/external/tensorflow/tensorflow/python/keras/layers/ |
D | __init__.py | 29 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import CenterCrop 30 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomCrop 31 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip 32 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomContrast 33 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomHeight 34 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomRotation 35 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomTranslation 36 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomWidth 37 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomZoom 38 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import Resizing [all …]
|
D | merge_test.py | 36 i1 = keras.layers.Input(shape=(4, 5)) 37 i2 = keras.layers.Input(shape=(4, 5)) 38 i3 = keras.layers.Input(shape=(4, 5)) 40 add_layer = keras.layers.Add() 69 i1 = keras.layers.Input(shape=(4, 5)) 70 i2 = keras.layers.Input(shape=(4, 5)) 71 i3 = keras.layers.Input(shape=(4, 5)) 73 subtract_layer = keras.layers.Subtract() 104 i1 = keras.layers.Input(shape=(4, 5)) 105 i2 = keras.layers.Input(shape=(4, 5)) [all …]
|
D | pooling_test.py | 38 average_layer = keras.layers.pooling.GlobalAveragePooling1D() 43 keras.layers.pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5)) 45 keras.layers.pooling.GlobalMaxPooling1D, 49 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5)) 51 keras.layers.pooling.GlobalAveragePooling1D, 57 model.add(keras.layers.Masking(mask_value=0., input_shape=(None, 4))) 58 model.add(keras.layers.GlobalAveragePooling1D()) 73 out = keras.layers.GlobalAveragePooling1D()(inputs) 78 masking = keras.layers.Masking(mask_value=0., input_shape=(3, 2))(inputs) 79 out = keras.layers.GlobalAveragePooling1D()(masking) [all …]
|
D | wrappers_test.py | 33 from tensorflow.python.keras.layers import core 34 from tensorflow.python.keras.layers.rnn_cell_wrapper_v2 import ResidualWrapper 46 class _RNNCellWithConstants(keras.layers.Layer): 84 class _ResidualLSTMCell(keras.layers.LSTMCell): 91 class _AddOneCell(keras.layers.AbstractRNNCell): 115 keras.layers.TimeDistributed( 116 keras.layers.Dense(2), input_shape=(3, 4))) 138 keras.layers.TimeDistributed( 139 keras.layers.Dense(2), input_shape=(3, 4), batch_size=10)) 152 keras.layers.TimeDistributed(x) [all …]
|
D | serialization.py | 26 from tensorflow.python.keras.layers import advanced_activations 27 from tensorflow.python.keras.layers import convolutional 28 from tensorflow.python.keras.layers import convolutional_recurrent 29 from tensorflow.python.keras.layers import core 30 from tensorflow.python.keras.layers import cudnn_recurrent 31 from tensorflow.python.keras.layers import dense_attention 32 from tensorflow.python.keras.layers import einsum_dense 33 from tensorflow.python.keras.layers import embeddings 34 from tensorflow.python.keras.layers import local 35 from tensorflow.python.keras.layers import merge [all …]
|
D | core_test.py | 29 from tensorflow.python.keras.layers import core 44 keras.layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) 47 keras.layers.Dropout, 53 dropout = keras.layers.Dropout(0.5) 58 keras.layers.SpatialDropout1D, 64 keras.layers.SpatialDropout2D, 69 keras.layers.SpatialDropout2D, 75 keras.layers.SpatialDropout3D, 80 keras.layers.SpatialDropout3D, 86 layer = keras.layers.Dropout(0.5, noise_shape=(None, 1, None)) [all …]
|
D | advanced_activations_test.py | 31 testing_utils.layer_test(keras.layers.LeakyReLU, 37 testing_utils.layer_test(keras.layers.PReLU, kwargs={}, 42 testing_utils.layer_test(keras.layers.PReLU, 49 testing_utils.layer_test(keras.layers.ELU, 55 testing_utils.layer_test(keras.layers.ThresholdedReLU, 61 testing_utils.layer_test(keras.layers.Softmax, 67 testing_utils.layer_test(keras.layers.ReLU, 75 'LeakyRelu' in keras.layers.ReLU(negative_slope=0.2)(x).name) 77 self.assertTrue('Relu' in keras.layers.ReLU()(x).name) 79 self.assertTrue('Relu6' in keras.layers.ReLU(max_value=6)(x).name) [all …]
|
/external/tensorflow/tensorflow/python/layers/ |
D | layers.py | 26 from tensorflow.python.layers.base import Layer 29 from tensorflow.python.layers.core import Dense 30 from tensorflow.python.layers.core import Dropout 31 from tensorflow.python.layers.core import Flatten 33 from tensorflow.python.layers.core import dense 34 from tensorflow.python.layers.core import dropout 35 from tensorflow.python.layers.core import flatten 38 from tensorflow.python.layers.convolutional import SeparableConv1D 39 from tensorflow.python.layers.convolutional import SeparableConv2D 40 from tensorflow.python.layers.convolutional import SeparableConvolution2D [all …]
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | xception.py | 29 from tensorflow.python.keras.layers import VersionAwareLayers 43 layers = VersionAwareLayers() variable 135 img_input = layers.Input(shape=input_shape) 138 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 144 x = layers.Conv2D( 149 x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x) 150 x = layers.Activation('relu', name='block1_conv1_act')(x) 151 x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) 152 x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x) 153 x = layers.Activation('relu', name='block1_conv2_act')(x) [all …]
|
D | resnet.py | 26 from tensorflow.python.keras.layers import VersionAwareLayers 54 layers = None variable 116 global layers 118 layers = kwargs.pop('layers') 120 layers = VersionAwareLayers() 143 img_input = layers.Input(shape=input_shape) 146 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 152 x = layers.ZeroPadding2D( 154 x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x) 157 x = layers.BatchNormalization( [all …]
|
D | vgg19.py | 26 from tensorflow.python.keras.layers import VersionAwareLayers 39 layers = VersionAwareLayers() variable 133 img_input = layers.Input(shape=input_shape) 136 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 140 x = layers.Conv2D( 143 x = layers.Conv2D( 145 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) 148 x = layers.Conv2D( 150 x = layers.Conv2D( 152 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) [all …]
|
D | vgg16.py | 26 from tensorflow.python.keras.layers import VersionAwareLayers 39 layers = VersionAwareLayers() variable 133 img_input = layers.Input(shape=input_shape) 136 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 140 x = layers.Conv2D( 143 x = layers.Conv2D( 145 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) 148 x = layers.Conv2D( 150 x = layers.Conv2D( 152 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) [all …]
|
D | nasnet.py | 44 from tensorflow.python.keras.layers import VersionAwareLayers 59 layers = VersionAwareLayers() variable 197 img_input = layers.Input(shape=input_shape) 200 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 213 x = layers.Conv2D( 222 x = layers.BatchNormalization( 259 x = layers.Activation('relu')(x) 262 x = layers.GlobalAveragePooling2D()(x) 264 x = layers.Dense(classes, activation=classifier_activation, 268 x = layers.GlobalAveragePooling2D()(x) [all …]
|
/external/tensorflow/tensorflow/python/keras/benchmarks/layer_benchmarks/ |
D | layer_benchmarks_test.py | 39 if layer_cls is tf.keras.layers.Bidirectional: 40 return {"layer": tf.keras.layers.LSTM(1)} 62 ("Dense_small_shape", tf.keras.layers.Dense, 65 ("Activation_small_shape", tf.keras.layers.Activation, 68 ("Embedding_small_shape", tf.keras.layers.Embedding, 71 ("Embedding_normal_shape", tf.keras.layers.Embedding, 74 ("Masking_small_shape", tf.keras.layers.Masking, 76 ("Lambda_small_shape", tf.keras.layers.Lambda, 78 ("Flatten_small_shape", tf.keras.layers.Flatten, 83 ("Conv1D_small_shape", tf.keras.layers.Conv1D, [all …]
|
/external/vulkan-validation-layers/ |
D | BUILD.gn | 18 # Fuchsia has non-upstream changes to the vulkan layers, so we don't want 44 "layers/gpu_validation.cpp", 74 # The validation layers 79 "layers", 80 "layers/generated", 86 # "layers/generated/vk_safe_struct.cpp", 87 "layers/buffer_validation.cpp", 88 "layers/buffer_validation.h", 89 "layers/core_validation.cpp", 90 "layers/core_validation.h", [all …]
|
/external/vulkan-validation-layers/build-android/jni/ |
D | Android.mk | 28 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_layer_config.cpp 29 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_layer_extension_utils.cpp 30 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_layer_utils.cpp 31 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_format_utils.cpp 33 $(LOCAL_PATH)/$(SRC_DIR)/layers/generated \ 34 $(LOCAL_PATH)/$(SRC_DIR)/layers 44 LOCAL_SRC_FILES += $(SRC_DIR)/layers/core_validation.cpp 45 LOCAL_SRC_FILES += $(SRC_DIR)/layers/drawdispatch.cpp 46 LOCAL_SRC_FILES += $(SRC_DIR)/layers/descriptor_sets.cpp 47 LOCAL_SRC_FILES += $(SRC_DIR)/layers/buffer_validation.cpp [all …]
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_architectures.py | 29 keras.layers.Dense(3, activation='relu', input_shape=(3,)), 30 keras.layers.Dense(2, activation='softmax'), 38 keras.layers.Dense(3, activation='relu'), 39 keras.layers.Dense(2, activation='softmax'), 47 layer = keras.layers.RNN([keras.layers.LSTMCell(2) for _ in range(3)]) 49 outputs = keras.layers.Dense(2)(x) 57 x = keras.layers.LSTM(4, return_sequences=True)(inputs) 58 x = keras.layers.LSTM(3, return_sequences=True)(x) 59 x = keras.layers.LSTM(2, return_sequences=False)(x) 60 outputs = keras.layers.Dense(2)(x) [all …]
|
D | model_subclassing_test_util.py | 28 self.conv1 = keras.layers.Conv2D(32, (3, 3), activation='relu') 29 self.flatten = keras.layers.Flatten() 30 self.dense1 = keras.layers.Dense(num_classes, activation='softmax') 40 shared_layer = keras.layers.Dense(32, activation='relu') 43 branch_a.append(keras.layers.Dropout(0.5)) 44 branch_a.append(keras.layers.Dense(num_classes[0], activation='softmax')) 48 branch_b.append(keras.layers.BatchNormalization()) 49 branch_b.append(keras.layers.Dense(num_classes[1], activation='softmax')) 64 self.dense1 = keras.layers.Dense(32, activation='relu') 65 self.dense2 = keras.layers.Dense(num_classes, activation='relu') [all …]
|
/external/drm_hwcomposer/backend/ |
D | Backend.cpp | 31 auto layers = display->GetOrderLayersByZPos(); in ValidateDisplay() local 36 if (display->ProcessClientFlatteningState(layers.size() <= 1)) { in ValidateDisplay() 39 client_size = layers.size(); in ValidateDisplay() 40 MarkValidated(layers, client_start, client_size); in ValidateDisplay() 42 std::tie(client_start, client_size) = GetClientLayers(display, layers); in ValidateDisplay() 44 MarkValidated(layers, client_start, client_size); in ValidateDisplay() 46 bool testing_needed = !(client_start == 0 && client_size == layers.size()); in ValidateDisplay() 54 client_size = layers.size(); in ValidateDisplay() 55 MarkValidated(layers, 0, client_size); in ValidateDisplay() 61 display->total_stats().gpu_pixops_ += CalcPixOps(layers, client_start, in ValidateDisplay() [all …]
|
/external/webrtc/media/engine/ |
D | simulcast.cc | 204 std::vector<webrtc::VideoStream>* layers) { in BoostMaxSimulcastLayer() argument 205 if (layers->empty()) in BoostMaxSimulcastLayer() 208 const webrtc::DataRate total_bitrate = GetTotalMaxBitrate(*layers); in BoostMaxSimulcastLayer() 214 layers->back().max_bitrate_bps += bitrate_left.bps(); in BoostMaxSimulcastLayer() 219 const std::vector<webrtc::VideoStream>& layers) { in GetTotalMaxBitrate() argument 220 if (layers.empty()) in GetTotalMaxBitrate() 224 for (size_t s = 0; s < layers.size() - 1; ++s) { in GetTotalMaxBitrate() 225 total_max_bitrate_bps += layers[s].target_bitrate_bps; in GetTotalMaxBitrate() 227 total_max_bitrate_bps += layers.back().max_bitrate_bps; in GetTotalMaxBitrate() 289 std::vector<webrtc::VideoStream> layers(layer_count); in GetNormalSimulcastLayers() local [all …]
|
/external/walt/hardware/kicad/walt_footprints.pretty/ |
D | Teensy_DIP-28_W15.24mm.kicad_mod | 14 (pad 1 thru_hole circle (at 0 0) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 15 (pad 2 thru_hole circle (at 0 2.54) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 16 (pad 3 thru_hole circle (at 0 5.08) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 17 (pad 4 thru_hole circle (at 0 7.62) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 18 (pad 5 thru_hole circle (at 0 10.16) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 19 (pad 6 thru_hole circle (at 0 12.7) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 20 (pad 7 thru_hole circle (at 0 15.24) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 21 (pad 8 thru_hole circle (at 0 17.78) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 22 (pad 9 thru_hole circle (at 0 20.32) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) 23 (pad 10 thru_hole circle (at 0 22.86) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS)) [all …]
|
/external/armnn/ |
D | Android.mk | 148 src/armnn/layers/ActivationLayer.cpp \ 149 src/armnn/layers/AdditionLayer.cpp \ 150 src/armnn/layers/ArgMinMaxLayer.cpp \ 151 src/armnn/layers/BatchNormalizationLayer.cpp \ 152 src/armnn/layers/BatchToSpaceNdLayer.cpp \ 153 src/armnn/layers/ComparisonLayer.cpp \ 154 src/armnn/layers/ConcatLayer.cpp \ 155 src/armnn/layers/ConstantLayer.cpp \ 156 src/armnn/layers/Convolution2dLayer.cpp \ 157 src/armnn/layers/ConvertBf16ToFp32Layer.cpp \ [all …]
|
/external/scapy/scapy/layers/tls/ |
D | all.py | 10 from scapy.layers.tls.cert import * 12 from scapy.layers.tls.automaton_cli import * 13 from scapy.layers.tls.automaton_srv import * 14 from scapy.layers.tls.extensions import * 15 from scapy.layers.tls.handshake import * 16 from scapy.layers.tls.handshake_sslv2 import * 17 from scapy.layers.tls.keyexchange import * 18 from scapy.layers.tls.keyexchange_tls13 import * 19 from scapy.layers.tls.record import * 20 from scapy.layers.tls.record_sslv2 import * [all …]
|
/external/mesa3d/src/gallium/auxiliary/vl/ |
D | vl_compositor.c | 335 s->layers[layer].samplers[i] = c->sampler_linear; in set_yuv_layer() 336 pipe_sampler_view_reference(&s->layers[layer].sampler_views[i], sampler_views[i]); in set_yuv_layer() 339 calc_src_and_dst(&s->layers[layer], buffer->width, buffer->height, in set_yuv_layer() 340 src_rect ? *src_rect : default_rect(&s->layers[layer]), in set_yuv_layer() 341 dst_rect ? *dst_rect : default_rect(&s->layers[layer])); in set_yuv_layer() 343 half_a_line = 0.5f / s->layers[layer].zw.y; in set_yuv_layer() 347 s->layers[layer].zw.x = 0.0f; in set_yuv_layer() 348 s->layers[layer].src.tl.y += half_a_line; in set_yuv_layer() 349 s->layers[layer].src.br.y += half_a_line; in set_yuv_layer() 351 s->layers[layer].fs = (y) ? c->fs_yuv.bob.y : c->fs_yuv.bob.uv; in set_yuv_layer() [all …]
|
/external/webrtc/pc/ |
D | peer_connection_simulcast_unittest.cc | 147 const std::vector<SimulcastLayer>& layers) { in CreateTransceiverInit() argument 149 for (const SimulcastLayer& layer : layers) { in CreateTransceiverInit() 160 const std::vector<SimulcastLayer>& layers) { in AddTransceiver() argument 161 auto init = CreateTransceiverInit(layers); in AddTransceiver() 172 void AddRequestToReceiveSimulcast(const std::vector<SimulcastLayer>& layers, in AddRequestToReceiveSimulcast() argument 177 for (const SimulcastLayer& layer : layers) { in AddRequestToReceiveSimulcast() 185 const std::vector<SimulcastLayer>& layers) { in ValidateTransceiverParameters() argument 192 EXPECT_THAT(result_layers, ElementsAreArray(layers)); in ValidateTransceiverParameters() 221 auto layers = CreateLayers({"f"}, true); in TEST_F() local 222 auto transceiver = AddTransceiver(pc.get(), layers); in TEST_F() [all …]
|