• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "utils/GraphUtils.h"
26 
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/graph/Logger.h"
30 #include "arm_compute/runtime/SubTensor.h"
31 
32 #pragma GCC diagnostic push
33 #pragma GCC diagnostic ignored "-Wunused-parameter"
34 #include "utils/ImageLoader.h"
35 #pragma GCC diagnostic pop
36 #include "utils/Utils.h"
37 
38 #include <inttypes.h>
39 #include <iomanip>
40 #include <limits>
41 
42 using namespace arm_compute::graph_utils;
43 
44 namespace
45 {
compute_permutation_parameters(const arm_compute::TensorShape & shape,arm_compute::DataLayout data_layout)46 std::pair<arm_compute::TensorShape, arm_compute::PermutationVector> compute_permutation_parameters(const arm_compute::TensorShape &shape,
47                                                                                                    arm_compute::DataLayout data_layout)
48 {
49     // Set permutation parameters if needed
50     arm_compute::TensorShape       permuted_shape = shape;
51     arm_compute::PermutationVector perm;
52     // Permute only if num_dimensions greater than 2
53     if(shape.num_dimensions() > 2)
54     {
55         perm = (data_layout == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
56 
57         arm_compute::PermutationVector perm_shape = (data_layout == arm_compute::DataLayout::NCHW) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
58         arm_compute::permute(permuted_shape, perm_shape);
59     }
60 
61     return std::make_pair(permuted_shape, perm);
62 }
63 } // namespace
64 
TFPreproccessor(float min_range,float max_range)65 TFPreproccessor::TFPreproccessor(float min_range, float max_range)
66     : _min_range(min_range), _max_range(max_range)
67 {
68 }
preprocess(ITensor & tensor)69 void TFPreproccessor::preprocess(ITensor &tensor)
70 {
71     if(tensor.info()->data_type() == DataType::F32)
72     {
73         preprocess_typed<float>(tensor);
74     }
75     else if(tensor.info()->data_type() == DataType::F16)
76     {
77         preprocess_typed<half>(tensor);
78     }
79     else
80     {
81         ARM_COMPUTE_ERROR("NOT SUPPORTED!");
82     }
83 }
84 
85 template <typename T>
preprocess_typed(ITensor & tensor)86 void TFPreproccessor::preprocess_typed(ITensor &tensor)
87 {
88     Window window;
89     window.use_tensor_dimensions(tensor.info()->tensor_shape());
90 
91     const float range = _max_range - _min_range;
92     execute_window_loop(window, [&](const Coordinates & id)
93     {
94         const T value                                     = *reinterpret_cast<T *>(tensor.ptr_to_element(id));
95         float   res                                       = value / 255.f;            // Normalize to [0, 1]
96         res                                               = res * range + _min_range; // Map to [min_range, max_range]
97         *reinterpret_cast<T *>(tensor.ptr_to_element(id)) = res;
98     });
99 }
100 
CaffePreproccessor(std::array<float,3> mean,bool bgr,float scale)101 CaffePreproccessor::CaffePreproccessor(std::array<float, 3> mean, bool bgr, float scale)
102     : _mean(mean), _bgr(bgr), _scale(scale)
103 {
104     if(_bgr)
105     {
106         std::swap(_mean[0], _mean[2]);
107     }
108 }
109 
preprocess(ITensor & tensor)110 void CaffePreproccessor::preprocess(ITensor &tensor)
111 {
112     if(tensor.info()->data_type() == DataType::F32)
113     {
114         preprocess_typed<float>(tensor);
115     }
116     else if(tensor.info()->data_type() == DataType::F16)
117     {
118         preprocess_typed<half>(tensor);
119     }
120     else
121     {
122         ARM_COMPUTE_ERROR("NOT SUPPORTED!");
123     }
124 }
125 
126 template <typename T>
preprocess_typed(ITensor & tensor)127 void CaffePreproccessor::preprocess_typed(ITensor &tensor)
128 {
129     Window window;
130     window.use_tensor_dimensions(tensor.info()->tensor_shape());
131     const int channel_idx = get_data_layout_dimension_index(tensor.info()->data_layout(), DataLayoutDimension::CHANNEL);
132 
133     execute_window_loop(window, [&](const Coordinates & id)
134     {
135         const T value                                     = *reinterpret_cast<T *>(tensor.ptr_to_element(id)) - T(_mean[id[channel_idx]]);
136         *reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value * T(_scale);
137     });
138 }
139 
PPMWriter(std::string name,unsigned int maximum)140 PPMWriter::PPMWriter(std::string name, unsigned int maximum)
141     : _name(std::move(name)), _iterator(0), _maximum(maximum)
142 {
143 }
144 
access_tensor(ITensor & tensor)145 bool PPMWriter::access_tensor(ITensor &tensor)
146 {
147     std::stringstream ss;
148     ss << _name << _iterator << ".ppm";
149 
150     arm_compute::utils::save_to_ppm(tensor, ss.str());
151 
152     _iterator++;
153     if(_maximum == 0)
154     {
155         return true;
156     }
157     return _iterator < _maximum;
158 }
159 
DummyAccessor(unsigned int maximum)160 DummyAccessor::DummyAccessor(unsigned int maximum)
161     : _iterator(0), _maximum(maximum)
162 {
163 }
164 
access_tensor(ITensor & tensor)165 bool DummyAccessor::access_tensor(ITensor &tensor)
166 {
167     ARM_COMPUTE_UNUSED(tensor);
168     bool ret = _maximum == 0 || _iterator < _maximum;
169     if(_iterator == _maximum)
170     {
171         _iterator = 0;
172     }
173     else
174     {
175         _iterator++;
176     }
177     return ret;
178 }
179 
NumPyAccessor(std::string npy_path,TensorShape shape,DataType data_type,DataLayout data_layout,std::ostream & output_stream)180 NumPyAccessor::NumPyAccessor(std::string npy_path, TensorShape shape, DataType data_type, DataLayout data_layout, std::ostream &output_stream)
181     : _npy_tensor(), _filename(std::move(npy_path)), _output_stream(output_stream)
182 {
183     NumPyBinLoader loader(_filename, data_layout);
184 
185     TensorInfo info(shape, 1, data_type);
186     info.set_data_layout(data_layout);
187 
188     _npy_tensor.allocator()->init(info);
189     _npy_tensor.allocator()->allocate();
190 
191     loader.access_tensor(_npy_tensor);
192 }
193 
194 template <typename T>
access_numpy_tensor(ITensor & tensor,T tolerance)195 void NumPyAccessor::access_numpy_tensor(ITensor &tensor, T tolerance)
196 {
197     const int num_elements          = tensor.info()->tensor_shape().total_size();
198     int       num_mismatches        = utils::compare_tensor<T>(tensor, _npy_tensor, tolerance);
199     float     percentage_mismatches = static_cast<float>(num_mismatches) / num_elements;
200 
201     _output_stream << "Results: " << 100.f - (percentage_mismatches * 100) << " % matches with the provided output[" << _filename << "]." << std::endl;
202     _output_stream << "         " << num_elements - num_mismatches << " out of " << num_elements << " matches with the provided output[" << _filename << "]." << std::endl
203                    << std::endl;
204 }
205 
access_tensor(ITensor & tensor)206 bool NumPyAccessor::access_tensor(ITensor &tensor)
207 {
208     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
209     ARM_COMPUTE_ERROR_ON(_npy_tensor.info()->dimension(0) != tensor.info()->dimension(0));
210 
211     switch(tensor.info()->data_type())
212     {
213         case DataType::QASYMM8:
214             access_numpy_tensor<qasymm8_t>(tensor, 0);
215             break;
216         case DataType::F32:
217             access_numpy_tensor<float>(tensor, 0.0001f);
218             break;
219         default:
220             ARM_COMPUTE_ERROR("NOT SUPPORTED!");
221     }
222 
223     return false;
224 }
225 
226 #ifdef ARM_COMPUTE_ASSERTS_ENABLED
PrintAccessor(std::ostream & output_stream,IOFormatInfo io_fmt)227 PrintAccessor::PrintAccessor(std::ostream &output_stream, IOFormatInfo io_fmt)
228     : _output_stream(output_stream), _io_fmt(io_fmt)
229 {
230 }
231 
access_tensor(ITensor & tensor)232 bool PrintAccessor::access_tensor(ITensor &tensor)
233 {
234     tensor.print(_output_stream, _io_fmt);
235     return false;
236 }
237 #endif /* ARM_COMPUTE_ASSERTS_ENABLED */
238 
SaveNumPyAccessor(std::string npy_name,const bool is_fortran)239 SaveNumPyAccessor::SaveNumPyAccessor(std::string npy_name, const bool is_fortran)
240     : _npy_name(std::move(npy_name)), _is_fortran(is_fortran)
241 {
242 }
243 
access_tensor(ITensor & tensor)244 bool SaveNumPyAccessor::access_tensor(ITensor &tensor)
245 {
246     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
247 
248     utils::save_to_npy(tensor, _npy_name, _is_fortran);
249 
250     return false;
251 }
252 
ImageAccessor(std::string filename,bool bgr,std::unique_ptr<IPreprocessor> preprocessor)253 ImageAccessor::ImageAccessor(std::string filename, bool bgr, std::unique_ptr<IPreprocessor> preprocessor)
254     : _already_loaded(false), _filename(std::move(filename)), _bgr(bgr), _preprocessor(std::move(preprocessor))
255 {
256 }
257 
access_tensor(ITensor & tensor)258 bool ImageAccessor::access_tensor(ITensor &tensor)
259 {
260     if(!_already_loaded)
261     {
262         auto image_loader = utils::ImageLoaderFactory::create(_filename);
263         ARM_COMPUTE_EXIT_ON_MSG(image_loader == nullptr, "Unsupported image type");
264 
265         // Open image file
266         image_loader->open(_filename);
267 
268         // Get permutated shape and permutation parameters
269         TensorShape                    permuted_shape = tensor.info()->tensor_shape();
270         arm_compute::PermutationVector perm;
271         if(tensor.info()->data_layout() != DataLayout::NCHW)
272         {
273             std::tie(permuted_shape, perm) = compute_permutation_parameters(tensor.info()->tensor_shape(), tensor.info()->data_layout());
274         }
275 
276         ARM_COMPUTE_EXIT_ON_MSG_VAR(image_loader->width() != permuted_shape.x() || image_loader->height() != permuted_shape.y(),
277                                     "Failed to load image file: dimensions [%d,%d] not correct, expected [%zu ,%zu ].",
278                                     image_loader->width(), image_loader->height(), permuted_shape.x(), permuted_shape.y());
279 
280         // Fill the tensor with the PPM content (BGR)
281         image_loader->fill_planar_tensor(tensor, _bgr);
282 
283         // Preprocess tensor
284         if(_preprocessor)
285         {
286             _preprocessor->preprocess(tensor);
287         }
288     }
289 
290     _already_loaded = !_already_loaded;
291     return _already_loaded;
292 }
293 
ValidationInputAccessor(const std::string & image_list,std::string images_path,std::unique_ptr<IPreprocessor> preprocessor,bool bgr,unsigned int start,unsigned int end,std::ostream & output_stream)294 ValidationInputAccessor::ValidationInputAccessor(const std::string             &image_list,
295                                                  std::string                    images_path,
296                                                  std::unique_ptr<IPreprocessor> preprocessor,
297                                                  bool                           bgr,
298                                                  unsigned int                   start,
299                                                  unsigned int                   end,
300                                                  std::ostream                  &output_stream)
301     : _path(std::move(images_path)), _images(), _preprocessor(std::move(preprocessor)), _bgr(bgr), _offset(0), _output_stream(output_stream)
302 {
303     ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!");
304 
305     std::ifstream ifs;
306     try
307     {
308         ifs.exceptions(std::ifstream::badbit);
309         ifs.open(image_list, std::ios::in | std::ios::binary);
310 
311         // Parse image names
312         unsigned int counter = 0;
313         for(std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter)
314         {
315             // Add image to process if withing range
316             if(counter >= start)
317             {
318                 std::stringstream linestream(line);
319                 std::string       image_name;
320 
321                 linestream >> image_name;
322                 _images.emplace_back(std::move(image_name));
323             }
324         }
325     }
326     catch(const std::ifstream::failure &e)
327     {
328         ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what());
329     }
330 }
331 
access_tensor(arm_compute::ITensor & tensor)332 bool ValidationInputAccessor::access_tensor(arm_compute::ITensor &tensor)
333 {
334     bool ret = _offset < _images.size();
335     if(ret)
336     {
337         utils::JPEGLoader jpeg;
338 
339         // Open JPEG file
340         std::string image_name = _path + _images[_offset++];
341         jpeg.open(image_name);
342         _output_stream << "[" << _offset << "/" << _images.size() << "] Validating " << image_name << std::endl;
343 
344         // Get permutated shape and permutation parameters
345         TensorShape                    permuted_shape = tensor.info()->tensor_shape();
346         arm_compute::PermutationVector perm;
347         if(tensor.info()->data_layout() != DataLayout::NCHW)
348         {
349             std::tie(permuted_shape, perm) = compute_permutation_parameters(tensor.info()->tensor_shape(),
350                                                                             tensor.info()->data_layout());
351         }
352 
353         ARM_COMPUTE_EXIT_ON_MSG_VAR(jpeg.width() != permuted_shape.x() || jpeg.height() != permuted_shape.y(),
354                                     "Failed to load image file: dimensions [%d,%d] not correct, expected [%zu,%zu ].",
355                                     jpeg.width(), jpeg.height(), permuted_shape.x(), permuted_shape.y());
356 
357         // Fill the tensor with the JPEG content (BGR)
358         jpeg.fill_planar_tensor(tensor, _bgr);
359 
360         // Preprocess tensor
361         if(_preprocessor)
362         {
363             _preprocessor->preprocess(tensor);
364         }
365     }
366 
367     return ret;
368 }
369 
ValidationOutputAccessor(const std::string & image_list,std::ostream & output_stream,unsigned int start,unsigned int end)370 ValidationOutputAccessor::ValidationOutputAccessor(const std::string &image_list,
371                                                    std::ostream      &output_stream,
372                                                    unsigned int       start,
373                                                    unsigned int       end)
374     : _results(), _output_stream(output_stream), _offset(0), _positive_samples_top1(0), _positive_samples_top5(0)
375 {
376     ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!");
377 
378     std::ifstream ifs;
379     try
380     {
381         ifs.exceptions(std::ifstream::badbit);
382         ifs.open(image_list, std::ios::in | std::ios::binary);
383 
384         // Parse image correctly classified labels
385         unsigned int counter = 0;
386         for(std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter)
387         {
388             // Add label if within range
389             if(counter >= start)
390             {
391                 std::stringstream linestream(line);
392                 std::string       image_name;
393                 int               result;
394 
395                 linestream >> image_name >> result;
396                 _results.emplace_back(result);
397             }
398         }
399     }
400     catch(const std::ifstream::failure &e)
401     {
402         ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what());
403     }
404 }
405 
reset()406 void ValidationOutputAccessor::reset()
407 {
408     _offset                = 0;
409     _positive_samples_top1 = 0;
410     _positive_samples_top5 = 0;
411 }
412 
access_tensor(arm_compute::ITensor & tensor)413 bool ValidationOutputAccessor::access_tensor(arm_compute::ITensor &tensor)
414 {
415     bool ret = _offset < _results.size();
416     if(ret)
417     {
418         // Get results
419         std::vector<size_t> tensor_results;
420         switch(tensor.info()->data_type())
421         {
422             case DataType::QASYMM8:
423                 tensor_results = access_predictions_tensor<uint8_t>(tensor);
424                 break;
425             case DataType::F16:
426                 tensor_results = access_predictions_tensor<half>(tensor);
427                 break;
428             case DataType::F32:
429                 tensor_results = access_predictions_tensor<float>(tensor);
430                 break;
431             default:
432                 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
433         }
434 
435         // Check if tensor results are within top-n accuracy
436         size_t correct_label = _results[_offset++];
437 
438         aggregate_sample(tensor_results, _positive_samples_top1, 1, correct_label);
439         aggregate_sample(tensor_results, _positive_samples_top5, 5, correct_label);
440     }
441 
442     // Report top_n accuracy
443     if(_offset >= _results.size())
444     {
445         report_top_n(1, _results.size(), _positive_samples_top1);
446         report_top_n(5, _results.size(), _positive_samples_top5);
447     }
448 
449     return ret;
450 }
451 
452 template <typename T>
access_predictions_tensor(arm_compute::ITensor & tensor)453 std::vector<size_t> ValidationOutputAccessor::access_predictions_tensor(arm_compute::ITensor &tensor)
454 {
455     // Get the predicted class
456     std::vector<size_t> index;
457 
458     const auto   output_net  = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
459     const size_t num_classes = tensor.info()->dimension(0);
460 
461     index.resize(num_classes);
462 
463     // Sort results
464     std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
465     std::sort(std::begin(index), std::end(index),
466               [&](size_t a, size_t b)
467     {
468         return output_net[a] > output_net[b];
469     });
470 
471     return index;
472 }
473 
aggregate_sample(const std::vector<size_t> & res,size_t & positive_samples,size_t top_n,size_t correct_label)474 void ValidationOutputAccessor::aggregate_sample(const std::vector<size_t> &res, size_t &positive_samples, size_t top_n, size_t correct_label)
475 {
476     auto is_valid_label = [correct_label](size_t label)
477     {
478         return label == correct_label;
479     };
480 
481     if(std::any_of(std::begin(res), std::begin(res) + top_n, is_valid_label))
482     {
483         ++positive_samples;
484     }
485 }
486 
report_top_n(size_t top_n,size_t total_samples,size_t positive_samples)487 void ValidationOutputAccessor::report_top_n(size_t top_n, size_t total_samples, size_t positive_samples)
488 {
489     size_t negative_samples = total_samples - positive_samples;
490     float  accuracy         = positive_samples / static_cast<float>(total_samples);
491 
492     _output_stream << "----------Top " << top_n << " accuracy ----------" << std::endl
493                    << std::endl;
494     _output_stream << "Positive samples : " << positive_samples << std::endl;
495     _output_stream << "Negative samples : " << negative_samples << std::endl;
496     _output_stream << "Accuracy : " << accuracy << std::endl;
497 }
498 
DetectionOutputAccessor(const std::string & labels_path,std::vector<TensorShape> & imgs_tensor_shapes,std::ostream & output_stream)499 DetectionOutputAccessor::DetectionOutputAccessor(const std::string &labels_path, std::vector<TensorShape> &imgs_tensor_shapes, std::ostream &output_stream)
500     : _labels(), _tensor_shapes(std::move(imgs_tensor_shapes)), _output_stream(output_stream)
501 {
502     _labels.clear();
503 
504     std::ifstream ifs;
505 
506     try
507     {
508         ifs.exceptions(std::ifstream::badbit);
509         ifs.open(labels_path, std::ios::in | std::ios::binary);
510 
511         for(std::string line; !std::getline(ifs, line).fail();)
512         {
513             _labels.emplace_back(line);
514         }
515     }
516     catch(const std::ifstream::failure &e)
517     {
518         ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what());
519     }
520 }
521 
522 template <typename T>
access_predictions_tensor(ITensor & tensor)523 void DetectionOutputAccessor::access_predictions_tensor(ITensor &tensor)
524 {
525     const size_t num_detection = tensor.info()->valid_region().shape.y();
526     const auto   output_prt    = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
527 
528     if(num_detection > 0)
529     {
530         _output_stream << "---------------------- Detections ----------------------" << std::endl
531                        << std::endl;
532 
533         _output_stream << std::left << std::setprecision(4) << std::setw(8) << "Image | " << std::setw(8) << "Label | " << std::setw(12) << "Confidence | "
534                        << "[ xmin, ymin, xmax, ymax ]" << std::endl;
535 
536         for(size_t i = 0; i < num_detection; ++i)
537         {
538             auto im = static_cast<const int>(output_prt[i * 7]);
539             _output_stream << std::setw(8) << im << std::setw(8)
540                            << _labels[output_prt[i * 7 + 1]] << std::setw(12) << output_prt[i * 7 + 2]
541                            << " [" << (output_prt[i * 7 + 3] * _tensor_shapes[im].x())
542                            << ", " << (output_prt[i * 7 + 4] * _tensor_shapes[im].y())
543                            << ", " << (output_prt[i * 7 + 5] * _tensor_shapes[im].x())
544                            << ", " << (output_prt[i * 7 + 6] * _tensor_shapes[im].y())
545                            << "]" << std::endl;
546         }
547     }
548     else
549     {
550         _output_stream << "No detection found." << std::endl;
551     }
552 }
553 
access_tensor(ITensor & tensor)554 bool DetectionOutputAccessor::access_tensor(ITensor &tensor)
555 {
556     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
557 
558     switch(tensor.info()->data_type())
559     {
560         case DataType::F32:
561             access_predictions_tensor<float>(tensor);
562             break;
563         default:
564             ARM_COMPUTE_ERROR("NOT SUPPORTED!");
565     }
566 
567     return false;
568 }
569 
TopNPredictionsAccessor(const std::string & labels_path,size_t top_n,std::ostream & output_stream)570 TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream)
571     : _labels(), _output_stream(output_stream), _top_n(top_n)
572 {
573     _labels.clear();
574 
575     std::ifstream ifs;
576 
577     try
578     {
579         ifs.exceptions(std::ifstream::badbit);
580         ifs.open(labels_path, std::ios::in | std::ios::binary);
581 
582         for(std::string line; !std::getline(ifs, line).fail();)
583         {
584             _labels.emplace_back(line);
585         }
586     }
587     catch(const std::ifstream::failure &e)
588     {
589         ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what());
590     }
591 }
592 
593 template <typename T>
access_predictions_tensor(ITensor & tensor)594 void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor)
595 {
596     // Get the predicted class
597     std::vector<T>      classes_prob;
598     std::vector<size_t> index;
599 
600     const auto   output_net  = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
601     const size_t num_classes = tensor.info()->dimension(0);
602 
603     classes_prob.resize(num_classes);
604     index.resize(num_classes);
605 
606     std::copy(output_net, output_net + num_classes, classes_prob.begin());
607 
608     // Sort results
609     std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
610     std::sort(std::begin(index), std::end(index),
611               [&](size_t a, size_t b)
612     {
613         return classes_prob[a] > classes_prob[b];
614     });
615 
616     _output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl
617                    << std::endl;
618     for(size_t i = 0; i < _top_n; ++i)
619     {
620         _output_stream << std::fixed << std::setprecision(4)
621                        << +classes_prob[index.at(i)]
622                        << " - [id = " << index.at(i) << "]"
623                        << ", " << _labels[index.at(i)] << std::endl;
624     }
625 }
626 
access_tensor(ITensor & tensor)627 bool TopNPredictionsAccessor::access_tensor(ITensor &tensor)
628 {
629     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
630     ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0));
631 
632     switch(tensor.info()->data_type())
633     {
634         case DataType::QASYMM8:
635             access_predictions_tensor<uint8_t>(tensor);
636             break;
637         case DataType::F32:
638             access_predictions_tensor<float>(tensor);
639             break;
640         default:
641             ARM_COMPUTE_ERROR("NOT SUPPORTED!");
642     }
643 
644     return false;
645 }
646 
RandomAccessor(PixelValue lower,PixelValue upper,std::random_device::result_type seed)647 RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed)
648     : _lower(lower), _upper(upper), _seed(seed)
649 {
650 }
651 
652 template <typename T, typename D>
fill(ITensor & tensor,D && distribution)653 void RandomAccessor::fill(ITensor &tensor, D &&distribution)
654 {
655     std::mt19937 gen(_seed);
656 
657     if(tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
658     {
659         for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size())
660         {
661             const auto value                                 = static_cast<T>(distribution(gen));
662             *reinterpret_cast<T *>(tensor.buffer() + offset) = value;
663         }
664     }
665     else
666     {
667         // If tensor has padding accessing tensor elements through execution window.
668         Window window;
669         window.use_tensor_dimensions(tensor.info()->tensor_shape());
670 
671         execute_window_loop(window, [&](const Coordinates & id)
672         {
673             const auto value                                  = static_cast<T>(distribution(gen));
674             *reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value;
675         });
676     }
677 }
678 
access_tensor(ITensor & tensor)679 bool RandomAccessor::access_tensor(ITensor &tensor)
680 {
681     switch(tensor.info()->data_type())
682     {
683         case DataType::QASYMM8:
684         case DataType::U8:
685         {
686             std::uniform_int_distribution<uint8_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>());
687             fill<uint8_t>(tensor, distribution_u8);
688             break;
689         }
690         case DataType::S8:
691         {
692             std::uniform_int_distribution<int8_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>());
693             fill<int8_t>(tensor, distribution_s8);
694             break;
695         }
696         case DataType::U16:
697         {
698             std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>());
699             fill<uint16_t>(tensor, distribution_u16);
700             break;
701         }
702         case DataType::S16:
703         {
704             std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>());
705             fill<int16_t>(tensor, distribution_s16);
706             break;
707         }
708         case DataType::U32:
709         {
710             std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>());
711             fill<uint32_t>(tensor, distribution_u32);
712             break;
713         }
714         case DataType::S32:
715         {
716             std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>());
717             fill<int32_t>(tensor, distribution_s32);
718             break;
719         }
720         case DataType::U64:
721         {
722             std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>());
723             fill<uint64_t>(tensor, distribution_u64);
724             break;
725         }
726         case DataType::S64:
727         {
728             std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>());
729             fill<int64_t>(tensor, distribution_s64);
730             break;
731         }
732         case DataType::F16:
733         {
734             std::uniform_real_distribution<float> distribution_f16(_lower.get<half>(), _upper.get<half>());
735             fill<half>(tensor, distribution_f16);
736             break;
737         }
738         case DataType::F32:
739         {
740             std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>());
741             fill<float>(tensor, distribution_f32);
742             break;
743         }
744         case DataType::F64:
745         {
746             std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>());
747             fill<double>(tensor, distribution_f64);
748             break;
749         }
750         default:
751             ARM_COMPUTE_ERROR("NOT SUPPORTED!");
752     }
753     return true;
754 }
755 
NumPyBinLoader(std::string filename,DataLayout file_layout)756 NumPyBinLoader::NumPyBinLoader(std::string filename, DataLayout file_layout)
757     : _already_loaded(false), _filename(std::move(filename)), _file_layout(file_layout)
758 {
759 }
760 
access_tensor(ITensor & tensor)761 bool NumPyBinLoader::access_tensor(ITensor &tensor)
762 {
763     if(!_already_loaded)
764     {
765         utils::NPYLoader loader;
766         loader.open(_filename, _file_layout);
767         loader.fill_tensor(tensor);
768     }
769 
770     _already_loaded = !_already_loaded;
771     return _already_loaded;
772 }
773