Home
last modified time | relevance | path

Searched refs:layers (Results 1 – 25 of 1019) sorted by relevance

12345678910>>...41

/external/tensorflow/tensorflow/python/keras/layers/
D__init__.py29 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import CenterCrop
30 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomCrop
31 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip
32 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomContrast
33 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomHeight
34 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomRotation
35 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomTranslation
36 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomWidth
37 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomZoom
38 from tensorflow.python.keras.layers.preprocessing.image_preprocessing import Resizing
[all …]
Dmerge_test.py36 i1 = keras.layers.Input(shape=(4, 5))
37 i2 = keras.layers.Input(shape=(4, 5))
38 i3 = keras.layers.Input(shape=(4, 5))
40 add_layer = keras.layers.Add()
69 i1 = keras.layers.Input(shape=(4, 5))
70 i2 = keras.layers.Input(shape=(4, 5))
71 i3 = keras.layers.Input(shape=(4, 5))
73 subtract_layer = keras.layers.Subtract()
104 i1 = keras.layers.Input(shape=(4, 5))
105 i2 = keras.layers.Input(shape=(4, 5))
[all …]
Dpooling_test.py38 average_layer = keras.layers.pooling.GlobalAveragePooling1D()
43 keras.layers.pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5))
45 keras.layers.pooling.GlobalMaxPooling1D,
49 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
51 keras.layers.pooling.GlobalAveragePooling1D,
57 model.add(keras.layers.Masking(mask_value=0., input_shape=(None, 4)))
58 model.add(keras.layers.GlobalAveragePooling1D())
73 out = keras.layers.GlobalAveragePooling1D()(inputs)
78 masking = keras.layers.Masking(mask_value=0., input_shape=(3, 2))(inputs)
79 out = keras.layers.GlobalAveragePooling1D()(masking)
[all …]
Dwrappers_test.py33 from tensorflow.python.keras.layers import core
34 from tensorflow.python.keras.layers.rnn_cell_wrapper_v2 import ResidualWrapper
46 class _RNNCellWithConstants(keras.layers.Layer):
84 class _ResidualLSTMCell(keras.layers.LSTMCell):
91 class _AddOneCell(keras.layers.AbstractRNNCell):
115 keras.layers.TimeDistributed(
116 keras.layers.Dense(2), input_shape=(3, 4)))
138 keras.layers.TimeDistributed(
139 keras.layers.Dense(2), input_shape=(3, 4), batch_size=10))
152 keras.layers.TimeDistributed(x)
[all …]
Dserialization.py26 from tensorflow.python.keras.layers import advanced_activations
27 from tensorflow.python.keras.layers import convolutional
28 from tensorflow.python.keras.layers import convolutional_recurrent
29 from tensorflow.python.keras.layers import core
30 from tensorflow.python.keras.layers import cudnn_recurrent
31 from tensorflow.python.keras.layers import dense_attention
32 from tensorflow.python.keras.layers import einsum_dense
33 from tensorflow.python.keras.layers import embeddings
34 from tensorflow.python.keras.layers import local
35 from tensorflow.python.keras.layers import merge
[all …]
Dcore_test.py29 from tensorflow.python.keras.layers import core
44 keras.layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2))
47 keras.layers.Dropout,
53 dropout = keras.layers.Dropout(0.5)
58 keras.layers.SpatialDropout1D,
64 keras.layers.SpatialDropout2D,
69 keras.layers.SpatialDropout2D,
75 keras.layers.SpatialDropout3D,
80 keras.layers.SpatialDropout3D,
86 layer = keras.layers.Dropout(0.5, noise_shape=(None, 1, None))
[all …]
Dadvanced_activations_test.py31 testing_utils.layer_test(keras.layers.LeakyReLU,
37 testing_utils.layer_test(keras.layers.PReLU, kwargs={},
42 testing_utils.layer_test(keras.layers.PReLU,
49 testing_utils.layer_test(keras.layers.ELU,
55 testing_utils.layer_test(keras.layers.ThresholdedReLU,
61 testing_utils.layer_test(keras.layers.Softmax,
67 testing_utils.layer_test(keras.layers.ReLU,
75 'LeakyRelu' in keras.layers.ReLU(negative_slope=0.2)(x).name)
77 self.assertTrue('Relu' in keras.layers.ReLU()(x).name)
79 self.assertTrue('Relu6' in keras.layers.ReLU(max_value=6)(x).name)
[all …]
/external/tensorflow/tensorflow/python/layers/
Dlayers.py26 from tensorflow.python.layers.base import Layer
29 from tensorflow.python.layers.core import Dense
30 from tensorflow.python.layers.core import Dropout
31 from tensorflow.python.layers.core import Flatten
33 from tensorflow.python.layers.core import dense
34 from tensorflow.python.layers.core import dropout
35 from tensorflow.python.layers.core import flatten
38 from tensorflow.python.layers.convolutional import SeparableConv1D
39 from tensorflow.python.layers.convolutional import SeparableConv2D
40 from tensorflow.python.layers.convolutional import SeparableConvolution2D
[all …]
/external/tensorflow/tensorflow/python/keras/applications/
Dxception.py29 from tensorflow.python.keras.layers import VersionAwareLayers
43 layers = VersionAwareLayers() variable
135 img_input = layers.Input(shape=input_shape)
138 img_input = layers.Input(tensor=input_tensor, shape=input_shape)
144 x = layers.Conv2D(
149 x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x)
150 x = layers.Activation('relu', name='block1_conv1_act')(x)
151 x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
152 x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x)
153 x = layers.Activation('relu', name='block1_conv2_act')(x)
[all …]
Dresnet.py26 from tensorflow.python.keras.layers import VersionAwareLayers
54 layers = None variable
116 global layers
118 layers = kwargs.pop('layers')
120 layers = VersionAwareLayers()
143 img_input = layers.Input(shape=input_shape)
146 img_input = layers.Input(tensor=input_tensor, shape=input_shape)
152 x = layers.ZeroPadding2D(
154 x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x)
157 x = layers.BatchNormalization(
[all …]
Dvgg19.py26 from tensorflow.python.keras.layers import VersionAwareLayers
39 layers = VersionAwareLayers() variable
133 img_input = layers.Input(shape=input_shape)
136 img_input = layers.Input(tensor=input_tensor, shape=input_shape)
140 x = layers.Conv2D(
143 x = layers.Conv2D(
145 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
148 x = layers.Conv2D(
150 x = layers.Conv2D(
152 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
[all …]
Dvgg16.py26 from tensorflow.python.keras.layers import VersionAwareLayers
39 layers = VersionAwareLayers() variable
133 img_input = layers.Input(shape=input_shape)
136 img_input = layers.Input(tensor=input_tensor, shape=input_shape)
140 x = layers.Conv2D(
143 x = layers.Conv2D(
145 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
148 x = layers.Conv2D(
150 x = layers.Conv2D(
152 x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
[all …]
Dnasnet.py44 from tensorflow.python.keras.layers import VersionAwareLayers
59 layers = VersionAwareLayers() variable
197 img_input = layers.Input(shape=input_shape)
200 img_input = layers.Input(tensor=input_tensor, shape=input_shape)
213 x = layers.Conv2D(
222 x = layers.BatchNormalization(
259 x = layers.Activation('relu')(x)
262 x = layers.GlobalAveragePooling2D()(x)
264 x = layers.Dense(classes, activation=classifier_activation,
268 x = layers.GlobalAveragePooling2D()(x)
[all …]
/external/tensorflow/tensorflow/python/keras/benchmarks/layer_benchmarks/
Dlayer_benchmarks_test.py39 if layer_cls is tf.keras.layers.Bidirectional:
40 return {"layer": tf.keras.layers.LSTM(1)}
62 ("Dense_small_shape", tf.keras.layers.Dense,
65 ("Activation_small_shape", tf.keras.layers.Activation,
68 ("Embedding_small_shape", tf.keras.layers.Embedding,
71 ("Embedding_normal_shape", tf.keras.layers.Embedding,
74 ("Masking_small_shape", tf.keras.layers.Masking,
76 ("Lambda_small_shape", tf.keras.layers.Lambda,
78 ("Flatten_small_shape", tf.keras.layers.Flatten,
83 ("Conv1D_small_shape", tf.keras.layers.Conv1D,
[all …]
/external/vulkan-validation-layers/
DBUILD.gn18 # Fuchsia has non-upstream changes to the vulkan layers, so we don't want
44 "layers/gpu_validation.cpp",
74 # The validation layers
79 "layers",
80 "layers/generated",
86 # "layers/generated/vk_safe_struct.cpp",
87 "layers/buffer_validation.cpp",
88 "layers/buffer_validation.h",
89 "layers/core_validation.cpp",
90 "layers/core_validation.h",
[all …]
/external/vulkan-validation-layers/build-android/jni/
DAndroid.mk28 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_layer_config.cpp
29 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_layer_extension_utils.cpp
30 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_layer_utils.cpp
31 LOCAL_SRC_FILES += $(SRC_DIR)/layers/vk_format_utils.cpp
33 $(LOCAL_PATH)/$(SRC_DIR)/layers/generated \
34 $(LOCAL_PATH)/$(SRC_DIR)/layers
44 LOCAL_SRC_FILES += $(SRC_DIR)/layers/core_validation.cpp
45 LOCAL_SRC_FILES += $(SRC_DIR)/layers/drawdispatch.cpp
46 LOCAL_SRC_FILES += $(SRC_DIR)/layers/descriptor_sets.cpp
47 LOCAL_SRC_FILES += $(SRC_DIR)/layers/buffer_validation.cpp
[all …]
/external/tensorflow/tensorflow/python/keras/tests/
Dmodel_architectures.py29 keras.layers.Dense(3, activation='relu', input_shape=(3,)),
30 keras.layers.Dense(2, activation='softmax'),
38 keras.layers.Dense(3, activation='relu'),
39 keras.layers.Dense(2, activation='softmax'),
47 layer = keras.layers.RNN([keras.layers.LSTMCell(2) for _ in range(3)])
49 outputs = keras.layers.Dense(2)(x)
57 x = keras.layers.LSTM(4, return_sequences=True)(inputs)
58 x = keras.layers.LSTM(3, return_sequences=True)(x)
59 x = keras.layers.LSTM(2, return_sequences=False)(x)
60 outputs = keras.layers.Dense(2)(x)
[all …]
Dmodel_subclassing_test_util.py28 self.conv1 = keras.layers.Conv2D(32, (3, 3), activation='relu')
29 self.flatten = keras.layers.Flatten()
30 self.dense1 = keras.layers.Dense(num_classes, activation='softmax')
40 shared_layer = keras.layers.Dense(32, activation='relu')
43 branch_a.append(keras.layers.Dropout(0.5))
44 branch_a.append(keras.layers.Dense(num_classes[0], activation='softmax'))
48 branch_b.append(keras.layers.BatchNormalization())
49 branch_b.append(keras.layers.Dense(num_classes[1], activation='softmax'))
64 self.dense1 = keras.layers.Dense(32, activation='relu')
65 self.dense2 = keras.layers.Dense(num_classes, activation='relu')
[all …]
/external/drm_hwcomposer/backend/
DBackend.cpp31 auto layers = display->GetOrderLayersByZPos(); in ValidateDisplay() local
36 if (display->ProcessClientFlatteningState(layers.size() <= 1)) { in ValidateDisplay()
39 client_size = layers.size(); in ValidateDisplay()
40 MarkValidated(layers, client_start, client_size); in ValidateDisplay()
42 std::tie(client_start, client_size) = GetClientLayers(display, layers); in ValidateDisplay()
44 MarkValidated(layers, client_start, client_size); in ValidateDisplay()
46 bool testing_needed = !(client_start == 0 && client_size == layers.size()); in ValidateDisplay()
54 client_size = layers.size(); in ValidateDisplay()
55 MarkValidated(layers, 0, client_size); in ValidateDisplay()
61 display->total_stats().gpu_pixops_ += CalcPixOps(layers, client_start, in ValidateDisplay()
[all …]
/external/webrtc/media/engine/
Dsimulcast.cc204 std::vector<webrtc::VideoStream>* layers) { in BoostMaxSimulcastLayer() argument
205 if (layers->empty()) in BoostMaxSimulcastLayer()
208 const webrtc::DataRate total_bitrate = GetTotalMaxBitrate(*layers); in BoostMaxSimulcastLayer()
214 layers->back().max_bitrate_bps += bitrate_left.bps(); in BoostMaxSimulcastLayer()
219 const std::vector<webrtc::VideoStream>& layers) { in GetTotalMaxBitrate() argument
220 if (layers.empty()) in GetTotalMaxBitrate()
224 for (size_t s = 0; s < layers.size() - 1; ++s) { in GetTotalMaxBitrate()
225 total_max_bitrate_bps += layers[s].target_bitrate_bps; in GetTotalMaxBitrate()
227 total_max_bitrate_bps += layers.back().max_bitrate_bps; in GetTotalMaxBitrate()
289 std::vector<webrtc::VideoStream> layers(layer_count); in GetNormalSimulcastLayers() local
[all …]
/external/walt/hardware/kicad/walt_footprints.pretty/
DTeensy_DIP-28_W15.24mm.kicad_mod14 (pad 1 thru_hole circle (at 0 0) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
15 (pad 2 thru_hole circle (at 0 2.54) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
16 (pad 3 thru_hole circle (at 0 5.08) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
17 (pad 4 thru_hole circle (at 0 7.62) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
18 (pad 5 thru_hole circle (at 0 10.16) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
19 (pad 6 thru_hole circle (at 0 12.7) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
20 (pad 7 thru_hole circle (at 0 15.24) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
21 (pad 8 thru_hole circle (at 0 17.78) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
22 (pad 9 thru_hole circle (at 0 20.32) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
23 (pad 10 thru_hole circle (at 0 22.86) (size 1.5 1.5) (drill 1) (layers *.Cu *.Mask F.SilkS))
[all …]
/external/armnn/
DAndroid.mk148 src/armnn/layers/ActivationLayer.cpp \
149 src/armnn/layers/AdditionLayer.cpp \
150 src/armnn/layers/ArgMinMaxLayer.cpp \
151 src/armnn/layers/BatchNormalizationLayer.cpp \
152 src/armnn/layers/BatchToSpaceNdLayer.cpp \
153 src/armnn/layers/ComparisonLayer.cpp \
154 src/armnn/layers/ConcatLayer.cpp \
155 src/armnn/layers/ConstantLayer.cpp \
156 src/armnn/layers/Convolution2dLayer.cpp \
157 src/armnn/layers/ConvertBf16ToFp32Layer.cpp \
[all …]
/external/scapy/scapy/layers/tls/
Dall.py10 from scapy.layers.tls.cert import *
12 from scapy.layers.tls.automaton_cli import *
13 from scapy.layers.tls.automaton_srv import *
14 from scapy.layers.tls.extensions import *
15 from scapy.layers.tls.handshake import *
16 from scapy.layers.tls.handshake_sslv2 import *
17 from scapy.layers.tls.keyexchange import *
18 from scapy.layers.tls.keyexchange_tls13 import *
19 from scapy.layers.tls.record import *
20 from scapy.layers.tls.record_sslv2 import *
[all …]
/external/mesa3d/src/gallium/auxiliary/vl/
Dvl_compositor.c335 s->layers[layer].samplers[i] = c->sampler_linear; in set_yuv_layer()
336 pipe_sampler_view_reference(&s->layers[layer].sampler_views[i], sampler_views[i]); in set_yuv_layer()
339 calc_src_and_dst(&s->layers[layer], buffer->width, buffer->height, in set_yuv_layer()
340 src_rect ? *src_rect : default_rect(&s->layers[layer]), in set_yuv_layer()
341 dst_rect ? *dst_rect : default_rect(&s->layers[layer])); in set_yuv_layer()
343 half_a_line = 0.5f / s->layers[layer].zw.y; in set_yuv_layer()
347 s->layers[layer].zw.x = 0.0f; in set_yuv_layer()
348 s->layers[layer].src.tl.y += half_a_line; in set_yuv_layer()
349 s->layers[layer].src.br.y += half_a_line; in set_yuv_layer()
351 s->layers[layer].fs = (y) ? c->fs_yuv.bob.y : c->fs_yuv.bob.uv; in set_yuv_layer()
[all …]
/external/webrtc/pc/
Dpeer_connection_simulcast_unittest.cc147 const std::vector<SimulcastLayer>& layers) { in CreateTransceiverInit() argument
149 for (const SimulcastLayer& layer : layers) { in CreateTransceiverInit()
160 const std::vector<SimulcastLayer>& layers) { in AddTransceiver() argument
161 auto init = CreateTransceiverInit(layers); in AddTransceiver()
172 void AddRequestToReceiveSimulcast(const std::vector<SimulcastLayer>& layers, in AddRequestToReceiveSimulcast() argument
177 for (const SimulcastLayer& layer : layers) { in AddRequestToReceiveSimulcast()
185 const std::vector<SimulcastLayer>& layers) { in ValidateTransceiverParameters() argument
192 EXPECT_THAT(result_layers, ElementsAreArray(layers)); in ValidateTransceiverParameters()
221 auto layers = CreateLayers({"f"}, true); in TEST_F() local
222 auto transceiver = AddTransceiver(pc.get(), layers); in TEST_F()
[all …]

12345678910>>...41