• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "runtime.h"
18 
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25 
26 #include <fcntl.h>
27 #include <signal.h>
28 #include <sys/syscall.h>
29 
30 #if defined(__APPLE__)
31 #include <crt_externs.h>  // for _NSGetEnviron
32 #endif
33 
34 #include <cstdio>
35 #include <cstdlib>
36 #include <limits>
37 #include <string.h>
38 #include <thread>
39 #include <unordered_set>
40 #include <vector>
41 
42 #include "android-base/strings.h"
43 
44 #include "aot_class_linker.h"
45 #include "arch/arm/registers_arm.h"
46 #include "arch/arm64/registers_arm64.h"
47 #include "arch/context.h"
48 #include "arch/instruction_set_features.h"
49 #include "arch/x86/registers_x86.h"
50 #include "arch/x86_64/registers_x86_64.h"
51 #include "art_field-inl.h"
52 #include "art_method-inl.h"
53 #include "asm_support.h"
54 #include "base/aborting.h"
55 #include "base/arena_allocator.h"
56 #include "base/atomic.h"
57 #include "base/dumpable.h"
58 #include "base/enums.h"
59 #include "base/file_utils.h"
60 #include "base/flags.h"
61 #include "base/malloc_arena_pool.h"
62 #include "base/mem_map_arena_pool.h"
63 #include "base/memory_tool.h"
64 #include "base/mutex.h"
65 #include "base/os.h"
66 #include "base/quasi_atomic.h"
67 #include "base/sdk_version.h"
68 #include "base/stl_util.h"
69 #include "base/systrace.h"
70 #include "base/unix_file/fd_file.h"
71 #include "base/utils.h"
72 #include "class_linker-inl.h"
73 #include "class_root-inl.h"
74 #include "compiler_callbacks.h"
75 #include "debugger.h"
76 #include "dex/art_dex_file_loader.h"
77 #include "dex/dex_file_loader.h"
78 #include "elf_file.h"
79 #include "entrypoints/runtime_asm_entrypoints.h"
80 #include "entrypoints/entrypoint_utils-inl.h"
81 #include "experimental_flags.h"
82 #include "fault_handler.h"
83 #include "gc/accounting/card_table-inl.h"
84 #include "gc/heap.h"
85 #include "gc/scoped_gc_critical_section.h"
86 #include "gc/space/image_space.h"
87 #include "gc/space/space-inl.h"
88 #include "gc/system_weak.h"
89 #include "gc/task_processor.h"
90 #include "handle_scope-inl.h"
91 #include "hidden_api.h"
92 #include "image-inl.h"
93 #include "indirect_reference_table.h"
94 #include "instrumentation.h"
95 #include "intern_table-inl.h"
96 #include "interpreter/interpreter.h"
97 #include "jit/jit.h"
98 #include "jit/jit_code_cache.h"
99 #include "jit/profile_saver.h"
100 #include "jni/java_vm_ext.h"
101 #include "jni/jni_id_manager.h"
102 #include "jni_id_type.h"
103 #include "linear_alloc.h"
104 #include "memory_representation.h"
105 #include "mirror/array.h"
106 #include "mirror/class-alloc-inl.h"
107 #include "mirror/class-inl.h"
108 #include "mirror/class_ext.h"
109 #include "mirror/class_loader-inl.h"
110 #include "mirror/emulated_stack_frame.h"
111 #include "mirror/field.h"
112 #include "mirror/method.h"
113 #include "mirror/method_handle_impl.h"
114 #include "mirror/method_handles_lookup.h"
115 #include "mirror/method_type.h"
116 #include "mirror/stack_trace_element.h"
117 #include "mirror/throwable.h"
118 #include "mirror/var_handle.h"
119 #include "monitor.h"
120 #include "native/dalvik_system_DexFile.h"
121 #include "native/dalvik_system_BaseDexClassLoader.h"
122 #include "native/dalvik_system_VMDebug.h"
123 #include "native/dalvik_system_VMRuntime.h"
124 #include "native/dalvik_system_VMStack.h"
125 #include "native/dalvik_system_ZygoteHooks.h"
126 #include "native/java_lang_Class.h"
127 #include "native/java_lang_Object.h"
128 #include "native/java_lang_String.h"
129 #include "native/java_lang_StringFactory.h"
130 #include "native/java_lang_System.h"
131 #include "native/java_lang_Thread.h"
132 #include "native/java_lang_Throwable.h"
133 #include "native/java_lang_VMClassLoader.h"
134 #include "native/java_lang_invoke_MethodHandle.h"
135 #include "native/java_lang_invoke_MethodHandleImpl.h"
136 #include "native/java_lang_ref_FinalizerReference.h"
137 #include "native/java_lang_ref_Reference.h"
138 #include "native/java_lang_reflect_Array.h"
139 #include "native/java_lang_reflect_Constructor.h"
140 #include "native/java_lang_reflect_Executable.h"
141 #include "native/java_lang_reflect_Field.h"
142 #include "native/java_lang_reflect_Method.h"
143 #include "native/java_lang_reflect_Parameter.h"
144 #include "native/java_lang_reflect_Proxy.h"
145 #include "native/java_util_concurrent_atomic_AtomicLong.h"
146 #include "native/libcore_io_Memory.h"
147 #include "native/libcore_util_CharsetUtils.h"
148 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
149 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
150 #include "native/sun_misc_Unsafe.h"
151 #include "native/jdk_internal_misc_Unsafe.h"
152 #include "native_bridge_art_interface.h"
153 #include "native_stack_dump.h"
154 #include "nativehelper/scoped_local_ref.h"
155 #include "oat.h"
156 #include "oat_file_manager.h"
157 #include "oat_quick_method_header.h"
158 #include "object_callbacks.h"
159 #include "odr_statslog/odr_statslog.h"
160 #include "parsed_options.h"
161 #include "quick/quick_method_frame_info.h"
162 #include "reflection.h"
163 #include "runtime_callbacks.h"
164 #include "runtime_common.h"
165 #include "runtime_intrinsics.h"
166 #include "runtime_options.h"
167 #include "scoped_thread_state_change-inl.h"
168 #include "sigchain.h"
169 #include "signal_catcher.h"
170 #include "signal_set.h"
171 #include "thread.h"
172 #include "thread_list.h"
173 #include "ti/agent.h"
174 #include "trace.h"
175 #include "transaction.h"
176 #include "vdex_file.h"
177 #include "verifier/class_verifier.h"
178 #include "well_known_classes.h"
179 
180 #ifdef ART_TARGET_ANDROID
181 #include <android/set_abort_message.h>
182 #include "com_android_apex.h"
183 namespace apex = com::android::apex;
184 
185 #endif
186 
187 // Static asserts to check the values of generated assembly-support macros.
188 #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
189 #include "asm_defines.def"
190 #undef ASM_DEFINE
191 
192 namespace art {
193 
194 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
195 static constexpr bool kEnableJavaStackTraceHandler = false;
196 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
197 // linking.
198 static constexpr double kLowMemoryMinLoadFactor = 0.5;
199 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
200 static constexpr double kNormalMinLoadFactor = 0.4;
201 static constexpr double kNormalMaxLoadFactor = 0.7;
202 
203 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
204 // barrier config.
205 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
206 
207 Runtime* Runtime::instance_ = nullptr;
208 
209 struct TraceConfig {
210   Trace::TraceMode trace_mode;
211   Trace::TraceOutputMode trace_output_mode;
212   std::string trace_file;
213   size_t trace_file_size;
214 };
215 
216 namespace {
217 
218 #ifdef __APPLE__
GetEnviron()219 inline char** GetEnviron() {
220   // When Google Test is built as a framework on MacOS X, the environ variable
221   // is unavailable. Apple's documentation (man environ) recommends using
222   // _NSGetEnviron() instead.
223   return *_NSGetEnviron();
224 }
225 #else
226 // Some POSIX platforms expect you to declare environ. extern "C" makes
227 // it reside in the global namespace.
228 extern "C" char** environ;
229 inline char** GetEnviron() { return environ; }
230 #endif
231 
CheckConstants()232 void CheckConstants() {
233   CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
234 }
235 
236 }  // namespace
237 
Runtime()238 Runtime::Runtime()
239     : resolution_method_(nullptr),
240       imt_conflict_method_(nullptr),
241       imt_unimplemented_method_(nullptr),
242       instruction_set_(InstructionSet::kNone),
243       compiler_callbacks_(nullptr),
244       is_zygote_(false),
245       is_primary_zygote_(false),
246       is_system_server_(false),
247       must_relocate_(false),
248       is_concurrent_gc_enabled_(true),
249       is_explicit_gc_disabled_(false),
250       image_dex2oat_enabled_(true),
251       default_stack_size_(0),
252       heap_(nullptr),
253       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
254       monitor_list_(nullptr),
255       monitor_pool_(nullptr),
256       thread_list_(nullptr),
257       intern_table_(nullptr),
258       class_linker_(nullptr),
259       signal_catcher_(nullptr),
260       java_vm_(nullptr),
261       thread_pool_ref_count_(0u),
262       fault_message_(nullptr),
263       threads_being_born_(0),
264       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
265       shutting_down_(false),
266       shutting_down_started_(false),
267       started_(false),
268       finished_starting_(false),
269       vfprintf_(nullptr),
270       exit_(nullptr),
271       abort_(nullptr),
272       stats_enabled_(false),
273       is_running_on_memory_tool_(kRunningOnMemoryTool),
274       instrumentation_(),
275       main_thread_group_(nullptr),
276       system_thread_group_(nullptr),
277       system_class_loader_(nullptr),
278       dump_gc_performance_on_shutdown_(false),
279       preinitialization_transactions_(),
280       verify_(verifier::VerifyMode::kNone),
281       target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
282       compat_framework_(),
283       implicit_null_checks_(false),
284       implicit_so_checks_(false),
285       implicit_suspend_checks_(false),
286       no_sig_chain_(false),
287       force_native_bridge_(false),
288       is_native_bridge_loaded_(false),
289       is_native_debuggable_(false),
290       async_exceptions_thrown_(false),
291       non_standard_exits_enabled_(false),
292       is_java_debuggable_(false),
293       monitor_timeout_enable_(false),
294       monitor_timeout_ns_(0),
295       zygote_max_failed_boots_(0),
296       experimental_flags_(ExperimentalFlags::kNone),
297       oat_file_manager_(nullptr),
298       is_low_memory_mode_(false),
299       madvise_willneed_vdex_filesize_(0),
300       madvise_willneed_odex_filesize_(0),
301       madvise_willneed_art_filesize_(0),
302       safe_mode_(false),
303       hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
304       core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
305       test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
306       dedupe_hidden_api_warnings_(true),
307       hidden_api_access_event_log_rate_(0),
308       dump_native_stack_on_sig_quit_(true),
309       // Initially assume we perceive jank in case the process state is never updated.
310       process_state_(kProcessStateJankPerceptible),
311       zygote_no_threads_(false),
312       verifier_logging_threshold_ms_(100),
313       verifier_missing_kthrow_fatal_(false),
314       perfetto_hprof_enabled_(false),
315       perfetto_javaheapprof_enabled_(false) {
316   static_assert(Runtime::kCalleeSaveSize ==
317                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
318   CheckConstants();
319 
320   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
321   interpreter::CheckInterpreterAsmConstants();
322   callbacks_.reset(new RuntimeCallbacks());
323   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
324     deoptimization_counts_[i] = 0u;
325   }
326 }
327 
~Runtime()328 Runtime::~Runtime() {
329   ScopedTrace trace("Runtime shutdown");
330   if (is_native_bridge_loaded_) {
331     UnloadNativeBridge();
332   }
333 
334   Thread* self = Thread::Current();
335   const bool attach_shutdown_thread = self == nullptr;
336   if (attach_shutdown_thread) {
337     // We can only create a peer if the runtime is actually started. This is only not true during
338     // some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
339     // In this case we will just try again without allocating a peer so that shutdown can continue.
340     // Very few things are actually capable of distinguishing between the peer & peerless states so
341     // this should be fine.
342     bool thread_attached = AttachCurrentThread("Shutdown thread",
343                                                /* as_daemon= */ false,
344                                                GetSystemThreadGroup(),
345                                                /* create_peer= */ IsStarted());
346     if (UNLIKELY(!thread_attached)) {
347       LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
348       CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
349                                 /* as_daemon= */   false,
350                                 /* thread_group=*/ nullptr,
351                                 /* create_peer= */ false));
352     }
353     self = Thread::Current();
354   } else {
355     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
356   }
357 
358   if (dump_gc_performance_on_shutdown_) {
359     heap_->CalculatePreGcWeightedAllocatedBytes();
360     uint64_t process_cpu_end_time = ProcessCpuNanoTime();
361     ScopedLogSeverity sls(LogSeverity::INFO);
362     // This can't be called from the Heap destructor below because it
363     // could call RosAlloc::InspectAll() which needs the thread_list
364     // to be still alive.
365     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
366 
367     uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
368     uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
369     float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
370     LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
371         << " out of process CPU time " << PrettyDuration(process_cpu_time)
372         << " (" << ratio << ")"
373         << "\n";
374     double pre_gc_weighted_allocated_bytes =
375         heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
376     // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
377     // GC. Both numerator and denominator take into account until the end of the last GC,
378     // instead of the whole process life time like pre_gc_weighted_allocated_bytes.
379     double post_gc_weighted_allocated_bytes =
380         heap_->GetPostGcWeightedAllocatedBytes() /
381           (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
382 
383     LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
384         << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
385         << " (" <<  PrettySize(pre_gc_weighted_allocated_bytes)  << ")";
386     LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
387         << static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
388         << " (" <<  PrettySize(post_gc_weighted_allocated_bytes)  << ")"
389         << "\n";
390   }
391 
392   // Wait for the workers of thread pools to be created since there can't be any
393   // threads attaching during shutdown.
394   WaitForThreadPoolWorkersToStart();
395   if (jit_ != nullptr) {
396     jit_->WaitForWorkersToBeCreated();
397     // Stop the profile saver thread before marking the runtime as shutting down.
398     // The saver will try to dump the profiles before being sopped and that
399     // requires holding the mutator lock.
400     jit_->StopProfileSaver();
401     // Delete thread pool before the thread list since we don't want to wait forever on the
402     // JIT compiler threads. Also this should be run before marking the runtime
403     // as shutting down as some tasks may require mutator access.
404     jit_->DeleteThreadPool();
405   }
406   if (oat_file_manager_ != nullptr) {
407     oat_file_manager_->WaitForWorkersToBeCreated();
408   }
409 
410   {
411     ScopedTrace trace2("Wait for shutdown cond");
412     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
413     shutting_down_started_ = true;
414     while (threads_being_born_ > 0) {
415       shutdown_cond_->Wait(self);
416     }
417     SetShuttingDown();
418   }
419   // Shutdown and wait for the daemons.
420   CHECK(self != nullptr);
421   if (IsFinishedStarting()) {
422     ScopedTrace trace2("Waiting for Daemons");
423     self->ClearException();
424     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
425                                             WellKnownClasses::java_lang_Daemons_stop);
426   }
427 
428   // Shutdown any trace running.
429   Trace::Shutdown();
430 
431   // Report death. Clients may require a working thread, still, so do it before GC completes and
432   // all non-daemon threads are done.
433   {
434     ScopedObjectAccess soa(self);
435     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
436   }
437 
438   if (attach_shutdown_thread) {
439     DetachCurrentThread();
440     self = nullptr;
441   }
442 
443   // Make sure to let the GC complete if it is running.
444   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
445   heap_->DeleteThreadPool();
446   if (oat_file_manager_ != nullptr) {
447     oat_file_manager_->DeleteThreadPool();
448   }
449   DeleteThreadPool();
450   CHECK(thread_pool_ == nullptr);
451 
452   // Make sure our internal threads are dead before we start tearing down things they're using.
453   GetRuntimeCallbacks()->StopDebugger();
454   // Deletion ordering is tricky. Null out everything we've deleted.
455   delete signal_catcher_;
456   signal_catcher_ = nullptr;
457 
458   // Shutdown metrics reporting.
459   metrics_reporter_.reset();
460 
461   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
462   // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
463   // no longer access monitor and thread list data structures. We leak user daemon threads
464   // themselves, since we have no mechanism for shutting them down.
465   {
466     ScopedTrace trace2("Delete thread list");
467     thread_list_->ShutDown();
468   }
469 
470   // TODO Maybe do some locking.
471   for (auto& agent : agents_) {
472     agent->Unload();
473   }
474 
475   // TODO Maybe do some locking
476   for (auto& plugin : plugins_) {
477     plugin.Unload();
478   }
479 
480   // Finally delete the thread list.
481   // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
482   // We assume that by this point, we've waited long enough for things to quiesce.
483   delete thread_list_;
484   thread_list_ = nullptr;
485 
486   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
487   // accessing the instrumentation when we delete it.
488   if (jit_ != nullptr) {
489     VLOG(jit) << "Deleting jit";
490     jit_.reset(nullptr);
491     jit_code_cache_.reset(nullptr);
492   }
493 
494   // Shutdown the fault manager if it was initialized.
495   fault_manager.Shutdown();
496 
497   ScopedTrace trace2("Delete state");
498   delete monitor_list_;
499   monitor_list_ = nullptr;
500   delete monitor_pool_;
501   monitor_pool_ = nullptr;
502   delete class_linker_;
503   class_linker_ = nullptr;
504   delete small_irt_allocator_;
505   small_irt_allocator_ = nullptr;
506   delete heap_;
507   heap_ = nullptr;
508   delete intern_table_;
509   intern_table_ = nullptr;
510   delete oat_file_manager_;
511   oat_file_manager_ = nullptr;
512   Thread::Shutdown();
513   QuasiAtomic::Shutdown();
514   verifier::ClassVerifier::Shutdown();
515 
516   // Destroy allocators before shutting down the MemMap because they may use it.
517   java_vm_.reset();
518   linear_alloc_.reset();
519   low_4gb_arena_pool_.reset();
520   arena_pool_.reset();
521   jit_arena_pool_.reset();
522   protected_fault_page_.Reset();
523   MemMap::Shutdown();
524 
525   // TODO: acquire a static mutex on Runtime to avoid racing.
526   CHECK(instance_ == nullptr || instance_ == this);
527   instance_ = nullptr;
528 
529   // Well-known classes must be deleted or it is impossible to successfully start another Runtime
530   // instance. We rely on a small initialization order issue in Runtime::Start() that requires
531   // elements of WellKnownClasses to be null, see b/65500943.
532   WellKnownClasses::Clear();
533 }
534 
535 struct AbortState {
Dumpart::AbortState536   void Dump(std::ostream& os) const {
537     if (gAborting > 1) {
538       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
539       DumpRecursiveAbort(os);
540       return;
541     }
542     gAborting++;
543     os << "Runtime aborting...\n";
544     if (Runtime::Current() == nullptr) {
545       os << "(Runtime does not yet exist!)\n";
546       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
547       return;
548     }
549     Thread* self = Thread::Current();
550 
551     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
552     // it improves the chance of relevant data surviving in the Android logs.
553 
554     DumpAllThreads(os, self);
555 
556     if (self == nullptr) {
557       os << "(Aborting thread was not attached to runtime!)\n";
558       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
559     } else {
560       os << "Aborting thread:\n";
561       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
562         DumpThread(os, self);
563       } else {
564         if (Locks::mutator_lock_->SharedTryLock(self)) {
565           DumpThread(os, self);
566           Locks::mutator_lock_->SharedUnlock(self);
567         }
568       }
569     }
570   }
571 
572   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState573   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
574     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
575     self->Dump(os);
576     if (self->IsExceptionPending()) {
577       mirror::Throwable* exception = self->GetException();
578       os << "Pending exception " << exception->Dump();
579     }
580   }
581 
DumpAllThreadsart::AbortState582   void DumpAllThreads(std::ostream& os, Thread* self) const {
583     Runtime* runtime = Runtime::Current();
584     if (runtime != nullptr) {
585       ThreadList* thread_list = runtime->GetThreadList();
586       if (thread_list != nullptr) {
587         // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
588         // grabbed).
589         // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
590         //                    acquiring the locks.
591         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
592         bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
593         if (tll_already_held || tscl_already_held) {
594           os << "Skipping all-threads dump as locks are held:"
595              << (tll_already_held ? "" : " thread_list_lock")
596              << (tscl_already_held ? "" : " thread_suspend_count_lock")
597              << "\n";
598           return;
599         }
600         bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
601         if (ml_already_exlusively_held) {
602           os << "Skipping all-threads dump as mutator lock is exclusively held.";
603           return;
604         }
605         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
606         if (!ml_already_held) {
607           os << "Dumping all threads without mutator lock held\n";
608         }
609         os << "All threads:\n";
610         thread_list->Dump(os);
611       }
612     }
613   }
614 
615   // For recursive aborts.
DumpRecursiveAbortart::AbortState616   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
617     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
618     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
619     // die.
620     // Note: as we're using a global counter for the recursive abort detection, there is a potential
621     //       race here and it is not OK to just print when the counter is "2" (one from
622     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
623     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
624     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
625       gAborting++;
626       DumpNativeStack(os, GetTid());
627     }
628   }
629 };
630 
Abort(const char * msg)631 void Runtime::Abort(const char* msg) {
632   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
633 
634   // Only set the first abort message.
635   if (old_value == 0) {
636 #ifdef ART_TARGET_ANDROID
637     android_set_abort_message(msg);
638 #else
639     // Set the runtime fault message in case our unexpected-signal code will run.
640     Runtime* current = Runtime::Current();
641     if (current != nullptr) {
642       current->SetFaultMessage(msg);
643     }
644 #endif
645   }
646 
647   // May be coming from an unattached thread.
648   if (Thread::Current() == nullptr) {
649     Runtime* current = Runtime::Current();
650     if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) {
651       // We do not flag this to the unexpected-signal handler so that that may dump the stack.
652       abort();
653       UNREACHABLE();
654     }
655   }
656 
657   {
658     // Ensure that we don't have multiple threads trying to abort at once,
659     // which would result in significantly worse diagnostics.
660     ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort);
661     Locks::abort_lock_->ExclusiveLock(Thread::Current());
662   }
663 
664   // Get any pending output out of the way.
665   fflush(nullptr);
666 
667   // Many people have difficulty distinguish aborts from crashes,
668   // so be explicit.
669   // Note: use cerr on the host to print log lines immediately, so we get at least some output
670   //       in case of recursive aborts. We lose annotation with the source file and line number
671   //       here, which is a minor issue. The same is significantly more complicated on device,
672   //       which is why we ignore the issue there.
673   AbortState state;
674   if (kIsTargetBuild) {
675     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
676   } else {
677     std::cerr << Dumpable<AbortState>(state);
678   }
679 
680   // Sometimes we dump long messages, and the Android abort message only retains the first line.
681   // In those cases, just log the message again, to avoid logcat limits.
682   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
683     LOG(FATAL_WITHOUT_ABORT) << msg;
684   }
685 
686   FlagRuntimeAbort();
687 
688   // Call the abort hook if we have one.
689   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
690     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
691     Runtime::Current()->abort_();
692     // notreached
693     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
694   }
695 
696   abort();
697   // notreached
698 }
699 
700 class FindNativeMethodsVisitor : public ClassVisitor {
701  public:
FindNativeMethodsVisitor(Thread * self,ClassLinker * class_linker)702   FindNativeMethodsVisitor(Thread* self, ClassLinker* class_linker)
703       : vm_(down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm()),
704         self_(self),
705         class_linker_(class_linker) {}
706 
operator ()(ObjPtr<mirror::Class> klass)707   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
708     bool is_initialized = klass->IsVisiblyInitialized();
709     for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) {
710       if (method.IsNative() && (is_initialized || !NeedsClinitCheckBeforeCall(&method))) {
711         const void* existing = method.GetEntryPointFromJni();
712         if (method.IsCriticalNative()
713                 ? class_linker_->IsJniDlsymLookupCriticalStub(existing)
714                 : class_linker_->IsJniDlsymLookupStub(existing)) {
715           const void* native_code =
716               vm_->FindCodeForNativeMethod(&method, /*error_msg=*/ nullptr, /*can_suspend=*/ false);
717           if (native_code != nullptr) {
718             class_linker_->RegisterNative(self_, &method, native_code);
719           }
720         }
721       }
722     }
723     return true;
724   }
725 
726  private:
727   JavaVMExt* vm_;
728   Thread* self_;
729   ClassLinker* class_linker_;
730 
731   DISALLOW_COPY_AND_ASSIGN(FindNativeMethodsVisitor);
732 };
733 
PreZygoteFork()734 void Runtime::PreZygoteFork() {
735   if (GetJit() != nullptr) {
736     GetJit()->PreZygoteFork();
737   }
738   if (!heap_->HasZygoteSpace()) {
739     // This is the first fork. Update ArtMethods in the boot classpath now to
740     // avoid having forked apps dirty the memory.
741     ScopedObjectAccess soa(Thread::Current());
742     // Ensure we call FixupStaticTrampolines on all methods that are
743     // initialized.
744     class_linker_->MakeInitializedClassesVisiblyInitialized(soa.Self(), /*wait=*/ true);
745     // Update native method JNI entrypoints.
746     FindNativeMethodsVisitor visitor(soa.Self(), class_linker_);
747     class_linker_->VisitClasses(&visitor);
748   }
749   heap_->PreZygoteFork();
750   PreZygoteForkNativeBridge();
751 }
752 
PostZygoteFork()753 void Runtime::PostZygoteFork() {
754   jit::Jit* jit = GetJit();
755   if (jit != nullptr) {
756     jit->PostZygoteFork();
757     // Ensure that the threads in the JIT pool have been created with the right
758     // priority.
759     if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
760       jit->GetThreadPool()->CheckPthreadPriority(
761           IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority()
762                      : jit->GetThreadPoolPthreadPriority());
763     }
764   }
765   // Reset all stats.
766   ResetStats(0xFFFFFFFF);
767 }
768 
CallExitHook(jint status)769 void Runtime::CallExitHook(jint status) {
770   if (exit_ != nullptr) {
771     ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative);
772     exit_(status);
773     LOG(WARNING) << "Exit hook returned instead of exiting!";
774   }
775 }
776 
SweepSystemWeaks(IsMarkedVisitor * visitor)777 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
778   GetInternTable()->SweepInternTableWeaks(visitor);
779   GetMonitorList()->SweepMonitorList(visitor);
780   GetJavaVM()->SweepJniWeakGlobals(visitor);
781   GetHeap()->SweepAllocationRecords(visitor);
782   if (GetJit() != nullptr) {
783     // Visit JIT literal tables. Objects in these tables are classes and strings
784     // and only classes can be affected by class unloading. The strings always
785     // stay alive as they are strongly interned.
786     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
787     // from mutators. See b/32167580.
788     GetJit()->GetCodeCache()->SweepRootTables(visitor);
789   }
790   Thread::SweepInterpreterCaches(visitor);
791 
792   // All other generic system-weak holders.
793   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
794     holder->Sweep(visitor);
795   }
796 }
797 
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)798 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
799                            bool ignore_unrecognized,
800                            RuntimeArgumentMap* runtime_options) {
801   Locks::Init();
802   InitLogging(/* argv= */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
803   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
804   if (!parsed) {
805     LOG(ERROR) << "Failed to parse options";
806     return false;
807   }
808   return true;
809 }
810 
811 // Callback to check whether it is safe to call Abort (e.g., to use a call to
812 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
813 // properly initialized, and has not shut down.
IsSafeToCallAbort()814 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
815   Runtime* runtime = Runtime::Current();
816   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
817 }
818 
Create(RuntimeArgumentMap && runtime_options)819 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
820   // TODO: acquire a static mutex on Runtime to avoid racing.
821   if (Runtime::instance_ != nullptr) {
822     return false;
823   }
824   instance_ = new Runtime;
825   Locks::SetClientCallback(IsSafeToCallAbort);
826   if (!instance_->Init(std::move(runtime_options))) {
827     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
828     // leak memory, instead. Fix the destructor. b/19100793.
829     // delete instance_;
830     instance_ = nullptr;
831     return false;
832   }
833   return true;
834 }
835 
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)836 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
837   RuntimeArgumentMap runtime_options;
838   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
839       Create(std::move(runtime_options));
840 }
841 
CreateSystemClassLoader(Runtime * runtime)842 static jobject CreateSystemClassLoader(Runtime* runtime) {
843   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
844     return nullptr;
845   }
846 
847   ScopedObjectAccess soa(Thread::Current());
848   ClassLinker* cl = Runtime::Current()->GetClassLinker();
849   auto pointer_size = cl->GetImagePointerSize();
850 
851   StackHandleScope<2> hs(soa.Self());
852   Handle<mirror::Class> class_loader_class(
853       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
854   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
855 
856   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
857       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
858   CHECK(getSystemClassLoader != nullptr);
859   CHECK(getSystemClassLoader->IsStatic());
860 
861   JValue result = InvokeWithJValues(soa,
862                                     nullptr,
863                                     getSystemClassLoader,
864                                     nullptr);
865   JNIEnv* env = soa.Self()->GetJniEnv();
866   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
867   CHECK(system_class_loader.get() != nullptr);
868 
869   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
870 
871   Handle<mirror::Class> thread_class(
872       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
873   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
874 
875   ArtField* contextClassLoader =
876       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
877   CHECK(contextClassLoader != nullptr);
878 
879   // We can't run in a transaction yet.
880   contextClassLoader->SetObject<false>(
881       soa.Self()->GetPeer(),
882       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
883 
884   return env->NewGlobalRef(system_class_loader.get());
885 }
886 
GetCompilerExecutable() const887 std::string Runtime::GetCompilerExecutable() const {
888   if (!compiler_executable_.empty()) {
889     return compiler_executable_;
890   }
891   std::string compiler_executable = GetArtBinDir() + "/dex2oat";
892   if (kIsDebugBuild) {
893     compiler_executable += 'd';
894   }
895   if (kIsTargetBuild) {
896     compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
897   }
898   return compiler_executable;
899 }
900 
RunRootClinits(Thread * self)901 void Runtime::RunRootClinits(Thread* self) {
902   class_linker_->RunRootClinits(self);
903 
904   GcRoot<mirror::Throwable>* exceptions[] = {
905       &pre_allocated_OutOfMemoryError_when_throwing_exception_,
906       // &pre_allocated_OutOfMemoryError_when_throwing_oome_,             // Same class as above.
907       // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,   // Same class as above.
908       &pre_allocated_NoClassDefFoundError_,
909   };
910   for (GcRoot<mirror::Throwable>* exception : exceptions) {
911     StackHandleScope<1> hs(self);
912     Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
913     class_linker_->EnsureInitialized(self, klass, true, true);
914     self->AssertNoPendingException();
915   }
916 }
917 
Start()918 bool Runtime::Start() {
919   VLOG(startup) << "Runtime::Start entering";
920 
921   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
922 
923   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
924   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
925 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
926   if (kIsDebugBuild) {
927     if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
928       PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
929     }
930   }
931 #endif
932 
933   // Restore main thread state to kNative as expected by native code.
934   Thread* self = Thread::Current();
935 
936   self->TransitionFromRunnableToSuspended(ThreadState::kNative);
937 
938   started_ = true;
939 
940   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
941     ScopedObjectAccess soa(self);
942     StackHandleScope<3> hs(soa.Self());
943 
944     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
945     auto class_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Class>(class_roots)));
946     auto string_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::String>(class_roots)));
947     auto field_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Field>(class_roots)));
948 
949     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
950     class_linker_->EnsureInitialized(soa.Self(), string_class, true, true);
951     self->AssertNoPendingException();
952     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
953     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
954     self->AssertNoPendingException();
955   }
956 
957   // InitNativeMethods needs to be after started_ so that the classes
958   // it touches will have methods linked to the oat file if necessary.
959   {
960     ScopedTrace trace2("InitNativeMethods");
961     InitNativeMethods();
962   }
963 
964   // IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
965   // because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
966   // needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
967   InitializeIntrinsics();
968 
969   // InitializeCorePlatformApiPrivateFields() needs to be called after well known class
970   // initializtion in InitNativeMethods().
971   art::hiddenapi::InitializeCorePlatformApiPrivateFields();
972 
973   // Initialize well known thread group values that may be accessed threads while attaching.
974   InitThreadGroups(self);
975 
976   Thread::FinishStartup();
977 
978   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
979   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
980   // ThreadGroup to exist.
981   //
982   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
983   // recoding profiles. Maybe we should consider changing the name to be more clear it's
984   // not only about compiling. b/28295073.
985   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
986     // Try to load compiler pre zygote to reduce PSS. b/27744947
987     std::string error_msg;
988     if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
989       LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
990     }
991     CreateJitCodeCache(/*rwx_memory_allowed=*/true);
992     CreateJit();
993   }
994 
995   // Send the start phase event. We have to wait till here as this is when the main thread peer
996   // has just been generated, important root clinits have been run and JNI is completely functional.
997   {
998     ScopedObjectAccess soa(self);
999     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
1000   }
1001 
1002   system_class_loader_ = CreateSystemClassLoader(this);
1003 
1004   if (!is_zygote_) {
1005     if (is_native_bridge_loaded_) {
1006       PreInitializeNativeBridge(".");
1007     }
1008     NativeBridgeAction action = force_native_bridge_
1009         ? NativeBridgeAction::kInitialize
1010         : NativeBridgeAction::kUnload;
1011     InitNonZygoteOrPostFork(self->GetJniEnv(),
1012                             /* is_system_server= */ false,
1013                             /* is_child_zygote= */ false,
1014                             action,
1015                             GetInstructionSetString(kRuntimeISA));
1016   }
1017 
1018   StartDaemonThreads();
1019 
1020   // Make sure the environment is still clean (no lingering local refs from starting daemon
1021   // threads).
1022   {
1023     ScopedObjectAccess soa(self);
1024     self->GetJniEnv()->AssertLocalsEmpty();
1025   }
1026 
1027   // Send the initialized phase event. Send it after starting the Daemon threads so that agents
1028   // cannot delay the daemon threads from starting forever.
1029   {
1030     ScopedObjectAccess soa(self);
1031     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
1032   }
1033 
1034   {
1035     ScopedObjectAccess soa(self);
1036     self->GetJniEnv()->AssertLocalsEmpty();
1037   }
1038 
1039   VLOG(startup) << "Runtime::Start exiting";
1040   finished_starting_ = true;
1041 
1042   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
1043     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart);
1044     Trace::Start(trace_config_->trace_file.c_str(),
1045                  static_cast<int>(trace_config_->trace_file_size),
1046                  0,
1047                  trace_config_->trace_output_mode,
1048                  trace_config_->trace_mode,
1049                  0);
1050   }
1051 
1052   // In case we have a profile path passed as a command line argument,
1053   // register the current class path for profiling now. Note that we cannot do
1054   // this before we create the JIT and having it here is the most convenient way.
1055   // This is used when testing profiles with dalvikvm command as there is no
1056   // framework to register the dex files for profiling.
1057   if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
1058       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
1059     std::vector<std::string> dex_filenames;
1060     Split(class_path_string_, ':', &dex_filenames);
1061 
1062     // We pass "" as the package name because at this point we don't know it. It could be the
1063     // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
1064     // post-fork or during RegisterAppInfo.
1065     //
1066     // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
1067     // a reference profile.
1068     RegisterAppInfo(
1069         /*package_name=*/ "",
1070         dex_filenames,
1071         jit_options_->GetProfileSaverOptions().GetProfilePath(),
1072         /*ref_profile_filename=*/ "",
1073         kVMRuntimePrimaryApk);
1074   }
1075 
1076   return true;
1077 }
1078 
EndThreadBirth()1079 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
1080   DCHECK_GT(threads_being_born_, 0U);
1081   threads_being_born_--;
1082   if (shutting_down_started_ && threads_being_born_ == 0) {
1083     shutdown_cond_->Broadcast(Thread::Current());
1084   }
1085 }
1086 
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,bool is_child_zygote,NativeBridgeAction action,const char * isa,bool profile_system_server)1087 void Runtime::InitNonZygoteOrPostFork(
1088     JNIEnv* env,
1089     bool is_system_server,
1090     // This is true when we are initializing a child-zygote. It requires
1091     // native bridge initialization to be able to run guest native code in
1092     // doPreload().
1093     bool is_child_zygote,
1094     NativeBridgeAction action,
1095     const char* isa,
1096     bool profile_system_server) {
1097   if (is_native_bridge_loaded_) {
1098     switch (action) {
1099       case NativeBridgeAction::kUnload:
1100         UnloadNativeBridge();
1101         is_native_bridge_loaded_ = false;
1102         break;
1103       case NativeBridgeAction::kInitialize:
1104         InitializeNativeBridge(env, isa);
1105         break;
1106     }
1107   }
1108 
1109   if (is_child_zygote) {
1110     // If creating a child-zygote we only initialize native bridge. The rest of
1111     // runtime post-fork logic would spin up threads for Binder and JDWP.
1112     // Instead, the Java side of the child process will call a static main in a
1113     // class specified by the parent.
1114     return;
1115   }
1116 
1117   DCHECK(!IsZygote());
1118 
1119   if (is_system_server) {
1120     // Register the system server code paths.
1121     // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
1122     // the method is only called when we set up the profile. It should be called all the time
1123     // (simillar to the apps). Once that's done this manual registration can be removed.
1124     const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
1125     if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
1126       LOG(WARNING) << "System server class path not set";
1127     } else {
1128       std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
1129       app_info_.RegisterAppInfo("android",
1130                                 jars,
1131                                 /*cur_profile_path=*/ "",
1132                                 /*ref_profile_path=*/ "",
1133                                 AppInfo::CodeType::kPrimaryApk);
1134     }
1135 
1136     // Set the system server package name to "android".
1137     // This is used to tell the difference between samples provided by system server
1138     // and samples generated by other apps when processing boot image profiles.
1139     SetProcessPackageName("android");
1140     if (profile_system_server) {
1141       jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
1142       VLOG(profiler) << "Enabling system server profiles";
1143     }
1144   }
1145 
1146   // Create the thread pools.
1147   heap_->CreateThreadPool();
1148   // Avoid creating the runtime thread pool for system server since it will not be used and would
1149   // waste memory.
1150   if (!is_system_server) {
1151     ScopedTrace timing("CreateThreadPool");
1152     constexpr size_t kStackSize = 64 * KB;
1153     constexpr size_t kMaxRuntimeWorkers = 4u;
1154     const size_t num_workers =
1155         std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
1156     MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
1157     CHECK(thread_pool_ == nullptr);
1158     thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize));
1159     thread_pool_->StartWorkers(Thread::Current());
1160   }
1161 
1162   // Reset the gc performance data and metrics at zygote fork so that the events from
1163   // before fork aren't attributed to an app.
1164   heap_->ResetGcPerformanceInfo();
1165   GetMetrics()->Reset();
1166 
1167   if (metrics_reporter_ != nullptr) {
1168     // Now that we know if we are an app or system server, reload the metrics reporter config
1169     // in case there are any difference.
1170     metrics::ReportingConfig metrics_config =
1171         metrics::ReportingConfig::FromFlags(is_system_server);
1172 
1173     metrics_reporter_->ReloadConfig(metrics_config);
1174 
1175     metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
1176     // Start the session id from 1 to avoid clashes with the default value.
1177     // (better for debugability)
1178     session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
1179     // TODO: set session_data.compilation_reason and session_data.compiler_filter
1180     metrics_reporter_->MaybeStartBackgroundThread(session_data);
1181     // Also notify about any updates to the app info.
1182     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
1183   }
1184 
1185   StartSignalCatcher();
1186 
1187   ScopedObjectAccess soa(Thread::Current());
1188   if (IsPerfettoHprofEnabled() &&
1189       (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1190        Runtime::Current()->IsSystemServer())) {
1191     std::string err;
1192     ScopedTrace tr("perfetto_hprof init.");
1193     ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1194     if (!EnsurePerfettoPlugin(&err)) {
1195       LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
1196     }
1197   }
1198   if (IsPerfettoJavaHeapStackProfEnabled() &&
1199       (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
1200        Runtime::Current()->IsSystemServer())) {
1201     // Marker used for dev tracing similar to above markers.
1202     ScopedTrace tr("perfetto_javaheapprof init.");
1203   }
1204   if (Runtime::Current()->IsSystemServer()) {
1205     std::string err;
1206     ScopedTrace tr("odrefresh stats logging");
1207     ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1208     // Report stats if available. This should be moved into ART Services when they are ready.
1209     if (!odrefresh::UploadStatsIfAvailable(&err)) {
1210       LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
1211     }
1212   }
1213 
1214   if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
1215     if (IsJavaDebuggable()) {
1216       SetJniIdType(JniIdType::kIndices);
1217     } else {
1218       SetJniIdType(JniIdType::kPointer);
1219     }
1220   }
1221   ATraceIntegerValue(
1222       "profilebootclasspath",
1223       static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
1224   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
1225   // this will pause the runtime (in the internal debugger implementation), so we probably want
1226   // this to come last.
1227   GetRuntimeCallbacks()->StartDebugger();
1228 }
1229 
StartSignalCatcher()1230 void Runtime::StartSignalCatcher() {
1231   if (!is_zygote_) {
1232     signal_catcher_ = new SignalCatcher();
1233   }
1234 }
1235 
IsShuttingDown(Thread * self)1236 bool Runtime::IsShuttingDown(Thread* self) {
1237   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1238   return IsShuttingDownLocked();
1239 }
1240 
StartDaemonThreads()1241 void Runtime::StartDaemonThreads() {
1242   ScopedTrace trace(__FUNCTION__);
1243   VLOG(startup) << "Runtime::StartDaemonThreads entering";
1244 
1245   Thread* self = Thread::Current();
1246 
1247   // Must be in the kNative state for calling native methods.
1248   CHECK_EQ(self->GetState(), ThreadState::kNative);
1249 
1250   JNIEnv* env = self->GetJniEnv();
1251   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
1252                             WellKnownClasses::java_lang_Daemons_start);
1253   if (env->ExceptionCheck()) {
1254     env->ExceptionDescribe();
1255     LOG(FATAL) << "Error starting java.lang.Daemons";
1256   }
1257 
1258   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
1259 }
1260 
OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,ArrayRef<const std::string> dex_locations,ArrayRef<const int> dex_fds,std::vector<std::unique_ptr<const DexFile>> * dex_files)1261 static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
1262                                ArrayRef<const std::string> dex_locations,
1263                                ArrayRef<const int> dex_fds,
1264                                std::vector<std::unique_ptr<const DexFile>>* dex_files) {
1265   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
1266   size_t failure_count = 0;
1267   const ArtDexFileLoader dex_file_loader;
1268   for (size_t i = 0; i < dex_filenames.size(); i++) {
1269     const char* dex_filename = dex_filenames[i].c_str();
1270     const char* dex_location = dex_locations[i].c_str();
1271     const int dex_fd = i < dex_fds.size() ? dex_fds[i] : -1;
1272     static constexpr bool kVerifyChecksum = true;
1273     std::string error_msg;
1274     if (!OS::FileExists(dex_filename) && dex_fd < 0) {
1275       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
1276       continue;
1277     }
1278     bool verify = Runtime::Current()->IsVerificationEnabled();
1279     if (!dex_file_loader.Open(dex_filename,
1280                               dex_fd,
1281                               dex_location,
1282                               verify,
1283                               kVerifyChecksum,
1284                               &error_msg,
1285                               dex_files)) {
1286       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << dex_fd
1287                    << ": " << error_msg;
1288       ++failure_count;
1289     }
1290   }
1291   return failure_count;
1292 }
1293 
SetSentinel(ObjPtr<mirror::Object> sentinel)1294 void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
1295   CHECK(sentinel_.Read() == nullptr);
1296   CHECK(sentinel != nullptr);
1297   CHECK(!heap_->IsMovableObject(sentinel));
1298   sentinel_ = GcRoot<mirror::Object>(sentinel);
1299 }
1300 
GetSentinel()1301 GcRoot<mirror::Object> Runtime::GetSentinel() {
1302   return sentinel_;
1303 }
1304 
CreatePreAllocatedException(Thread * self,Runtime * runtime,GcRoot<mirror::Throwable> * exception,const char * exception_class_descriptor,const char * msg)1305 static inline void CreatePreAllocatedException(Thread* self,
1306                                                Runtime* runtime,
1307                                                GcRoot<mirror::Throwable>* exception,
1308                                                const char* exception_class_descriptor,
1309                                                const char* msg)
1310     REQUIRES_SHARED(Locks::mutator_lock_) {
1311   DCHECK_EQ(self, Thread::Current());
1312   ClassLinker* class_linker = runtime->GetClassLinker();
1313   // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
1314   ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
1315   CHECK(klass != nullptr);
1316   gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
1317   ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
1318       klass->Alloc(self, allocator_type));
1319   CHECK(exception_object != nullptr);
1320   *exception = GcRoot<mirror::Throwable>(exception_object);
1321   // Initialize the "detailMessage" field.
1322   ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
1323   CHECK(message != nullptr);
1324   ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
1325   ArtField* detailMessageField =
1326       throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
1327   CHECK(detailMessageField != nullptr);
1328   detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
1329 }
1330 
InitializeApexVersions()1331 void Runtime::InitializeApexVersions() {
1332   std::vector<std::string_view> bcp_apexes;
1333   for (std::string_view jar : Runtime::Current()->GetBootClassPathLocations()) {
1334     std::string_view apex = ApexNameFromLocation(jar);
1335     if (!apex.empty()) {
1336       bcp_apexes.push_back(apex);
1337     }
1338   }
1339   static const char* kApexFileName = "/apex/apex-info-list.xml";
1340   // Start with empty markers.
1341   apex_versions_ = std::string(bcp_apexes.size(), '/');
1342   // When running on host or chroot, we just use empty markers.
1343   if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
1344     return;
1345   }
1346 #ifdef ART_TARGET_ANDROID
1347   if (access(kApexFileName, R_OK) != 0) {
1348     PLOG(WARNING) << "Failed to read " << kApexFileName;
1349     return;
1350   }
1351   auto info_list = apex::readApexInfoList(kApexFileName);
1352   if (!info_list.has_value()) {
1353     LOG(WARNING) << "Failed to parse " << kApexFileName;
1354     return;
1355   }
1356 
1357   std::string result;
1358   std::map<std::string_view, const apex::ApexInfo*> apex_infos;
1359   for (const apex::ApexInfo& info : info_list->getApexInfo()) {
1360     if (info.getIsActive()) {
1361       apex_infos.emplace(info.getModuleName(), &info);
1362     }
1363   }
1364   for (const std::string_view& str : bcp_apexes) {
1365     auto info = apex_infos.find(str);
1366     if (info == apex_infos.end() || info->second->getIsFactory()) {
1367       result += '/';
1368     } else {
1369       // In case lastUpdateMillis field is populated in apex-info-list.xml, we
1370       // prefer to use it as version scheme. If the field is missing we
1371       // fallback to the version code of the APEX.
1372       uint64_t version = info->second->hasLastUpdateMillis()
1373           ? info->second->getLastUpdateMillis()
1374           : info->second->getVersionCode();
1375       android::base::StringAppendF(&result, "/%" PRIu64, version);
1376     }
1377   }
1378   apex_versions_ = result;
1379 #endif
1380 }
1381 
ReloadAllFlags(const std::string & caller)1382 void Runtime::ReloadAllFlags(const std::string& caller) {
1383   FlagBase::ReloadAllFlags(caller);
1384 }
1385 
Init(RuntimeArgumentMap && runtime_options_in)1386 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1387   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1388   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1389   env_snapshot_.TakeSnapshot();
1390 
1391   using Opt = RuntimeArgumentMap;
1392   Opt runtime_options(std::move(runtime_options_in));
1393   ScopedTrace trace(__FUNCTION__);
1394   CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), kPageSize);
1395 
1396   // Reload all the flags value (from system properties and device configs).
1397   ReloadAllFlags(__FUNCTION__);
1398 
1399   deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
1400   if (deny_art_apex_data_files_) {
1401     // We will run slower without those files if the system has taken an ART APEX update.
1402     LOG(WARNING) << "ART APEX data files are untrusted.";
1403   }
1404 
1405   // Early override for logging output.
1406   if (runtime_options.Exists(Opt::UseStderrLogger)) {
1407     android::base::SetLogger(android::base::StderrLogger);
1408   }
1409 
1410   MemMap::Init();
1411 
1412   verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
1413   force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
1414   perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
1415   perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
1416 
1417   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
1418   // If we cannot reserve it, log a warning.
1419   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
1420   //       is out-of-the-way enough that it should not collide with boot image mapping.
1421   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
1422   //       leading to logspam.
1423   {
1424     constexpr uintptr_t kSentinelAddr =
1425         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
1426     protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
1427                                                  reinterpret_cast<uint8_t*>(kSentinelAddr),
1428                                                  kPageSize,
1429                                                  PROT_NONE,
1430                                                  /*low_4gb=*/ true,
1431                                                  /*reuse=*/ false,
1432                                                  /*reservation=*/ nullptr,
1433                                                  /*error_msg=*/ nullptr);
1434     if (!protected_fault_page_.IsValid()) {
1435       LOG(WARNING) << "Could not reserve sentinel fault page";
1436     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) {
1437       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
1438       protected_fault_page_.Reset();
1439     }
1440   }
1441 
1442   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1443 
1444   QuasiAtomic::Startup();
1445 
1446   oat_file_manager_ = new OatFileManager();
1447 
1448   jni_id_manager_.reset(new jni::JniIdManager());
1449 
1450   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1451   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
1452                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
1453 
1454   image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image);
1455 
1456   SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
1457   boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1458   boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
1459   DCHECK(boot_class_path_locations_.empty() ||
1460          boot_class_path_locations_.size() == boot_class_path_.size());
1461   if (boot_class_path_.empty()) {
1462     LOG(ERROR) << "Boot classpath is empty";
1463     return false;
1464   }
1465 
1466   boot_class_path_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathFds);
1467   if (!boot_class_path_fds_.empty() && boot_class_path_fds_.size() != boot_class_path_.size()) {
1468     LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in "
1469                << "-Xbootclasspath.";
1470     return false;
1471   }
1472 
1473   boot_class_path_image_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds);
1474   boot_class_path_vdex_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds);
1475   boot_class_path_oat_fds_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds);
1476   CHECK(boot_class_path_image_fds_.empty() ||
1477         boot_class_path_image_fds_.size() == boot_class_path_.size());
1478   CHECK(boot_class_path_vdex_fds_.empty() ||
1479         boot_class_path_vdex_fds_.size() == boot_class_path_.size());
1480   CHECK(boot_class_path_oat_fds_.empty() ||
1481         boot_class_path_oat_fds_.size() == boot_class_path_.size());
1482 
1483   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1484   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1485 
1486   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1487   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1488   is_zygote_ = runtime_options.Exists(Opt::Zygote);
1489   is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
1490   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1491   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1492   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1493 
1494   if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
1495     oat_file_manager_->SetOnlyUseTrustedOatFiles();
1496   }
1497 
1498   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1499   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1500   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1501 
1502   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1503 
1504   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1505   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1506   for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
1507     if (option == "--debuggable") {
1508       SetJavaDebuggable(true);
1509       break;
1510     }
1511   }
1512   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1513 
1514   finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
1515   max_spins_before_thin_lock_inflation_ =
1516       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1517 
1518   monitor_list_ = new MonitorList;
1519   monitor_pool_ = MonitorPool::Create();
1520   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1521   intern_table_ = new InternTable;
1522 
1523   monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
1524   int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
1525   if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
1526     LOG(WARNING) << "Monitor timeout too short: Increasing";
1527     monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
1528   }
1529   if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
1530     LOG(WARNING) << "Monitor timeout too long: Decreasing";
1531     monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
1532   }
1533   monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
1534 
1535   verify_ = runtime_options.GetOrDefault(Opt::Verify);
1536 
1537   target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
1538 
1539   // Set hidden API enforcement policy. The checks are disabled by default and
1540   // we only enable them if:
1541   // (a) runtime was started with a command line flag that enables the checks, or
1542   // (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
1543   hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
1544   DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
1545 
1546   // Set core platform API enforcement policy. The checks are disabled by default and
1547   // can be enabled with a command line flag. AndroidRuntime will pass the flag if
1548   // a system property is set.
1549   core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
1550   if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
1551     LOG(INFO) << "Core platform API reporting enabled, enforcing="
1552         << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
1553   }
1554 
1555   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1556   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1557 
1558   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1559 
1560   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1561 
1562   if (runtime_options.GetOrDefault(Opt::Interpret)) {
1563     GetInstrumentation()->ForceInterpretOnly();
1564   }
1565 
1566   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1567   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1568   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1569   madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
1570   madvise_willneed_vdex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
1571   madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
1572   madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
1573 
1574   jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
1575   automatically_set_jni_ids_indirection_ =
1576       runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
1577 
1578   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1579   agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1580   // TODO Add back in -agentlib
1581   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1582   //   agents_.push_back(lib);
1583   // }
1584 
1585   float foreground_heap_growth_multiplier;
1586   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
1587     // If low memory mode, use 1.0 as the multiplier by default.
1588     foreground_heap_growth_multiplier = 1.0f;
1589   } else {
1590     foreground_heap_growth_multiplier =
1591         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
1592             kExtraDefaultHeapGrowthMultiplier;
1593   }
1594   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1595 
1596   // Generational CC collection is currently only compatible with Baker read barriers.
1597   bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
1598 
1599   // Cache the apex versions.
1600   InitializeApexVersions();
1601 
1602   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1603                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1604                        runtime_options.GetOrDefault(Opt::HeapMinFree),
1605                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
1606                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1607                        foreground_heap_growth_multiplier,
1608                        runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
1609                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1610                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1611                        GetBootClassPath(),
1612                        GetBootClassPathLocations(),
1613                        GetBootClassPathFds(),
1614                        GetBootClassPathImageFds(),
1615                        GetBootClassPathVdexFds(),
1616                        GetBootClassPathOatFds(),
1617                        image_locations_,
1618                        instruction_set_,
1619                        // Override the collector type to CC if the read barrier config.
1620                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1621                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1622                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
1623                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1624                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1625                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1626                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
1627                        runtime_options.Exists(Opt::LowMemoryMode),
1628                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1629                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1630                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
1631                        runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
1632                        runtime_options.GetOrDefault(Opt::UseTLAB),
1633                        xgc_option.verify_pre_gc_heap_,
1634                        xgc_option.verify_pre_sweeping_heap_,
1635                        xgc_option.verify_post_gc_heap_,
1636                        xgc_option.verify_pre_gc_rosalloc_,
1637                        xgc_option.verify_pre_sweeping_rosalloc_,
1638                        xgc_option.verify_post_gc_rosalloc_,
1639                        xgc_option.gcstress_,
1640                        xgc_option.measure_,
1641                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1642                        use_generational_cc,
1643                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
1644                        runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
1645                        runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
1646 
1647   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1648 
1649   bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
1650   jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
1651   jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
1652                                             IsJavaDebuggable());
1653   switch (jdwp_provider_) {
1654     case JdwpProvider::kNone: {
1655       VLOG(jdwp) << "Disabling all JDWP support.";
1656       if (!jdwp_options_.empty()) {
1657         bool has_transport = jdwp_options_.find("transport") != std::string::npos;
1658         std::string adb_connection_args =
1659             std::string("  -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
1660         if (has_explicit_jdwp_options) {
1661           LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
1662                       << "jdwp with one of:" << std::endl
1663                       << "  -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
1664                       << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
1665                       << (has_transport ? "" : adb_connection_args);
1666         }
1667       }
1668       break;
1669     }
1670     case JdwpProvider::kAdbConnection: {
1671       constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
1672                                                         : "libadbconnection.so";
1673       plugins_.push_back(Plugin::Create(plugin_name));
1674       break;
1675     }
1676     case JdwpProvider::kUnset: {
1677       LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
1678     }
1679   }
1680   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1681 
1682   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1683   if (IsAotCompiler()) {
1684     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1685     // this case.
1686     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1687     // null and we don't create the jit.
1688     jit_options_->SetUseJitCompilation(false);
1689     jit_options_->SetSaveProfilingInfo(false);
1690   }
1691 
1692   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1693   // can't be trimmed as easily.
1694   const bool use_malloc = IsAotCompiler();
1695   if (use_malloc) {
1696     arena_pool_.reset(new MallocArenaPool());
1697     jit_arena_pool_.reset(new MallocArenaPool());
1698   } else {
1699     arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
1700     jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
1701   }
1702 
1703   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1704     // 4gb, no malloc. Explanation in header.
1705     low_4gb_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ true));
1706   }
1707   linear_alloc_.reset(CreateLinearAlloc());
1708 
1709   small_irt_allocator_ = new SmallIrtAllocator();
1710 
1711   BlockSignals();
1712   InitPlatformSignalHandlers();
1713 
1714   // Change the implicit checks flags based on runtime architecture.
1715   switch (kRuntimeISA) {
1716     case InstructionSet::kArm64:
1717       // TODO: Implicit suspend checks are currently disabled to facilitate search
1718       // for unrelated memory use regressions. Bug: 213757852.
1719       implicit_suspend_checks_ = false;
1720       FALLTHROUGH_INTENDED;
1721     case InstructionSet::kArm:
1722     case InstructionSet::kThumb2:
1723     case InstructionSet::kX86:
1724     case InstructionSet::kX86_64:
1725       implicit_null_checks_ = true;
1726       // Historical note: Installing stack protection was not playing well with Valgrind.
1727       implicit_so_checks_ = true;
1728       break;
1729     default:
1730       // Keep the defaults.
1731       break;
1732   }
1733 
1734   if (!no_sig_chain_) {
1735     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1736     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1737       fault_manager.Init();
1738 
1739       // These need to be in a specific order.  The null point check handler must be
1740       // after the suspend check and stack overflow check handlers.
1741       //
1742       // Note: the instances attach themselves to the fault manager and are handled by it. The
1743       //       manager will delete the instance on Shutdown().
1744       if (implicit_suspend_checks_) {
1745         new SuspensionHandler(&fault_manager);
1746       }
1747 
1748       if (implicit_so_checks_) {
1749         new StackOverflowHandler(&fault_manager);
1750       }
1751 
1752       if (implicit_null_checks_) {
1753         new NullPointerHandler(&fault_manager);
1754       }
1755 
1756       if (kEnableJavaStackTraceHandler) {
1757         new JavaStackTraceHandler(&fault_manager);
1758       }
1759     }
1760   }
1761 
1762   verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
1763 
1764   std::string error_msg;
1765   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1766   if (java_vm_.get() == nullptr) {
1767     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1768     return false;
1769   }
1770 
1771   // Add the JniEnv handler.
1772   // TODO Refactor this stuff.
1773   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1774 
1775   Thread::Startup();
1776 
1777   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1778   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1779   // thread, we do not get a java peer.
1780   Thread* self = Thread::Attach("main", false, nullptr, false);
1781   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1782   CHECK(self != nullptr);
1783 
1784   self->SetIsRuntimeThread(IsAotCompiler());
1785 
1786   // Set us to runnable so tools using a runtime can allocate and GC by default
1787   self->TransitionFromSuspendedToRunnable();
1788 
1789   // Now we're attached, we can take the heap locks and validate the heap.
1790   GetHeap()->EnableObjectValidation();
1791 
1792   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1793 
1794   if (UNLIKELY(IsAotCompiler())) {
1795     class_linker_ = new AotClassLinker(intern_table_);
1796   } else {
1797     class_linker_ = new ClassLinker(
1798         intern_table_,
1799         runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
1800   }
1801   if (GetHeap()->HasBootImageSpace()) {
1802     bool result = class_linker_->InitFromBootImage(&error_msg);
1803     if (!result) {
1804       LOG(ERROR) << "Could not initialize from image: " << error_msg;
1805       return false;
1806     }
1807     if (kIsDebugBuild) {
1808       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1809         image_space->VerifyImageAllocations();
1810       }
1811     }
1812     {
1813       ScopedTrace trace2("AddImageStringsToTable");
1814       for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
1815         GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
1816       }
1817     }
1818 
1819     const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
1820         ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
1821     if (total_components != GetBootClassPath().size()) {
1822       // The boot image did not contain all boot class path components. Load the rest.
1823       CHECK_LT(total_components, GetBootClassPath().size());
1824       size_t start = total_components;
1825       DCHECK_LT(start, GetBootClassPath().size());
1826       std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
1827       if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1828         extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1829       } else {
1830         ArrayRef<const int> bcp_fds = start < GetBootClassPathFds().size()
1831             ? ArrayRef<const int>(GetBootClassPathFds()).SubArray(start)
1832             : ArrayRef<const int>();
1833         OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
1834                          ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
1835                          bcp_fds,
1836                          &extra_boot_class_path);
1837       }
1838       class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
1839     }
1840     if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
1841       // Deoptimize the boot image if debuggable  as the code may have been compiled non-debuggable.
1842       // Also deoptimize if we are profiling the boot class path.
1843       ScopedThreadSuspension sts(self, ThreadState::kNative);
1844       ScopedSuspendAll ssa(__FUNCTION__);
1845       DeoptimizeBootImage();
1846     }
1847   } else {
1848     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1849     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1850       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1851     } else {
1852       OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
1853                        ArrayRef<const std::string>(GetBootClassPathLocations()),
1854                        ArrayRef<const int>(GetBootClassPathFds()),
1855                        &boot_class_path);
1856     }
1857     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1858       LOG(ERROR) << "Could not initialize without image: " << error_msg;
1859       return false;
1860     }
1861 
1862     // TODO: Should we move the following to InitWithoutImage?
1863     SetInstructionSet(instruction_set_);
1864     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
1865       CalleeSaveType type = CalleeSaveType(i);
1866       if (!HasCalleeSaveMethod(type)) {
1867         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1868       }
1869     }
1870   }
1871 
1872   // Now that the boot image space is set, cache the boot classpath checksums,
1873   // to be used when validating oat files.
1874   ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
1875   ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
1876   boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
1877                                                                                 bcp_dex_files);
1878 
1879   CHECK(class_linker_ != nullptr);
1880 
1881   verifier::ClassVerifier::Init(class_linker_);
1882 
1883   if (runtime_options.Exists(Opt::MethodTrace)) {
1884     trace_config_.reset(new TraceConfig());
1885     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1886     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1887     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1888     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1889         Trace::TraceOutputMode::kStreaming :
1890         Trace::TraceOutputMode::kFile;
1891   }
1892 
1893   // TODO: move this to just be an Trace::Start argument
1894   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1895 
1896   if (GetHeap()->HasBootImageSpace()) {
1897     const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
1898     ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1899         ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
1900             image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
1901     pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
1902         boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
1903     DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
1904                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1905     pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
1906         boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
1907     DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
1908                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1909     pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
1910         boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
1911     DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
1912                ->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
1913     pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
1914         boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
1915     DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
1916                ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
1917   } else {
1918     // Pre-allocate an OutOfMemoryError for the case when we fail to
1919     // allocate the exception to be thrown.
1920     CreatePreAllocatedException(self,
1921                                 this,
1922                                 &pre_allocated_OutOfMemoryError_when_throwing_exception_,
1923                                 "Ljava/lang/OutOfMemoryError;",
1924                                 "OutOfMemoryError thrown while trying to throw an exception; "
1925                                     "no stack trace available");
1926     // Pre-allocate an OutOfMemoryError for the double-OOME case.
1927     CreatePreAllocatedException(self,
1928                                 this,
1929                                 &pre_allocated_OutOfMemoryError_when_throwing_oome_,
1930                                 "Ljava/lang/OutOfMemoryError;",
1931                                 "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1932                                     "no stack trace available");
1933     // Pre-allocate an OutOfMemoryError for the case when we fail to
1934     // allocate while handling a stack overflow.
1935     CreatePreAllocatedException(self,
1936                                 this,
1937                                 &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
1938                                 "Ljava/lang/OutOfMemoryError;",
1939                                 "OutOfMemoryError thrown while trying to handle a stack overflow; "
1940                                     "no stack trace available");
1941 
1942     // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1943     // ahead of checking the application's class loader.
1944     CreatePreAllocatedException(self,
1945                                 this,
1946                                 &pre_allocated_NoClassDefFoundError_,
1947                                 "Ljava/lang/NoClassDefFoundError;",
1948                                 "Class not found using the boot class loader; "
1949                                     "no stack trace available");
1950   }
1951 
1952   // Class-roots are setup, we can now finish initializing the JniIdManager.
1953   GetJniIdManager()->Init(self);
1954 
1955   InitMetrics();
1956 
1957   // Runtime initialization is largely done now.
1958   // We load plugins first since that can modify the runtime state slightly.
1959   // Load all plugins
1960   {
1961     // The init method of plugins expect the state of the thread to be non runnable.
1962     ScopedThreadSuspension sts(self, ThreadState::kNative);
1963     for (auto& plugin : plugins_) {
1964       std::string err;
1965       if (!plugin.Load(&err)) {
1966         LOG(FATAL) << plugin << " failed to load: " << err;
1967       }
1968     }
1969   }
1970 
1971   // Look for a native bridge.
1972   //
1973   // The intended flow here is, in the case of a running system:
1974   //
1975   // Runtime::Init() (zygote):
1976   //   LoadNativeBridge -> dlopen from cmd line parameter.
1977   //  |
1978   //  V
1979   // Runtime::Start() (zygote):
1980   //   No-op wrt native bridge.
1981   //  |
1982   //  | start app
1983   //  V
1984   // DidForkFromZygote(action)
1985   //   action = kUnload -> dlclose native bridge.
1986   //   action = kInitialize -> initialize library
1987   //
1988   //
1989   // The intended flow here is, in the case of a simple dalvikvm call:
1990   //
1991   // Runtime::Init():
1992   //   LoadNativeBridge -> dlopen from cmd line parameter.
1993   //  |
1994   //  V
1995   // Runtime::Start():
1996   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1997   //   No-op wrt native bridge.
1998   {
1999     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
2000     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
2001   }
2002 
2003   // Startup agents
2004   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
2005   for (auto& agent_spec : agent_specs_) {
2006     // TODO Check err
2007     int res = 0;
2008     std::string err = "";
2009     ti::LoadError error;
2010     std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
2011 
2012     if (agent != nullptr) {
2013       agents_.push_back(std::move(agent));
2014       continue;
2015     }
2016 
2017     switch (error) {
2018       case ti::LoadError::kInitializationError:
2019         LOG(FATAL) << "Unable to initialize agent!";
2020         UNREACHABLE();
2021 
2022       case ti::LoadError::kLoadingError:
2023         LOG(ERROR) << "Unable to load an agent: " << err;
2024         continue;
2025 
2026       case ti::LoadError::kNoError:
2027         break;
2028     }
2029     LOG(FATAL) << "Unreachable";
2030     UNREACHABLE();
2031   }
2032   {
2033     ScopedObjectAccess soa(self);
2034     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
2035   }
2036 
2037   if (IsZygote() && IsPerfettoHprofEnabled()) {
2038     constexpr const char* plugin_name = kIsDebugBuild ?
2039         "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2040     // Load eagerly in Zygote to improve app startup times. This will make
2041     // subsequent dlopens for the library no-ops.
2042     dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
2043   }
2044 
2045   VLOG(startup) << "Runtime::Init exiting";
2046 
2047   return true;
2048 }
2049 
InitMetrics()2050 void Runtime::InitMetrics() {
2051   metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
2052   metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
2053 }
2054 
RequestMetricsReport(bool synchronous)2055 void Runtime::RequestMetricsReport(bool synchronous) {
2056   if (metrics_reporter_) {
2057     metrics_reporter_->RequestMetricsReport(synchronous);
2058   }
2059 }
2060 
EnsurePluginLoaded(const char * plugin_name,std::string * error_msg)2061 bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
2062   // Is the plugin already loaded?
2063   for (const Plugin& p : plugins_) {
2064     if (p.GetLibrary() == plugin_name) {
2065       return true;
2066     }
2067   }
2068   Plugin new_plugin = Plugin::Create(plugin_name);
2069 
2070   if (!new_plugin.Load(error_msg)) {
2071     return false;
2072   }
2073   plugins_.push_back(std::move(new_plugin));
2074   return true;
2075 }
2076 
EnsurePerfettoPlugin(std::string * error_msg)2077 bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
2078   constexpr const char* plugin_name = kIsDebugBuild ?
2079     "libperfetto_hprofd.so" : "libperfetto_hprof.so";
2080   return EnsurePluginLoaded(plugin_name, error_msg);
2081 }
2082 
EnsureJvmtiPlugin(Runtime * runtime,std::string * error_msg)2083 static bool EnsureJvmtiPlugin(Runtime* runtime,
2084                               std::string* error_msg) {
2085   // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
2086   DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
2087       << "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
2088   // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
2089   // specifically allowed.
2090   if (!Dbg::IsJdwpAllowed()) {
2091     *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
2092     return false;
2093   }
2094 
2095   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
2096   return runtime->EnsurePluginLoaded(plugin_name, error_msg);
2097 }
2098 
2099 // Attach a new agent and add it to the list of runtime agents
2100 //
2101 // TODO: once we decide on the threading model for agents,
2102 //   revisit this and make sure we're doing this on the right thread
2103 //   (and we synchronize access to any shared data structures like "agents_")
2104 //
AttachAgent(JNIEnv * env,const std::string & agent_arg,jobject class_loader)2105 void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
2106   std::string error_msg;
2107   if (!EnsureJvmtiPlugin(this, &error_msg)) {
2108     LOG(WARNING) << "Could not load plugin: " << error_msg;
2109     ScopedObjectAccess soa(Thread::Current());
2110     ThrowIOException("%s", error_msg.c_str());
2111     return;
2112   }
2113 
2114   ti::AgentSpec agent_spec(agent_arg);
2115 
2116   int res = 0;
2117   ti::LoadError error;
2118   std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
2119 
2120   if (agent != nullptr) {
2121     agents_.push_back(std::move(agent));
2122   } else {
2123     LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
2124     ScopedObjectAccess soa(Thread::Current());
2125     ThrowIOException("%s", error_msg.c_str());
2126   }
2127 }
2128 
InitNativeMethods()2129 void Runtime::InitNativeMethods() {
2130   VLOG(startup) << "Runtime::InitNativeMethods entering";
2131   Thread* self = Thread::Current();
2132   JNIEnv* env = self->GetJniEnv();
2133 
2134   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
2135   CHECK_EQ(self->GetState(), ThreadState::kNative);
2136 
2137   // Set up the native methods provided by the runtime itself.
2138   RegisterRuntimeNativeMethods(env);
2139 
2140   // Initialize classes used in JNI. The initialization requires runtime native
2141   // methods to be loaded first.
2142   WellKnownClasses::Init(env);
2143 
2144   // Then set up libjavacore / libopenjdk / libicu_jni ,which are just
2145   // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
2146   // just use System.loadLibrary, but libcore can't because it's the library
2147   // that implements System.loadLibrary!
2148   //
2149   // By setting calling class to java.lang.Object, the caller location for these
2150   // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
2151   // com_android_art linker namespace.
2152 
2153   // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
2154   // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
2155   {
2156     std::string error_msg;
2157     if (!java_vm_->LoadNativeLibrary(
2158           env, "libicu_jni.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
2159       LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
2160     }
2161   }
2162   {
2163     std::string error_msg;
2164     if (!java_vm_->LoadNativeLibrary(
2165           env, "libjavacore.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
2166       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
2167     }
2168   }
2169   {
2170     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
2171                                                 ? "libopenjdkd.so"
2172                                                 : "libopenjdk.so";
2173     std::string error_msg;
2174     if (!java_vm_->LoadNativeLibrary(
2175           env, kOpenJdkLibrary, nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
2176       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
2177     }
2178   }
2179 
2180   // Initialize well known classes that may invoke runtime native methods.
2181   WellKnownClasses::LateInit(env);
2182 
2183   VLOG(startup) << "Runtime::InitNativeMethods exiting";
2184 }
2185 
ReclaimArenaPoolMemory()2186 void Runtime::ReclaimArenaPoolMemory() {
2187   arena_pool_->LockReclaimMemory();
2188 }
2189 
InitThreadGroups(Thread * self)2190 void Runtime::InitThreadGroups(Thread* self) {
2191   JNIEnvExt* env = self->GetJniEnv();
2192   ScopedJniEnvLocalRefState env_state(env);
2193   main_thread_group_ =
2194       env->NewGlobalRef(env->GetStaticObjectField(
2195           WellKnownClasses::java_lang_ThreadGroup,
2196           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
2197   CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2198   system_thread_group_ =
2199       env->NewGlobalRef(env->GetStaticObjectField(
2200           WellKnownClasses::java_lang_ThreadGroup,
2201           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
2202   CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2203 }
2204 
GetMainThreadGroup() const2205 jobject Runtime::GetMainThreadGroup() const {
2206   CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
2207   return main_thread_group_;
2208 }
2209 
GetSystemThreadGroup() const2210 jobject Runtime::GetSystemThreadGroup() const {
2211   CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
2212   return system_thread_group_;
2213 }
2214 
GetSystemClassLoader() const2215 jobject Runtime::GetSystemClassLoader() const {
2216   CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler());
2217   return system_class_loader_;
2218 }
2219 
RegisterRuntimeNativeMethods(JNIEnv * env)2220 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
2221   register_dalvik_system_DexFile(env);
2222   register_dalvik_system_BaseDexClassLoader(env);
2223   register_dalvik_system_VMDebug(env);
2224   register_dalvik_system_VMRuntime(env);
2225   register_dalvik_system_VMStack(env);
2226   register_dalvik_system_ZygoteHooks(env);
2227   register_java_lang_Class(env);
2228   register_java_lang_Object(env);
2229   register_java_lang_invoke_MethodHandle(env);
2230   register_java_lang_invoke_MethodHandleImpl(env);
2231   register_java_lang_ref_FinalizerReference(env);
2232   register_java_lang_reflect_Array(env);
2233   register_java_lang_reflect_Constructor(env);
2234   register_java_lang_reflect_Executable(env);
2235   register_java_lang_reflect_Field(env);
2236   register_java_lang_reflect_Method(env);
2237   register_java_lang_reflect_Parameter(env);
2238   register_java_lang_reflect_Proxy(env);
2239   register_java_lang_ref_Reference(env);
2240   register_java_lang_String(env);
2241   register_java_lang_StringFactory(env);
2242   register_java_lang_System(env);
2243   register_java_lang_Thread(env);
2244   register_java_lang_Throwable(env);
2245   register_java_lang_VMClassLoader(env);
2246   register_java_util_concurrent_atomic_AtomicLong(env);
2247   register_jdk_internal_misc_Unsafe(env);
2248   register_libcore_io_Memory(env);
2249   register_libcore_util_CharsetUtils(env);
2250   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
2251   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
2252   register_sun_misc_Unsafe(env);
2253 }
2254 
operator <<(std::ostream & os,const DeoptimizationKind & kind)2255 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
2256   os << GetDeoptimizationKindName(kind);
2257   return os;
2258 }
2259 
DumpDeoptimizations(std::ostream & os)2260 void Runtime::DumpDeoptimizations(std::ostream& os) {
2261   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
2262     if (deoptimization_counts_[i] != 0) {
2263       os << "Number of "
2264          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
2265          << " deoptimizations: "
2266          << deoptimization_counts_[i]
2267          << "\n";
2268     }
2269   }
2270 }
2271 
DumpForSigQuit(std::ostream & os)2272 void Runtime::DumpForSigQuit(std::ostream& os) {
2273   GetClassLinker()->DumpForSigQuit(os);
2274   GetInternTable()->DumpForSigQuit(os);
2275   GetJavaVM()->DumpForSigQuit(os);
2276   GetHeap()->DumpForSigQuit(os);
2277   oat_file_manager_->DumpForSigQuit(os);
2278   if (GetJit() != nullptr) {
2279     GetJit()->DumpForSigQuit(os);
2280   } else {
2281     os << "Running non JIT\n";
2282   }
2283   DumpDeoptimizations(os);
2284   TrackedAllocators::Dump(os);
2285   GetMetrics()->DumpForSigQuit(os);
2286   os << "\n";
2287 
2288   thread_list_->DumpForSigQuit(os);
2289   BaseMutex::DumpAll(os);
2290 
2291   // Inform anyone else who is interested in SigQuit.
2292   {
2293     ScopedObjectAccess soa(Thread::Current());
2294     callbacks_->SigQuit();
2295   }
2296 }
2297 
DumpLockHolders(std::ostream & os)2298 void Runtime::DumpLockHolders(std::ostream& os) {
2299   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
2300   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
2301   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
2302   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
2303   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
2304     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
2305        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
2306        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
2307        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
2308   }
2309 }
2310 
SetStatsEnabled(bool new_state)2311 void Runtime::SetStatsEnabled(bool new_state) {
2312   Thread* self = Thread::Current();
2313   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
2314   if (new_state == true) {
2315     GetStats()->Clear(~0);
2316     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2317     self->GetStats()->Clear(~0);
2318     if (stats_enabled_ != new_state) {
2319       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
2320     }
2321   } else if (stats_enabled_ != new_state) {
2322     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
2323   }
2324   stats_enabled_ = new_state;
2325 }
2326 
ResetStats(int kinds)2327 void Runtime::ResetStats(int kinds) {
2328   GetStats()->Clear(kinds & 0xffff);
2329   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
2330   Thread::Current()->GetStats()->Clear(kinds >> 16);
2331 }
2332 
GetStat(int kind)2333 uint64_t Runtime::GetStat(int kind) {
2334   RuntimeStats* stats;
2335   if (kind < (1<<16)) {
2336     stats = GetStats();
2337   } else {
2338     stats = Thread::Current()->GetStats();
2339     kind >>= 16;
2340   }
2341   switch (kind) {
2342   case KIND_ALLOCATED_OBJECTS:
2343     return stats->allocated_objects;
2344   case KIND_ALLOCATED_BYTES:
2345     return stats->allocated_bytes;
2346   case KIND_FREED_OBJECTS:
2347     return stats->freed_objects;
2348   case KIND_FREED_BYTES:
2349     return stats->freed_bytes;
2350   case KIND_GC_INVOCATIONS:
2351     return stats->gc_for_alloc_count;
2352   case KIND_CLASS_INIT_COUNT:
2353     return stats->class_init_count;
2354   case KIND_CLASS_INIT_TIME:
2355     return stats->class_init_time_ns;
2356   case KIND_EXT_ALLOCATED_OBJECTS:
2357   case KIND_EXT_ALLOCATED_BYTES:
2358   case KIND_EXT_FREED_OBJECTS:
2359   case KIND_EXT_FREED_BYTES:
2360     return 0;  // backward compatibility
2361   default:
2362     LOG(FATAL) << "Unknown statistic " << kind;
2363     UNREACHABLE();
2364   }
2365 }
2366 
BlockSignals()2367 void Runtime::BlockSignals() {
2368   SignalSet signals;
2369   signals.Add(SIGPIPE);
2370   // SIGQUIT is used to dump the runtime's state (including stack traces).
2371   signals.Add(SIGQUIT);
2372   // SIGUSR1 is used to initiate a GC.
2373   signals.Add(SIGUSR1);
2374   signals.Block();
2375 }
2376 
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)2377 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
2378                                   bool create_peer) {
2379   ScopedTrace trace(__FUNCTION__);
2380   Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
2381   // Run ThreadGroup.add to notify the group that this thread is now started.
2382   if (self != nullptr && create_peer && !IsAotCompiler()) {
2383     ScopedObjectAccess soa(self);
2384     self->NotifyThreadGroup(soa, thread_group);
2385   }
2386   return self != nullptr;
2387 }
2388 
DetachCurrentThread()2389 void Runtime::DetachCurrentThread() {
2390   ScopedTrace trace(__FUNCTION__);
2391   Thread* self = Thread::Current();
2392   if (self == nullptr) {
2393     LOG(FATAL) << "attempting to detach thread that is not attached";
2394   }
2395   if (self->HasManagedStack()) {
2396     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
2397   }
2398   thread_list_->Unregister(self);
2399 }
2400 
GetPreAllocatedOutOfMemoryErrorWhenThrowingException()2401 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
2402   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
2403   if (oome == nullptr) {
2404     LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
2405   }
2406   return oome;
2407 }
2408 
GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()2409 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
2410   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
2411   if (oome == nullptr) {
2412     LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
2413   }
2414   return oome;
2415 }
2416 
GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()2417 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
2418   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
2419   if (oome == nullptr) {
2420     LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
2421   }
2422   return oome;
2423 }
2424 
GetPreAllocatedNoClassDefFoundError()2425 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
2426   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
2427   if (ncdfe == nullptr) {
2428     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
2429   }
2430   return ncdfe;
2431 }
2432 
VisitConstantRoots(RootVisitor * visitor)2433 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
2434   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
2435   // null.
2436   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
2437   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2438   if (HasResolutionMethod()) {
2439     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
2440   }
2441   if (HasImtConflictMethod()) {
2442     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
2443   }
2444   if (imt_unimplemented_method_ != nullptr) {
2445     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
2446   }
2447   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
2448     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
2449     if (m != nullptr) {
2450       m->VisitRoots(buffered_visitor, pointer_size);
2451     }
2452   }
2453 }
2454 
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2455 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2456   intern_table_->VisitRoots(visitor, flags);
2457   class_linker_->VisitRoots(visitor, flags);
2458   jni_id_manager_->VisitRoots(visitor);
2459   heap_->VisitAllocationRecords(visitor);
2460   if ((flags & kVisitRootFlagNewRoots) == 0) {
2461     // Guaranteed to have no new roots in the constant roots.
2462     VisitConstantRoots(visitor);
2463   }
2464 }
2465 
VisitTransactionRoots(RootVisitor * visitor)2466 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
2467   for (Transaction& transaction : preinitialization_transactions_) {
2468     transaction.VisitRoots(visitor);
2469   }
2470 }
2471 
VisitNonThreadRoots(RootVisitor * visitor)2472 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
2473   java_vm_->VisitRoots(visitor);
2474   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2475   pre_allocated_OutOfMemoryError_when_throwing_exception_
2476       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2477   pre_allocated_OutOfMemoryError_when_throwing_oome_
2478       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2479   pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
2480       .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2481   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2482   VisitImageRoots(visitor);
2483   verifier::ClassVerifier::VisitStaticRoots(visitor);
2484   VisitTransactionRoots(visitor);
2485 }
2486 
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)2487 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
2488   VisitThreadRoots(visitor, flags);
2489   VisitNonThreadRoots(visitor);
2490 }
2491 
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)2492 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
2493   thread_list_->VisitRoots(visitor, flags);
2494 }
2495 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2496 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2497   VisitNonConcurrentRoots(visitor, flags);
2498   VisitConcurrentRoots(visitor, flags);
2499 }
2500 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)2501 void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
2502   thread_list_->VisitReflectiveTargets(visitor);
2503   heap_->VisitReflectiveTargets(visitor);
2504   jni_id_manager_->VisitReflectiveTargets(visitor);
2505   callbacks_->VisitReflectiveTargets(visitor);
2506 }
2507 
VisitImageRoots(RootVisitor * visitor)2508 void Runtime::VisitImageRoots(RootVisitor* visitor) {
2509   for (auto* space : GetHeap()->GetContinuousSpaces()) {
2510     if (space->IsImageSpace()) {
2511       auto* image_space = space->AsImageSpace();
2512       const auto& image_header = image_space->GetImageHeader();
2513       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
2514         mirror::Object* obj =
2515             image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
2516         if (obj != nullptr) {
2517           mirror::Object* after_obj = obj;
2518           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
2519           CHECK_EQ(after_obj, obj);
2520         }
2521       }
2522     }
2523   }
2524 }
2525 
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)2526 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
2527     REQUIRES_SHARED(Locks::mutator_lock_) {
2528   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
2529   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
2530   const size_t method_size = ArtMethod::Size(image_pointer_size);
2531   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
2532       Thread::Current(),
2533       linear_alloc,
2534       1);
2535   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
2536   CHECK(method != nullptr);
2537   method->SetDexMethodIndex(dex::kDexNoIndex);
2538   CHECK(method->IsRuntimeMethod());
2539   return method;
2540 }
2541 
CreateImtConflictMethod(LinearAlloc * linear_alloc)2542 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
2543   ClassLinker* const class_linker = GetClassLinker();
2544   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
2545   // When compiling, the code pointer will get set later when the image is loaded.
2546   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2547   if (IsAotCompiler()) {
2548     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2549   } else {
2550     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
2551   }
2552   // Create empty conflict table.
2553   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
2554                               pointer_size);
2555   return method;
2556 }
2557 
SetImtConflictMethod(ArtMethod * method)2558 void Runtime::SetImtConflictMethod(ArtMethod* method) {
2559   CHECK(method != nullptr);
2560   CHECK(method->IsRuntimeMethod());
2561   imt_conflict_method_ = method;
2562 }
2563 
CreateResolutionMethod()2564 ArtMethod* Runtime::CreateResolutionMethod() {
2565   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2566   // When compiling, the code pointer will get set later when the image is loaded.
2567   if (IsAotCompiler()) {
2568     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2569     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2570     method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
2571   } else {
2572     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2573     method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
2574   }
2575   return method;
2576 }
2577 
CreateCalleeSaveMethod()2578 ArtMethod* Runtime::CreateCalleeSaveMethod() {
2579   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
2580   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
2581   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
2582   DCHECK_NE(instruction_set_, InstructionSet::kNone);
2583   DCHECK(method->IsRuntimeMethod());
2584   return method;
2585 }
2586 
DisallowNewSystemWeaks()2587 void Runtime::DisallowNewSystemWeaks() {
2588   CHECK(!kUseReadBarrier);
2589   monitor_list_->DisallowNewMonitors();
2590   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
2591   java_vm_->DisallowNewWeakGlobals();
2592   heap_->DisallowNewAllocationRecords();
2593   if (GetJit() != nullptr) {
2594     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
2595   }
2596 
2597   // All other generic system-weak holders.
2598   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2599     holder->Disallow();
2600   }
2601 }
2602 
AllowNewSystemWeaks()2603 void Runtime::AllowNewSystemWeaks() {
2604   CHECK(!kUseReadBarrier);
2605   monitor_list_->AllowNewMonitors();
2606   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
2607   java_vm_->AllowNewWeakGlobals();
2608   heap_->AllowNewAllocationRecords();
2609   if (GetJit() != nullptr) {
2610     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
2611   }
2612 
2613   // All other generic system-weak holders.
2614   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2615     holder->Allow();
2616   }
2617 }
2618 
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)2619 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
2620   // This is used for the read barrier case that uses the thread-local
2621   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
2622   // (see ThreadList::RunCheckpoint).
2623   monitor_list_->BroadcastForNewMonitors();
2624   intern_table_->BroadcastForNewInterns();
2625   java_vm_->BroadcastForNewWeakGlobals();
2626   heap_->BroadcastForNewAllocationRecords();
2627   if (GetJit() != nullptr) {
2628     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
2629   }
2630 
2631   // All other generic system-weak holders.
2632   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
2633     holder->Broadcast(broadcast_for_checkpoint);
2634   }
2635 }
2636 
SetInstructionSet(InstructionSet instruction_set)2637 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
2638   instruction_set_ = instruction_set;
2639   switch (instruction_set) {
2640     case InstructionSet::kThumb2:
2641       // kThumb2 is the same as kArm, use the canonical value.
2642       instruction_set_ = InstructionSet::kArm;
2643       break;
2644     case InstructionSet::kArm:
2645     case InstructionSet::kArm64:
2646     case InstructionSet::kX86:
2647     case InstructionSet::kX86_64:
2648       break;
2649     default:
2650       UNIMPLEMENTED(FATAL) << instruction_set_;
2651       UNREACHABLE();
2652   }
2653 }
2654 
ClearInstructionSet()2655 void Runtime::ClearInstructionSet() {
2656   instruction_set_ = InstructionSet::kNone;
2657 }
2658 
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)2659 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
2660   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
2661   CHECK(method != nullptr);
2662   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
2663 }
2664 
ClearCalleeSaveMethods()2665 void Runtime::ClearCalleeSaveMethods() {
2666   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
2667     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
2668   }
2669 }
2670 
RegisterAppInfo(const std::string & package_name,const std::vector<std::string> & code_paths,const std::string & profile_output_filename,const std::string & ref_profile_filename,int32_t code_type)2671 void Runtime::RegisterAppInfo(const std::string& package_name,
2672                               const std::vector<std::string>& code_paths,
2673                               const std::string& profile_output_filename,
2674                               const std::string& ref_profile_filename,
2675                               int32_t code_type) {
2676   app_info_.RegisterAppInfo(
2677       package_name,
2678       code_paths,
2679       profile_output_filename,
2680       ref_profile_filename,
2681       AppInfo::FromVMRuntimeConstants(code_type));
2682 
2683   if (metrics_reporter_ != nullptr) {
2684     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
2685   }
2686 
2687   if (jit_.get() == nullptr) {
2688     // We are not JITing. Nothing to do.
2689     return;
2690   }
2691 
2692   VLOG(profiler) << "Register app with " << profile_output_filename
2693       << " " << android::base::Join(code_paths, ':');
2694   VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
2695 
2696   if (profile_output_filename.empty()) {
2697     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2698     return;
2699   }
2700   if (!OS::FileExists(profile_output_filename.c_str(), /*check_file_type=*/ false)) {
2701     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exist.";
2702     return;
2703   }
2704   if (code_paths.empty()) {
2705     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2706     return;
2707   }
2708 
2709   jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename);
2710 }
2711 
2712 // Transaction support.
IsActiveTransaction() const2713 bool Runtime::IsActiveTransaction() const {
2714   return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
2715 }
2716 
EnterTransactionMode(bool strict,mirror::Class * root)2717 void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
2718   DCHECK(IsAotCompiler());
2719   ArenaPool* arena_pool = nullptr;
2720   ArenaStack* arena_stack = nullptr;
2721   if (preinitialization_transactions_.empty()) {  // Top-level transaction?
2722     // Make initialized classes visibly initialized now. If that happened during the transaction
2723     // and then the transaction was aborted, we would roll back the status update but not the
2724     // ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
2725     GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
2726     // Pass the runtime `ArenaPool` to the transaction.
2727     arena_pool = GetArenaPool();
2728   } else {
2729     // Pass the `ArenaStack` from previous transaction to the new one.
2730     arena_stack = preinitialization_transactions_.front().GetArenaStack();
2731   }
2732   preinitialization_transactions_.emplace_front(strict, root, arena_stack, arena_pool);
2733 }
2734 
ExitTransactionMode()2735 void Runtime::ExitTransactionMode() {
2736   DCHECK(IsAotCompiler());
2737   DCHECK(IsActiveTransaction());
2738   preinitialization_transactions_.pop_front();
2739 }
2740 
RollbackAndExitTransactionMode()2741 void Runtime::RollbackAndExitTransactionMode() {
2742   DCHECK(IsAotCompiler());
2743   DCHECK(IsActiveTransaction());
2744   preinitialization_transactions_.front().Rollback();
2745   preinitialization_transactions_.pop_front();
2746 }
2747 
IsTransactionAborted() const2748 bool Runtime::IsTransactionAborted() const {
2749   if (!IsActiveTransaction()) {
2750     return false;
2751   } else {
2752     DCHECK(IsAotCompiler());
2753     return GetTransaction()->IsAborted();
2754   }
2755 }
2756 
RollbackAllTransactions()2757 void Runtime::RollbackAllTransactions() {
2758   // If transaction is aborted, all transactions will be kept in the list.
2759   // Rollback and exit all of them.
2760   while (IsActiveTransaction()) {
2761     RollbackAndExitTransactionMode();
2762   }
2763 }
2764 
IsActiveStrictTransactionMode() const2765 bool Runtime::IsActiveStrictTransactionMode() const {
2766   return IsActiveTransaction() && GetTransaction()->IsStrict();
2767 }
2768 
GetTransaction() const2769 const Transaction* Runtime::GetTransaction() const {
2770   DCHECK(!preinitialization_transactions_.empty());
2771   return &preinitialization_transactions_.front();
2772 }
2773 
GetTransaction()2774 Transaction* Runtime::GetTransaction() {
2775   DCHECK(!preinitialization_transactions_.empty());
2776   return &preinitialization_transactions_.front();
2777 }
2778 
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2779 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2780   DCHECK(IsAotCompiler());
2781   DCHECK(IsActiveTransaction());
2782   // Throwing an exception may cause its class initialization. If we mark the transaction
2783   // aborted before that, we may warn with a false alarm. Throwing the exception before
2784   // marking the transaction aborted avoids that.
2785   // But now the transaction can be nested, and abort the transaction will relax the constraints
2786   // for constructing stack trace.
2787   GetTransaction()->Abort(abort_message);
2788   GetTransaction()->ThrowAbortError(self, &abort_message);
2789 }
2790 
ThrowTransactionAbortError(Thread * self)2791 void Runtime::ThrowTransactionAbortError(Thread* self) {
2792   DCHECK(IsAotCompiler());
2793   DCHECK(IsActiveTransaction());
2794   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2795   GetTransaction()->ThrowAbortError(self, nullptr);
2796 }
2797 
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile)2798 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj,
2799                                       MemberOffset field_offset,
2800                                       uint8_t value,
2801                                       bool is_volatile) {
2802   DCHECK(IsAotCompiler());
2803   DCHECK(IsActiveTransaction());
2804   GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2805 }
2806 
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile)2807 void Runtime::RecordWriteFieldByte(mirror::Object* obj,
2808                                    MemberOffset field_offset,
2809                                    int8_t value,
2810                                    bool is_volatile) {
2811   DCHECK(IsAotCompiler());
2812   DCHECK(IsActiveTransaction());
2813   GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2814 }
2815 
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile)2816 void Runtime::RecordWriteFieldChar(mirror::Object* obj,
2817                                    MemberOffset field_offset,
2818                                    uint16_t value,
2819                                    bool is_volatile) {
2820   DCHECK(IsAotCompiler());
2821   DCHECK(IsActiveTransaction());
2822   GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2823 }
2824 
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile)2825 void Runtime::RecordWriteFieldShort(mirror::Object* obj,
2826                                     MemberOffset field_offset,
2827                                     int16_t value,
2828                                     bool is_volatile) {
2829   DCHECK(IsAotCompiler());
2830   DCHECK(IsActiveTransaction());
2831   GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2832 }
2833 
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile)2834 void Runtime::RecordWriteField32(mirror::Object* obj,
2835                                  MemberOffset field_offset,
2836                                  uint32_t value,
2837                                  bool is_volatile) {
2838   DCHECK(IsAotCompiler());
2839   DCHECK(IsActiveTransaction());
2840   GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
2841 }
2842 
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile)2843 void Runtime::RecordWriteField64(mirror::Object* obj,
2844                                  MemberOffset field_offset,
2845                                  uint64_t value,
2846                                  bool is_volatile) {
2847   DCHECK(IsAotCompiler());
2848   DCHECK(IsActiveTransaction());
2849   GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
2850 }
2851 
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile)2852 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2853                                         MemberOffset field_offset,
2854                                         ObjPtr<mirror::Object> value,
2855                                         bool is_volatile) {
2856   DCHECK(IsAotCompiler());
2857   DCHECK(IsActiveTransaction());
2858   GetTransaction()->RecordWriteFieldReference(obj, field_offset, value.Ptr(), is_volatile);
2859 }
2860 
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value)2861 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) {
2862   DCHECK(IsAotCompiler());
2863   DCHECK(IsActiveTransaction());
2864   GetTransaction()->RecordWriteArray(array, index, value);
2865 }
2866 
RecordStrongStringInsertion(ObjPtr<mirror::String> s)2867 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) {
2868   DCHECK(IsAotCompiler());
2869   DCHECK(IsActiveTransaction());
2870   GetTransaction()->RecordStrongStringInsertion(s);
2871 }
2872 
RecordWeakStringInsertion(ObjPtr<mirror::String> s)2873 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) {
2874   DCHECK(IsAotCompiler());
2875   DCHECK(IsActiveTransaction());
2876   GetTransaction()->RecordWeakStringInsertion(s);
2877 }
2878 
RecordStrongStringRemoval(ObjPtr<mirror::String> s)2879 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) {
2880   DCHECK(IsAotCompiler());
2881   DCHECK(IsActiveTransaction());
2882   GetTransaction()->RecordStrongStringRemoval(s);
2883 }
2884 
RecordWeakStringRemoval(ObjPtr<mirror::String> s)2885 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) {
2886   DCHECK(IsAotCompiler());
2887   DCHECK(IsActiveTransaction());
2888   GetTransaction()->RecordWeakStringRemoval(s);
2889 }
2890 
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx)2891 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2892                                   dex::StringIndex string_idx) {
2893   DCHECK(IsAotCompiler());
2894   DCHECK(IsActiveTransaction());
2895   GetTransaction()->RecordResolveString(dex_cache, string_idx);
2896 }
2897 
RecordResolveMethodType(ObjPtr<mirror::DexCache> dex_cache,dex::ProtoIndex proto_idx)2898 void Runtime::RecordResolveMethodType(ObjPtr<mirror::DexCache> dex_cache,
2899                                       dex::ProtoIndex proto_idx) {
2900   DCHECK(IsAotCompiler());
2901   DCHECK(IsActiveTransaction());
2902   GetTransaction()->RecordResolveMethodType(dex_cache, proto_idx);
2903 }
2904 
SetFaultMessage(const std::string & message)2905 void Runtime::SetFaultMessage(const std::string& message) {
2906   std::string* new_msg = new std::string(message);
2907   std::string* cur_msg = fault_message_.exchange(new_msg);
2908   delete cur_msg;
2909 }
2910 
GetFaultMessage()2911 std::string Runtime::GetFaultMessage() {
2912   // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
2913   // the string in parallel.
2914   std::string* cur_msg = fault_message_.exchange(nullptr);
2915 
2916   // Make a copy of the string.
2917   std::string ret = cur_msg == nullptr ? "" : *cur_msg;
2918 
2919   // Put the message back if it hasn't been updated.
2920   std::string* null_str = nullptr;
2921   if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
2922     // Already replaced.
2923     delete cur_msg;
2924   }
2925 
2926   return ret;
2927 }
2928 
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2929 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2930     const {
2931   if (GetInstrumentation()->InterpretOnly()) {
2932     argv->push_back("--compiler-filter=quicken");
2933   }
2934 
2935   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2936   // architecture support, dex2oat may be compiled as a different instruction-set than that
2937   // currently being executed.
2938   std::string instruction_set("--instruction-set=");
2939   instruction_set += GetInstructionSetString(kRuntimeISA);
2940   argv->push_back(instruction_set);
2941 
2942   if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
2943     argv->push_back("--instruction-set-features=runtime");
2944   } else {
2945     std::unique_ptr<const InstructionSetFeatures> features(
2946         InstructionSetFeatures::FromCppDefines());
2947     std::string feature_string("--instruction-set-features=");
2948     feature_string += features->GetFeatureString();
2949     argv->push_back(feature_string);
2950   }
2951 }
2952 
CreateJitCodeCache(bool rwx_memory_allowed)2953 void Runtime::CreateJitCodeCache(bool rwx_memory_allowed) {
2954   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2955     DCHECK(!jit_options_->UseJitCompilation());
2956   }
2957 
2958   if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
2959     return;
2960   }
2961 
2962   std::string error_msg;
2963   bool profiling_only = !jit_options_->UseJitCompilation();
2964   jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
2965                                                   rwx_memory_allowed,
2966                                                   IsZygote(),
2967                                                   &error_msg));
2968   if (jit_code_cache_.get() == nullptr) {
2969     LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
2970   }
2971 }
2972 
CreateJit()2973 void Runtime::CreateJit() {
2974   DCHECK(jit_ == nullptr);
2975   if (jit_code_cache_.get() == nullptr) {
2976     if (!IsSafeMode()) {
2977       LOG(WARNING) << "Missing code cache, cannot create JIT.";
2978     }
2979     return;
2980   }
2981   if (IsSafeMode()) {
2982     LOG(INFO) << "Not creating JIT because of SafeMode.";
2983     jit_code_cache_.reset();
2984     return;
2985   }
2986 
2987   jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
2988   jit_.reset(jit);
2989   if (jit == nullptr) {
2990     LOG(WARNING) << "Failed to allocate JIT";
2991     // Release JIT code cache resources (several MB of memory).
2992     jit_code_cache_.reset();
2993   } else {
2994     jit->CreateThreadPool();
2995   }
2996 }
2997 
CanRelocate() const2998 bool Runtime::CanRelocate() const {
2999   return !IsAotCompiler();
3000 }
3001 
IsCompilingBootImage() const3002 bool Runtime::IsCompilingBootImage() const {
3003   return IsCompiler() && compiler_callbacks_->IsBootImage();
3004 }
3005 
SetResolutionMethod(ArtMethod * method)3006 void Runtime::SetResolutionMethod(ArtMethod* method) {
3007   CHECK(method != nullptr);
3008   CHECK(method->IsRuntimeMethod()) << method;
3009   resolution_method_ = method;
3010 }
3011 
SetImtUnimplementedMethod(ArtMethod * method)3012 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
3013   CHECK(method != nullptr);
3014   CHECK(method->IsRuntimeMethod());
3015   imt_unimplemented_method_ = method;
3016 }
3017 
FixupConflictTables()3018 void Runtime::FixupConflictTables() {
3019   // We can only do this after the class linker is created.
3020   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
3021   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
3022     imt_unimplemented_method_->SetImtConflictTable(
3023         ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3024         pointer_size);
3025   }
3026   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
3027     imt_conflict_method_->SetImtConflictTable(
3028           ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
3029           pointer_size);
3030   }
3031 }
3032 
DisableVerifier()3033 void Runtime::DisableVerifier() {
3034   verify_ = verifier::VerifyMode::kNone;
3035 }
3036 
IsVerificationEnabled() const3037 bool Runtime::IsVerificationEnabled() const {
3038   return verify_ == verifier::VerifyMode::kEnable ||
3039       verify_ == verifier::VerifyMode::kSoftFail;
3040 }
3041 
IsVerificationSoftFail() const3042 bool Runtime::IsVerificationSoftFail() const {
3043   return verify_ == verifier::VerifyMode::kSoftFail;
3044 }
3045 
IsAsyncDeoptimizeable(uintptr_t code) const3046 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
3047   if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
3048     if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
3049       return true;
3050     }
3051   }
3052   // We only support async deopt (ie the compiled code is not explicitly asking for
3053   // deopt, but something else like the debugger) in debuggable JIT code.
3054   // We could look at the oat file where `code` is being defined,
3055   // and check whether it's been compiled debuggable, but we decided to
3056   // only rely on the JIT for debuggable apps.
3057   // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
3058   // region as well.
3059   return IsJavaDebuggable() && GetJit() != nullptr &&
3060          GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code));
3061 }
3062 
CreateLinearAlloc()3063 LinearAlloc* Runtime::CreateLinearAlloc() {
3064   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
3065   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
3066   // when we have 64 bit ArtMethod pointers.
3067   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
3068       ? new LinearAlloc(low_4gb_arena_pool_.get())
3069       : new LinearAlloc(arena_pool_.get());
3070 }
3071 
GetHashTableMinLoadFactor() const3072 double Runtime::GetHashTableMinLoadFactor() const {
3073   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
3074 }
3075 
GetHashTableMaxLoadFactor() const3076 double Runtime::GetHashTableMaxLoadFactor() const {
3077   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
3078 }
3079 
UpdateProcessState(ProcessState process_state)3080 void Runtime::UpdateProcessState(ProcessState process_state) {
3081   ProcessState old_process_state = process_state_;
3082   process_state_ = process_state;
3083   GetHeap()->UpdateProcessState(old_process_state, process_state);
3084 }
3085 
RegisterSensitiveThread() const3086 void Runtime::RegisterSensitiveThread() const {
3087   Thread::SetJitSensitiveThread();
3088 }
3089 
3090 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const3091 bool Runtime::UseJitCompilation() const {
3092   return (jit_ != nullptr) && jit_->UseJitCompilation();
3093 }
3094 
TakeSnapshot()3095 void Runtime::EnvSnapshot::TakeSnapshot() {
3096   char** env = GetEnviron();
3097   for (size_t i = 0; env[i] != nullptr; ++i) {
3098     name_value_pairs_.emplace_back(new std::string(env[i]));
3099   }
3100   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
3101   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
3102   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
3103   for (size_t i = 0; env[i] != nullptr; ++i) {
3104     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
3105   }
3106   c_env_vector_[name_value_pairs_.size()] = nullptr;
3107 }
3108 
GetSnapshot() const3109 char** Runtime::EnvSnapshot::GetSnapshot() const {
3110   return c_env_vector_.get();
3111 }
3112 
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3113 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3114   gc::ScopedGCCriticalSection gcs(Thread::Current(),
3115                                   gc::kGcCauseAddRemoveSystemWeakHolder,
3116                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
3117   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
3118   //       a critical section.
3119   system_weak_holders_.push_back(holder);
3120 }
3121 
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)3122 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
3123   gc::ScopedGCCriticalSection gcs(Thread::Current(),
3124                                   gc::kGcCauseAddRemoveSystemWeakHolder,
3125                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
3126   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
3127   if (it != system_weak_holders_.end()) {
3128     system_weak_holders_.erase(it);
3129   }
3130 }
3131 
GetRuntimeCallbacks()3132 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
3133   return callbacks_.get();
3134 }
3135 
3136 // Used to patch boot image method entry point to interpreter bridge.
3137 class UpdateEntryPointsClassVisitor : public ClassVisitor {
3138  public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)3139   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
3140       : instrumentation_(instrumentation) {}
3141 
operator ()(ObjPtr<mirror::Class> klass)3142   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
3143     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
3144     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
3145     for (auto& m : klass->GetMethods(pointer_size)) {
3146       const void* code = m.GetEntryPointFromQuickCompiledCode();
3147       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
3148           !m.IsNative() &&
3149           !m.IsProxyMethod()) {
3150         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3151       }
3152 
3153       if (Runtime::Current()->GetJit() != nullptr &&
3154           Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
3155           !m.IsNative()) {
3156         DCHECK(!m.IsProxyMethod());
3157         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3158       }
3159 
3160       if (m.IsPreCompiled()) {
3161         // Precompilation is incompatible with debuggable, so clear the flag
3162         // and update the entrypoint in case it has been compiled.
3163         m.ClearPreCompiled();
3164         instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
3165       }
3166     }
3167     return true;
3168   }
3169 
3170  private:
3171   instrumentation::Instrumentation* const instrumentation_;
3172 };
3173 
SetJavaDebuggable(bool value)3174 void Runtime::SetJavaDebuggable(bool value) {
3175   is_java_debuggable_ = value;
3176   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
3177 }
3178 
DeoptimizeBootImage()3179 void Runtime::DeoptimizeBootImage() {
3180   // If we've already started and we are setting this runtime to debuggable,
3181   // we patch entry points of methods in boot image to interpreter bridge, as
3182   // boot image code may be AOT compiled as not debuggable.
3183   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
3184     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
3185     GetClassLinker()->VisitClasses(&visitor);
3186     jit::Jit* jit = GetJit();
3187     if (jit != nullptr) {
3188       // Code previously compiled may not be compiled debuggable.
3189       jit->GetCodeCache()->TransitionToDebuggable();
3190     }
3191   }
3192 }
3193 
ScopedThreadPoolUsage()3194 Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
3195     : thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
3196 
~ScopedThreadPoolUsage()3197 Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
3198   Runtime::Current()->ReleaseThreadPool();
3199 }
3200 
DeleteThreadPool()3201 bool Runtime::DeleteThreadPool() {
3202   // Make sure workers are started to prevent thread shutdown errors.
3203   WaitForThreadPoolWorkersToStart();
3204   std::unique_ptr<ThreadPool> thread_pool;
3205   {
3206     MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3207     if (thread_pool_ref_count_ == 0) {
3208       thread_pool = std::move(thread_pool_);
3209     }
3210   }
3211   return thread_pool != nullptr;
3212 }
3213 
AcquireThreadPool()3214 ThreadPool* Runtime::AcquireThreadPool() {
3215   MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3216   ++thread_pool_ref_count_;
3217   return thread_pool_.get();
3218 }
3219 
ReleaseThreadPool()3220 void Runtime::ReleaseThreadPool() {
3221   MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
3222   CHECK_GT(thread_pool_ref_count_, 0u);
3223   --thread_pool_ref_count_;
3224 }
3225 
WaitForThreadPoolWorkersToStart()3226 void Runtime::WaitForThreadPoolWorkersToStart() {
3227   // Need to make sure workers are created before deleting the pool.
3228   ScopedThreadPoolUsage stpu;
3229   if (stpu.GetThreadPool() != nullptr) {
3230     stpu.GetThreadPool()->WaitForWorkersToBeCreated();
3231   }
3232 }
3233 
ResetStartupCompleted()3234 void Runtime::ResetStartupCompleted() {
3235   startup_completed_.store(false, std::memory_order_seq_cst);
3236 }
3237 
3238 class Runtime::NotifyStartupCompletedTask : public gc::HeapTask {
3239  public:
NotifyStartupCompletedTask()3240   NotifyStartupCompletedTask() : gc::HeapTask(/*target_run_time=*/ NanoTime()) {}
3241 
Run(Thread * self)3242   void Run(Thread* self) override {
3243     VLOG(startup) << "NotifyStartupCompletedTask running";
3244     Runtime* const runtime = Runtime::Current();
3245     {
3246       ScopedTrace trace("Releasing app image spaces metadata");
3247       ScopedObjectAccess soa(Thread::Current());
3248       // Request empty checkpoints to make sure no threads are accessing the image space metadata
3249       // section when we madvise it. Use GC exclusion to prevent deadlocks that may happen if
3250       // multiple threads are attempting to run empty checkpoints at the same time.
3251       {
3252         // Avoid using ScopedGCCriticalSection since that does not allow thread suspension. This is
3253         // not allowed to prevent allocations, but it's still safe to suspend temporarily for the
3254         // checkpoint.
3255         gc::ScopedInterruptibleGCCriticalSection sigcs(self,
3256                                                        gc::kGcCauseRunEmptyCheckpoint,
3257                                                        gc::kCollectorTypeCriticalSection);
3258         runtime->GetThreadList()->RunEmptyCheckpoint();
3259       }
3260       for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
3261         if (space->IsImageSpace()) {
3262           gc::space::ImageSpace* image_space = space->AsImageSpace();
3263           if (image_space->GetImageHeader().IsAppImage()) {
3264             image_space->ReleaseMetadata();
3265           }
3266         }
3267       }
3268     }
3269 
3270     {
3271       // Delete the thread pool used for app image loading since startup is assumed to be completed.
3272       ScopedTrace trace2("Delete thread pool");
3273       runtime->DeleteThreadPool();
3274     }
3275   }
3276 };
3277 
NotifyStartupCompleted()3278 void Runtime::NotifyStartupCompleted() {
3279   bool expected = false;
3280   if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
3281     // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
3282     // once externally. For this reason there are no asserts.
3283     return;
3284   }
3285 
3286   VLOG(startup) << app_info_;
3287 
3288   VLOG(startup) << "Adding NotifyStartupCompleted task";
3289   // Use the heap task processor since we want to be exclusive with the GC and we don't want to
3290   // block the caller if the GC is running.
3291   if (!GetHeap()->AddHeapTask(new NotifyStartupCompletedTask)) {
3292     VLOG(startup) << "Failed to add NotifyStartupCompletedTask";
3293   }
3294 
3295   // Notify the profiler saver that startup is now completed.
3296   ProfileSaver::NotifyStartupCompleted();
3297 
3298   if (metrics_reporter_ != nullptr) {
3299     metrics_reporter_->NotifyStartupCompleted();
3300   }
3301 }
3302 
NotifyDexFileLoaded()3303 void Runtime::NotifyDexFileLoaded() {
3304   if (metrics_reporter_ != nullptr) {
3305     metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
3306   }
3307 }
3308 
GetStartupCompleted() const3309 bool Runtime::GetStartupCompleted() const {
3310   return startup_completed_.load(std::memory_order_seq_cst);
3311 }
3312 
SetSignalHookDebuggable(bool value)3313 void Runtime::SetSignalHookDebuggable(bool value) {
3314   SkipAddSignalHandler(value);
3315 }
3316 
SetJniIdType(JniIdType t)3317 void Runtime::SetJniIdType(JniIdType t) {
3318   CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
3319   if (t == GetJniIdType()) {
3320     return;
3321   }
3322   jni_ids_indirection_ = t;
3323   JNIEnvExt::ResetFunctionTable();
3324   WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
3325 }
3326 
GetOatFilesExecutable() const3327 bool Runtime::GetOatFilesExecutable() const {
3328   return !IsAotCompiler() && !(IsSystemServer() && jit_options_->GetSaveProfilingInfo());
3329 }
3330 
ProcessWeakClass(GcRoot<mirror::Class> * root_ptr,IsMarkedVisitor * visitor,mirror::Class * update)3331 void Runtime::ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
3332                                IsMarkedVisitor* visitor,
3333                                mirror::Class* update) {
3334     // This does not need a read barrier because this is called by GC.
3335   mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
3336   if (cls != nullptr && cls != GetWeakClassSentinel()) {
3337     DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
3338     // Look at the classloader of the class to know if it has been unloaded.
3339     // This does not need a read barrier because this is called by GC.
3340     ObjPtr<mirror::Object> class_loader =
3341         cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
3342     if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
3343       // The class loader is live, update the entry if the class has moved.
3344       mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
3345       // Note that new_object can be null for CMS and newly allocated objects.
3346       if (new_cls != nullptr && new_cls != cls) {
3347         *root_ptr = GcRoot<mirror::Class>(new_cls);
3348       }
3349     } else {
3350       // The class loader is not live, clear the entry.
3351       *root_ptr = GcRoot<mirror::Class>(update);
3352     }
3353   }
3354 }
3355 
MadviseFileForRange(size_t madvise_size_limit_bytes,size_t map_size_bytes,const uint8_t * map_begin,const uint8_t * map_end,const std::string & file_name)3356 void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
3357                                   size_t map_size_bytes,
3358                                   const uint8_t* map_begin,
3359                                   const uint8_t* map_end,
3360                                   const std::string& file_name) {
3361   // Ideal blockTransferSize for madvising files (128KiB)
3362   static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
3363 
3364   size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
3365 
3366   if (target_size_bytes > 0) {
3367     ScopedTrace madvising_trace("madvising "
3368                                 + file_name
3369                                 + " size="
3370                                 + std::to_string(target_size_bytes));
3371 
3372     // Based on requested size (target_size_bytes)
3373     const uint8_t* target_pos = map_begin + target_size_bytes;
3374 
3375     // Clamp endOfFile if its past map_end
3376     if (target_pos > map_end) {
3377         target_pos = map_end;
3378     }
3379 
3380     // Madvise the whole file up to target_pos in chunks of
3381     // kIdealIoTransferSizeBytes (to MADV_WILLNEED)
3382     // Note:
3383     // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
3384     // block size for device) per call, hence the need for chunks. (128KB is a
3385     // good default.)
3386     for (const uint8_t* madvise_start = map_begin;
3387          madvise_start < target_pos;
3388          madvise_start += kIdealIoTransferSizeBytes) {
3389       void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
3390       size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
3391                                        static_cast<size_t>(target_pos - madvise_start));
3392       int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
3393       // In case of error we stop madvising rest of the file
3394       if (status < 0) {
3395         LOG(ERROR) << "Failed to madvise file:" << file_name << " for size:" << map_size_bytes;
3396         break;
3397       }
3398     }
3399   }
3400 }
3401 
HasImageWithProfile() const3402 bool Runtime::HasImageWithProfile() const {
3403   for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) {
3404     if (!space->GetProfileFiles().empty()) {
3405       return true;
3406     }
3407   }
3408   return false;
3409 }
3410 
3411 }  // namespace art
3412