/external/oboe/samples/RhythmGame/third_party/glm/detail/ |
D | glm.cpp | 19 template struct tvec1<float32, lowp>; 30 template struct tvec1<float32, mediump>; 41 template struct tvec1<float32, highp>; 53 template struct tvec2<float32, lowp>; 64 template struct tvec2<float32, mediump>; 75 template struct tvec2<float32, highp>; 87 template struct tvec3<float32, lowp>; 98 template struct tvec3<float32, mediump>; 109 template struct tvec3<float32, highp>; 121 template struct tvec4<float32, lowp>; [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | nary_ops_test.py | 58 [np.array([[1, 2, 3]], dtype=np.float32)], 59 expected=np.array([[1, 2, 3]], dtype=np.float32)) 62 [np.array([1, 2], dtype=np.float32), 63 np.array([10, 20], dtype=np.float32)], 64 expected=np.array([11, 22], dtype=np.float32)) 66 [np.array([-4], dtype=np.float32), 67 np.array([10], dtype=np.float32), 68 np.array([42], dtype=np.float32)], 69 expected=np.array([48], dtype=np.float32)) 94 [np.array([[1, 2, 3]], dtype=np.float32)], [all …]
|
D | tensor_list_ops_test.py | 41 element_dtype=dtypes.float32, 52 element_dtype=dtypes.float32, 58 l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 59 _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 65 val = array_ops.placeholder(dtype=dtypes.float32) 68 element_dtype=dtypes.float32, 77 l, e2 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 78 _, e1 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 86 element_dtype=dtypes.float32, 91 _, e11 = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) [all …]
|
D | stack_ops_test.py | 37 v = array_ops.placeholder(dtypes.float32) 40 h = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="foo") 43 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 52 x = array_ops.placeholder(dtypes.float32) 55 h = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="foo") 58 return gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 64 v = array_ops.placeholder(dtypes.float32) 67 h1 = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="foo") 70 c1 = gen_data_flow_ops.stack_pop_v2(h1, dtypes.float32) 71 h2 = gen_data_flow_ops.stack_v2(5, dtypes.float32, stack_name="bar") [all …]
|
D | function_test.py | 39 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 40 bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32) 45 @function.Defun(dtypes.float32, dtypes.float32) 65 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 66 bval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 71 @function.Defun(dtypes.float32, dtypes.float32) 89 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 90 bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32) 95 @function.Defun(dtypes.float32, dtypes.float32) 110 @function.Defun(dtypes.float32, dtypes.int32, dtypes.int32) [all …]
|
D | fused_batchnorm_test.py | 94 x_val = np.random.random_sample(x_shape).astype(np.float32) 95 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 96 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 112 np.float32, shape=x_val_converted.shape, name="x") 113 scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") 115 np.float32, shape=scale_shape, name="offset") 138 x_val = np.random.random_sample(x_shape).astype(np.float32) 139 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 140 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 141 mean_val = np.random.random_sample(scale_shape).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 9 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 10 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 13 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 14 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 17 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 18 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 21 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[5,5],is_arg_max=True,output_type=tf.int… 22 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[5,5],is_arg_max=True,output_type=tf.int… 25 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[10],is_arg_max=True,output_type=tf.int32 26 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[10],is_arg_max=True,output_type=tf.int64 [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | dense_attention_test.py | 38 scores = np.array([[[1.1]]], dtype=np.float32) 40 v = np.array([[[1.6]]], dtype=np.float32) 47 expected_scores = np.array([[[1.]]], dtype=np.float32) 51 expected = np.array([[[1.6]]], dtype=np.float32) 56 scores = np.array([[[1.1]]], dtype=np.float32) 58 v = np.array([[[1.6]]], dtype=np.float32) 63 expected_scores = np.array([[[1.]]], dtype=np.float32) 67 expected = np.array([[[1.6]]], dtype=np.float32) 72 scores = np.array([[[1., 0., 1.]]], dtype=np.float32) 74 v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/tf_saved_model/ |
D | structured_input.py | 43 tf.TensorSpec([1], tf.float32), 44 tf.TensorSpec([2], tf.float32) 56 tf.TensorSpec([], tf.float32), 57 tf.TensorSpec([], tf.float32), 70 'x': tf.TensorSpec([1], tf.float32), 71 'y': tf.TensorSpec([2], tf.float32), 84 'y': tf.TensorSpec([2], tf.float32), 85 'x': tf.TensorSpec([1], tf.float32), 101 'x': tf.TensorSpec([4], tf.float32), 102 'y': tf.TensorSpec([5], tf.float32), [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | list_ops_test.py | 56 element_dtype=dtypes.float32, 60 l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 61 l = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32) 81 element_dtype=dtypes.float32, element_shape=[], max_num_elements=1) 93 element_dtype=dtypes.float32, 98 l = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 103 element_dtype=dtypes.float32, element_shape=[2, 3], num_elements=3) 104 _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 105 l = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32) 112 element_dtype=dtypes.float32, element_shape=[None, 3], num_elements=3) [all …]
|
D | sparse_matmul_op_test.py | 38 64) / 128.0).reshape([rows, cols]).astype(np.float32) 50 x_dtype=dtypes.float32, 51 y_dtype=dtypes.float32): 63 np_x = math_ops.cast(tf_x, dtypes.float32).eval() 64 np_y = math_ops.cast(tf_y, dtypes.float32).eval() 77 x = np.arange(0., 4.).reshape([4, 1]).astype(np.float32) 78 y = np.arange(-1., 1.).reshape([1, 2]).astype(np.float32) 79 for x_dtype in (dtypes.float32, dtypes.bfloat16): 80 for y_dtype in (dtypes.float32, dtypes.bfloat16): 85 x = np.ones((4, 0)).astype(np.float32) [all …]
|
D | sparse_conditional_accumulator_test.py | 63 dtypes_lib.float32, name="Q") 79 dtypes_lib.float32, name="Q", reduction_type="Invalid") 84 dtypes_lib.float32, 106 dtypes_lib.float32, name="Q") 113 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([1])) 121 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([3, 3])) 125 values=np.array([[0, 0, 1], [3, 0, 4]]).astype(np.float32))) 132 dtypes = [dtypes_lib.float16, dtypes_lib.float32, dtypes_lib.float64] 156 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([2, 2])) 158 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([2, 2])) [all …]
|
D | stack_ops_test.py | 39 -1, elem_type=dtypes.float32, stack_name="foo") 42 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 53 x = constant_op.constant(a, dtype=dtypes.float32) 55 -1, elem_type=dtypes.float32, stack_name="foo") 58 c1 = gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 70 -1, elem_type=dtypes.float32, stack_name="foo") 77 a = constant_op.constant(np.ones(2000), dtype=dtypes.float32) 84 v = constant_op.constant(np.zeros(2000), dtype=dtypes.float32) 92 ny = y + gen_data_flow_ops.stack_pop_v2(h, dtypes.float32) 107 -1, elem_type=dtypes.float32, stack_name="foo") [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 51 feature1_gains = np.array([7.62], dtype=np.float32) 53 feature1_left_node_contribs = np.array([[-4.375]], dtype=np.float32) 54 feature1_right_node_contribs = np.array([[7.143]], dtype=np.float32) 57 feature2_gains = np.array([0.63], dtype=np.float32) 59 feature2_left_node_contribs = np.array([[-0.6]], dtype=np.float32) 60 feature2_right_node_contribs = np.array([[0.24]], dtype=np.float32) 64 feature3_gains = np.array([7.65], dtype=np.float32) 66 feature3_left_node_contribs = np.array([[-4.89]], dtype=np.float32) 67 feature3_right_node_contribs = np.array([[5.3]], dtype=np.float32) 159 group1_gains = np.array([7.62], dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/lite/testing/op_tests/ |
D | binary_op.py | 39 "dtype": [tf.float32, tf.int32], 47 "dtype": [tf.float32], 55 "dtype": [tf.float32, tf.int32, tf.int64], 63 "dtype": [tf.float32, tf.int32], 71 "dtype": [tf.float32], 79 "dtype": [tf.float32], 87 "dtype": [tf.float32], 95 "dtype": [tf.float32], 103 "dtype": [tf.float32], 111 "dtype": [tf.float32], [all …]
|
D | strided_slice_np_style.py | 34 "dtype": [tf.float32], 43 "dtype": [tf.float32], 49 "dtype": [tf.float32], 55 "dtype": [tf.float32], 63 "dtype": [tf.float32], 69 "dtype": [tf.float32], 81 "dtype": [tf.float32], 92 "dtype": [tf.float32], 118 "dtype": [tf.float32], 124 "dtype": [tf.float32], [all …]
|
/external/tensorflow/tensorflow/lite/python/optimize/ |
D | calibrator_test.py | 49 yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)] 52 dtypes.float32, 53 dtypes.float32, 72 yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)] 75 dtypes.float32, 76 dtypes.float32, 90 yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)] 93 input_gen, dtypes.float32, dtypes.float32, True, 'conv2d_8/BiasAdd') 108 input_gen, dtypes.float32, dtypes.float32, True, 'Identity') 128 yield [np.ones(shape=(1, 8, 8, 3), dtype=np.float32) for _ in range(4)] [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | normalization_tpu_test.py | 32 "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32), 34 "test_data": np.array([[1.], [2.], [3.]], np.float32), 35 "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), 38 "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32), 40 "test_data": np.array([[1.], [2.], [3.]], np.float32), 41 "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), 44 "adapt_data": np.array([[1., 2., 3., 4., 5.]], dtype=np.float32), 46 "test_data": np.array([[1.], [2.], [3.]], np.float32), 47 "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), 52 np.float32), [all …]
|
D | normalization_distribution_test.py | 33 "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32), 35 "test_data": np.array([[1.], [2.], [3.]], np.float32), 36 "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), 39 "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32), 41 "test_data": np.array([[1.], [2.], [3.]], np.float32), 42 "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), 45 "adapt_data": np.array([[1., 2., 3., 4., 5.]], dtype=np.float32), 47 "test_data": np.array([[1.], [2.], [3.]], np.float32), 48 "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), 53 np.float32), [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | image_grad.py | 105 allowed_types = [dtypes.float32, dtypes.float64] 137 allowed_types = [dtypes.float16, dtypes.float32, dtypes.float64] 199 (reds >= greens), dtypes.float32) 201 (greens >= blues), dtypes.float32) 203 (blues > greens), dtypes.float32) 206 (reds < greens), dtypes.float32) 208 (greens < blues), dtypes.float32) 210 (blues <= greens), dtypes.float32) 225 ds_dr = math_ops.cast(reds > 0, dtypes.float32) * \ 231 ds_dg = math_ops.cast(greens > 0, dtypes.float32) * \ [all …]
|
D | nn_grad_test.py | 48 assert x.dtype == dtypes.float32 55 dtype=dtypes.float32) 66 [[-2, -1, 1, 3], [5, 7, 8, 9]], dtype=dtypes.float32) 93 dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input') 95 dtype=dtypes.float32, 104 dtype=dtypes.float32, 108 dtype=dtypes.float32, shape=[2, 2, 3, 2], name='filter') 115 dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input') 117 dtype=dtypes.float32, 144 dtype=dtypes.float32, shape=[1, 4, 4, 3], name='input') [all …]
|
/external/tensorflow/tensorflow/python/tools/ |
D | optimize_for_inference_test.py | 81 unused_constant_name, value=0, dtype=dtypes.float32, shape=[]) 86 self.set_attr_dtype(unconnected_add_node, "T", dtypes.float32) 89 a_constant_name, value=1, dtype=dtypes.float32, shape=[]) 98 b_constant_name, value=1, dtype=dtypes.float32, shape=[]) 108 self.set_attr_dtype(add_node, "T", dtypes.float32) 112 self.set_attr_dtype(unused_output_add_node, "T", dtypes.float32) 117 a_constant_name, value=1, dtype=dtypes.float32, shape=[]) 120 b_constant_name, value=1, dtype=dtypes.float32, shape=[]) 124 self.set_attr_dtype(add_node, "T", dtypes.float32) 128 graph_def, [], [add_name], dtypes.float32.as_datatype_enum) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/random/ |
D | random_binomial_test.py | 32 _SUPPORTED_DTYPES = (dtypes.float16, dtypes.float32, dtypes.float64, 79 for dt in dtypes.float16, dtypes.float32, dtypes.float64: 85 for dt in dtypes.float16, dtypes.float32, dtypes.float64: 103 rnd = rng.binomial(shape=[10], counts=np.float32(2.), probs=np.float32(0.5)) 105 rnd = rng.binomial(shape=[], counts=np.float32(2.), probs=np.float32(0.5)) 111 counts=array_ops.ones([10], dtype=np.float32), 112 probs=0.3 * array_ops.ones([10], dtype=np.float32)) 116 counts=array_ops.ones([2], dtype=np.float32), 117 probs=0.4 * array_ops.ones([2], dtype=np.float32)) 123 counts=np.float32(5.), [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tfrt/python_tests/ |
D | tf_binary_bcast_test.py | 49 arg0 = np.random.uniform(0, 10.0, size=(n, 4)).astype(np.float32) 50 arg1 = np.random.uniform(0, 10.0, size=(4)).astype(np.float32) 51 arg2 = np.random.uniform(0, 10.0, size=(4)).astype(np.float32) 72 lhs0 = np.random.uniform(0, 10.0, size=(1, 1)).astype(np.float32) 73 lhs1 = np.random.uniform(0, 10.0, size=(1, n)).astype(np.float32) 74 lhs2 = np.random.uniform(0, 10.0, size=(m, 1)).astype(np.float32) 75 lhs3 = np.random.uniform(0, 10.0, size=(m, n)).astype(np.float32) 77 rhs0 = np.random.uniform(0, 10.0, size=(1, 1)).astype(np.float32) 78 rhs1 = np.random.uniform(0, 10.0, size=(1, n)).astype(np.float32) 79 rhs2 = np.random.uniform(0, 10.0, size=(m, 1)).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_infeed_test.py | 39 tuple_types=[dtypes.float32, dtypes.int32, dtypes.int32]) 42 [dtypes.float32, dtypes.int32, dtypes.int32]) 60 number_of_tuple_elements=2, tuple_types=[dtypes.float32]) 71 i.set_tuple_types([dtypes.float32, dtypes.int32]) 72 self.assertEqual(i.tuple_types, [dtypes.float32, dtypes.int32]) 73 i.set_tuple_types([dtypes.float32, dtypes.float32]) 74 self.assertEqual(i.tuple_types, [dtypes.float32, dtypes.float32]) 76 i.set_tuple_types([dtypes.float32]) 88 t2 = constant_op.constant(2.0, dtypes.float32, shape=[3, 18]) 91 self.assertEqual(i.tuple_types, [dtypes.int32, dtypes.float32]) [all …]
|