread_local_alloc_stack_top;
370     return true;
371   }
372   return false;
373 }
374 
GetWeakRefAccessEnabled()375 inline bool Thread::GetWeakRefAccessEnabled() const {
376   CHECK(kUseReadBarrier);
377   DCHECK(this == Thread::Current());
378   WeakRefAccessState s = tls32_.weak_ref_access_enabled.load(std::memory_order_relaxed);
379   if (LIKELY(s == WeakRefAccessState::kVisiblyEnabled)) {
380     return true;
381   }
382   s = tls32_.weak_ref_access_enabled.load(std::memory_order_acquire);
383   if (s == WeakRefAccessState::kVisiblyEnabled) {
384     return true;
385   } else if (s == WeakRefAccessState::kDisabled) {
386     return false;
387   }
388   DCHECK(s == WeakRefAccessState::kEnabled)
389       << "state = " << static_cast<std::underlying_type_t<WeakRefAccessState>>(s);
390   // The state is only changed back to DISABLED during a checkpoint. Thus no other thread can
391   // change the value concurrently here. No other thread reads the value we store here, so there
392   // is no need for a release store.
393   tls32_.weak_ref_access_enabled.store(WeakRefAccessState::kVisiblyEnabled,
394                                        std::memory_order_relaxed);
395   return true;
396 }
397 
SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)398 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
399                                                   StackReference<mirror::Object>* end) {
400   DCHECK(Thread::Current() == this) << "Should be called by self";
401   DCHECK(start != nullptr);
402   DCHECK(end != nullptr);
403   DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
404   DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
405   DCHECK_LT(start, end);
406   tlsPtr_.thread_local_alloc_stack_end = end;
407   tlsPtr_.thread_local_alloc_stack_top = start;
408 }
409 
RevokeThreadLocalAllocationStack()410 inline void Thread::RevokeThreadLocalAllocationStack() {
411   if (kIsDebugBuild) {
412     // Note: self is not necessarily equal to this thread since thread may be suspended.
413     Thread* self = Thread::Current();
414     DCHECK(this == self || IsSuspended() || GetState() == ThreadState::kWaitingPerformingGc)
415         << GetState() << " thread " << this << " self " << self;
416   }
417   tlsPtr_.thread_local_alloc_stack_end = nullptr;
418   tlsPtr_.thread_local_alloc_stack_top = nullptr;
419 }
420 
PoisonObjectPointersIfDebug()421 inline void Thread::PoisonObjectPointersIfDebug() {
422   if (kObjPtrPoisoning) {
423     Thread::Current()->PoisonObjectPointers();
424   }
425 }
426 
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)427 inline bool Thread::ModifySuspendCount(Thread* self,
428                                        int delta,
429                                        AtomicInteger* suspend_barrier,
430                                        SuspendReason reason) {
431   if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
432     // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
433     // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
434     while (true) {
435       if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
436         return true;
437       } else {
438         // Failure means the list of active_suspend_barriers is full or we are in the middle of a
439         // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
440         // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
441         // flip function. Note that we could not simply wait for the thread to change to a suspended
442         // state, because it might need to run checkpoint function before the state change or
443         // resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
444         //
445         // The list of active_suspend_barriers is very unlikely to be full since more than
446         // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
447         // target thread stays in kRunnable in the mean time.
448         Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
449         NanoSleep(100000);
450         Locks::thread_suspend_count_lock_->ExclusiveLock(self);
451       }
452     }
453   } else {
454     return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
455   }
456 }
457 
PushShadowFrame(ShadowFrame * new_top_frame)458 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
459   new_top_frame->CheckConsistentVRegs();
460   return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
461 }
462 
PopShadowFrame()463 inline ShadowFrame* Thread::PopShadowFrame() {
464   return tlsPtr_.managed_stack.PopShadowFrame();
465 }
466 
GetStackEndForInterpreter(bool implicit_overflow_check)467 inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
468   uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
469       ? GetStackOverflowReservedBytes(kRuntimeISA)
470           : 0);
471   if (kIsDebugBuild) {
472     // In a debuggable build, but especially under ASAN, the access-checks interpreter has a
473     // potentially humongous stack size. We don't want to take too much of the stack regularly,
474     // so do not increase the regular reserved size (for compiled code etc) and only report the
475     // virtually smaller stack to the interpreter here.
476     end += GetStackOverflowReservedBytes(kRuntimeISA);
477   }
478   return end;
479 }
480 
ResetDefaultStackEnd()481 inline void Thread::ResetDefaultStackEnd() {
482   // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
483   // to throw a StackOverflowError.
484   tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
485 }
486 
487 }  // namespace art
488 
489 #endif  // ART_RUNTIME_THREAD_INL_H_
490