/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
D | StandardDeviation.java | 48 private Variance variance = null; field in StandardDeviation 55 variance = new Variance(); in StandardDeviation() 64 variance = new Variance(m2); in StandardDeviation() 88 variance = new Variance(isBiasCorrected); in StandardDeviation() 103 variance = new Variance(isBiasCorrected, m2); in StandardDeviation() 111 variance.increment(d); in increment() 118 return variance.getN(); in getN() 126 return FastMath.sqrt(variance.getResult()); in getResult() 134 variance.clear(); in clear() 153 return FastMath.sqrt(variance.evaluate(values)); in evaluate() [all …]
|
D | Kurtosis.java | 111 double variance = moment.m2 / (moment.n - 1); in getResult() local 112 if (moment.n <= 3 || variance < 10E-20) { in getResult() 119 ((n - 1) * (n -2) * (n -3) * variance * variance); in getResult() 171 Variance variance = new Variance(); in evaluate() local 172 variance.incrementAll(values, begin, length); in evaluate() 173 double mean = variance.moment.m1; in evaluate() 174 double stdDev = FastMath.sqrt(variance.getResult()); in evaluate()
|
D | Skewness.java | 107 double variance = moment.m2 / (moment.n - 1); in getResult() local 108 if (variance < 10E-20) { in getResult() 113 ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); in getResult() 172 final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); in evaluate() local 179 accum3 /= variance * FastMath.sqrt(variance); in evaluate()
|
/external/guava/android/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 74 private final double variance; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 78 this.variance = variance; in MeanAndVariance() 83 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); in hashCode() 90 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 96 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 108 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 125 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 140 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); in variance() method in StatsBenchmark.VarianceAlgorithm 166 tmp += varianceAlgorithm.variance(values[i & 0xFF], meanAlgorithm).hashCode(); in meanAndVariance()
|
/external/guava/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 74 private final double variance; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 78 this.variance = variance; in MeanAndVariance() 83 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); in hashCode() 90 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 96 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 108 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 125 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 140 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); in variance() method in StatsBenchmark.VarianceAlgorithm 166 tmp += varianceAlgorithm.variance(values[i & 0xFF], meanAlgorithm).hashCode(); in meanAndVariance()
|
/external/tensorflow/tensorflow/python/keras/layers/normalization/ |
D | batch_normalization.py | 570 def _maybe_add_or_remove_bessels_correction(variance, remove=True): argument 577 return variance 579 array_ops.size(inputs) / array_ops.size(variance), variance.dtype) 582 math_ops.cast(1.0, variance.dtype)) / sample_size 585 sample_size - math_ops.cast(1.0, variance.dtype)) 586 return variance * factor 594 variance=_maybe_add_or_remove_bessels_correction( 610 variance=self.moving_variance, 623 output, mean, variance = control_flow_util.smart_cond( 625 variance = _maybe_add_or_remove_bessels_correction(variance, remove=True) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | normalization.py | 89 def __init__(self, axis=-1, mean=None, variance=None, **kwargs): argument 107 if isinstance(variance, variables.Variable): 110 if (mean is not None) != (variance is not None): 113 'must be set. Got mean: {} and variance: {}'.format(mean, variance)) 115 self.input_variance = variance 169 variance = self.input_variance * np.ones(mean_and_var_shape) 171 variance = array_ops.reshape(variance, self._broadcast_shape) 173 self.variance = math_ops.cast(variance, self.compute_dtype) 261 self.variance = array_ops.reshape(self.adapt_variance, 263 self.variance = math_ops.cast(self.variance, self.compute_dtype) [all …]
|
/external/tensorflow/tensorflow/core/kernels/mkl/ |
D | mkl_fused_batch_norm_op_test.cc | 47 const Tensor& mean, const Tensor& variance, 53 const Tensor& scale, const Tensor& mean, const Tensor& variance, 101 Tensor variance(dtype, {depth}); in VerifyTensorsClose() local 102 variance.flat<T>() = in VerifyTensorsClose() 103 variance.flat<T>().template setRandom<random_gen_>().abs(); in VerifyTensorsClose() 112 run(input, scale, offset, mean, variance, exponential_avg_factor, in VerifyTensorsClose() 114 run_mkl(input, scale, offset, mean, variance, exponential_avg_factor, in VerifyTensorsClose() 155 Tensor variance(dtype, {out_channels}); in VerifyTensorsCloseForGrad() local 156 variance.flat<T>() = in VerifyTensorsCloseForGrad() 157 variance.flat<T>().template setRandom<random_gen_>().abs(); in VerifyTensorsCloseForGrad() [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/metal/kernels/ |
D | mean_stddev_normalization_test.mm | 31 // zero mean, zero variance 35 // zero mean, small variance 39 // zero mean, large variance 43 // small mean, zero variance 47 // small mean, small variance 51 // small mean, large variance 55 // large mean, zero variance 59 // large mean, small variance 63 // large mean, large variance
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 42 def variance(*values): function 338 expected=variance(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)), 382 expected=[variance(0, 1, 2, 3, 4), 383 variance(1, 1, 1), 0, 0]), 570 expected=[[variance(6, 6, 9), variance(2, 7)], 571 [variance(3, 8), 0., 0.]]), 577 expected=[[variance(6, 3), variance(2, 4), 0.], [variance(6, 8), 0.], 584 expected=[[variance(6, 2), variance(6, 9, 9)], [variance(6, 7), 0.], 648 variance(0, 1, 2, 3), 649 variance(4), [all …]
|
/external/webrtc/third_party/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/openscreen/third_party/abseil/src/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
/external/angle/third_party/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
/external/libtextclassifier/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_FusedBatchNormV2.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 78 The data type for the scale, offset, mean, and variance. 84 A small float number added to the variance of x.
|
D | api_def_FusedBatchNormV3.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 85 The data type for the scale, offset, mean, and variance. 91 A small float number added to the variance of x.
|
D | api_def_FusedBatchNorm.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 78 A small float number added to the variance of x.
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
D | StatisticalSummaryValues.java | 39 private final double variance; field in StatisticalSummaryValues 63 public StatisticalSummaryValues(double mean, double variance, long n, in StatisticalSummaryValues() argument 67 this.variance = variance; in StatisticalSummaryValues() 113 return FastMath.sqrt(variance); in getStandardDeviation() 120 return variance; in getVariance()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantized_instance_norm.cc | 42 const uint32_t cols, float* mean, float* variance) { in ColMeanAndVariance() argument 128 vst1q_f32(variance + col_offset, vmulq_n_f32(M2A[3], inv_rows)); in ColMeanAndVariance() 129 vst1q_f32(variance + col_offset + 4, vmulq_n_f32(M2A[2], inv_rows)); in ColMeanAndVariance() 130 vst1q_f32(variance + col_offset + 8, vmulq_n_f32(M2A[1], inv_rows)); in ColMeanAndVariance() 131 vst1q_f32(variance + col_offset + 12, vmulq_n_f32(M2A[0], inv_rows)); in ColMeanAndVariance() 150 const float32x4_t variance[4] = {vld1q_f32(variance_ptr + col_offset), in MinAndMax() local 155 vrsqrteq_f32(vaddq_f32(variance[0], eps)), in MinAndMax() 156 vrsqrteq_f32(vaddq_f32(variance[1], eps)), in MinAndMax() 157 vrsqrteq_f32(vaddq_f32(variance[2], eps)), in MinAndMax() 158 vrsqrteq_f32(vaddq_f32(variance[3], eps))}; in MinAndMax() [all …]
|