• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 const float batch_norm_epsilon = 0.0010000000474974513f;
35 
36 /** Example demonstrating how to implement Inception ResNet V1 network using the Compute Library's graph API */
37 class InceptionResNetV1Example final : public Example
38 {
39 public:
InceptionResNetV1Example()40     InceptionResNetV1Example()
41         : cmd_parser(), common_opts(cmd_parser), common_params(), model_input_width(nullptr), model_input_height(nullptr), graph(0, "InceptionResNetV1")
42     {
43         model_input_width  = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 512);
44         model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 512);
45 
46         // Add model id option
47         model_input_width->set_help("Input image width.");
48         model_input_height->set_help("Input image height.");
49     }
50     InceptionResNetV1Example(const InceptionResNetV1Example &) = delete;
51     InceptionResNetV1Example &operator=(const InceptionResNetV1Example &) = delete;
52     ~InceptionResNetV1Example() override                                  = default;
do_setup(int argc,char ** argv)53     bool do_setup(int argc, char **argv) override
54     {
55         // Parse arguments
56         cmd_parser.parse(argc, argv);
57         cmd_parser.validate();
58 
59         // Consume common parameters
60         common_params = consume_common_graph_parameters(common_opts);
61 
62         // Return when help menu is requested
63         if(common_params.help)
64         {
65             cmd_parser.print_help(argv[0]);
66             return false;
67         }
68         // Get input image width and height
69         const unsigned int image_width  = model_input_width->value();
70         const unsigned int image_height = model_input_height->value();
71 
72         // Set default layout if needed
73         if(!common_opts.data_layout->is_set() && common_params.target == Target::NEON)
74         {
75             common_params.data_layout = DataLayout::NCHW;
76         }
77 
78         // Checks
79         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
80 
81         // Print parameter values
82         std::cout << common_params << std::endl;
83         std::cout << "Image width: " << image_width << std::endl;
84         std::cout << "Image height: " << image_height << std::endl;
85 
86         // Create model path
87         std::string data_path  = common_params.data_path;
88         std::string model_path = "/cnn_data/inception_resnet_v1_model/";
89         if(!data_path.empty())
90         {
91             data_path += model_path;
92         }
93 
94         // Create a preprocessor object
95         std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>(0.f, 1.f);
96 
97         // Create input descriptor
98         const auto        operation_layout = common_params.data_layout;
99         const TensorShape tensor_shape     = permute_shape(TensorShape(image_width, image_height, 3U, 1U), DataLayout::NCHW, operation_layout);
100         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
101 
102         // Set weights trained layout
103         const DataLayout weights_layout = DataLayout::NCHW;
104 
105         graph << common_params.target
106               << common_params.fast_math_hint
107               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false))
108               // Conv2d_1a_3x3
109               << ConvolutionLayer(3U, 3U, 32U,
110                                   get_weights_accessor(data_path, "Conv2d_1a_3x3_weights.npy", weights_layout),
111                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
112                                   PadStrideInfo(2, 2, 0, 0))
113               .set_name("Conv2d_1a_3x3/convolution")
114               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
115                                          get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
116                                          get_random_accessor(1.f, 1.f),
117                                          get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_beta.npy"),
118                                          batch_norm_epsilon)
119               .set_name("Conv2d_1a_3x3/BatchNorm")
120               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu")
121               // Conv2d_2a_3x3
122               << ConvolutionLayer(3U, 3U, 32U,
123                                   get_weights_accessor(data_path, "Conv2d_2a_3x3_weights.npy", weights_layout),
124                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
125                                   PadStrideInfo(1, 1, 0, 0))
126               .set_name("Conv2d_2a_3x3/convolution")
127               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_moving_mean.npy"),
128                                          get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_moving_variance.npy"),
129                                          get_random_accessor(1.f, 1.f),
130                                          get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_beta.npy"),
131                                          batch_norm_epsilon)
132               .set_name("Conv2d_2a_3x3/BatchNorm")
133               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu")
134               // Conv2d_2b_3x3
135               << ConvolutionLayer(3U, 3U, 64U,
136                                   get_weights_accessor(data_path, "Conv2d_2b_3x3_weights.npy", weights_layout),
137                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
138                                   PadStrideInfo(1, 1, 1, 1))
139               .set_name("Conv2d_2b_3x3/convolution")
140               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_moving_mean.npy"),
141                                          get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_moving_variance.npy"),
142                                          get_random_accessor(1.f, 1.f),
143                                          get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_beta.npy"),
144                                          batch_norm_epsilon)
145               .set_name("Conv2d_2b_3x3/BatchNorm")
146               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu")
147               // MaxPool_3a_3x3
148               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true)).set_name("MaxPool_3a_3x3/MaxPool")
149               // Conv2d_3b_1x1
150               << ConvolutionLayer(1U, 1U, 80U,
151                                   get_weights_accessor(data_path, "Conv2d_3b_1x1_weights.npy", weights_layout),
152                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
153                                   PadStrideInfo(1, 1, 0, 0))
154               .set_name("Conv2d_3b_1x1/convolution")
155               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_moving_mean.npy"),
156                                          get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_moving_variance.npy"),
157                                          get_random_accessor(1.f, 1.f),
158                                          get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_beta.npy"),
159                                          batch_norm_epsilon)
160               .set_name("Conv2d_3b_1x1/BatchNorm")
161               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_3b_1x1/Relu")
162               // Conv2d_4a_3x3
163               << ConvolutionLayer(3U, 3U, 192U,
164                                   get_weights_accessor(data_path, "Conv2d_4a_3x3_weights.npy", weights_layout),
165                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
166                                   PadStrideInfo(1, 1, 0, 0))
167               .set_name("Conv2d_4a_3x3/convolution")
168               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_moving_mean.npy"),
169                                          get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_moving_variance.npy"),
170                                          get_random_accessor(1.f, 1.f),
171                                          get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_beta.npy"),
172                                          batch_norm_epsilon)
173               .set_name("Conv2d_4a_3x3/BatchNorm")
174               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4a_3x3/Relu")
175               // Conv2d_4b_3x3
176               << ConvolutionLayer(3U, 3U, 256U,
177                                   get_weights_accessor(data_path, "Conv2d_4b_3x3_weights.npy", weights_layout),
178                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
179                                   PadStrideInfo(2, 2, 0, 0))
180               .set_name("Conv2d_4a_3x3/convolution")
181               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_4b_3x3_BatchNorm_moving_mean.npy"),
182                                          get_weights_accessor(data_path, "Conv2d_4b_3x3_BatchNorm_moving_variance.npy"),
183                                          get_random_accessor(1.f, 1.f),
184                                          get_weights_accessor(data_path, "Conv2d_4b_3x3_BatchNorm_beta.npy"),
185                                          batch_norm_epsilon)
186               .set_name("Conv2d_4b_3x3/BatchNorm")
187               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4b_3x3/Relu");
188 
189         // 5 x Inception-resnet-A
190         block35_repeat(data_path, weights_layout, 5);
191         // Reduction-A
192         reduction_a(data_path, weights_layout);
193         // 10 x Inception-Resnet-B
194         block17_repeat(data_path, weights_layout, 10);
195         // Reduction-B
196         reduction_b(data_path, weights_layout);
197         // 5 x Inception-resnet-C
198         block8_repeat(data_path, weights_layout, 5, 0.2f, true);
199 
200         block8_repeat(data_path, weights_layout, 1, 1.f, false);
201 
202         // Logits tail
203         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("Logits/AvgPool_1a_8x8")
204               << FlattenLayer().set_name("Logits/Flatten")
205               << FullyConnectedLayer(
206                   128U,
207                   get_weights_accessor(data_path, "Logits_Logits_weights.npy", weights_layout),
208                   get_weights_accessor(data_path, "Logits_Logits_biases.npy"))
209               .set_name("Logits/Logits")
210               << OutputLayer(arm_compute::support::cpp14::make_unique<DummyAccessor>(0));
211 
212         // Finalize graph
213         GraphConfig config;
214         config.num_threads = common_params.threads;
215         config.use_tuner   = common_params.enable_tuner;
216         config.tuner_mode  = common_params.tuner_mode;
217         config.tuner_file  = common_params.tuner_file;
218 
219         graph.finalize(common_params.target, config);
220 
221         return true;
222     }
223 
do_run()224     void do_run() override
225     {
226         graph.run();
227     }
228 
229 private:
230     CommandLineParser           cmd_parser;
231     CommonGraphOptions          common_opts;
232     CommonGraphParams           common_params;
233     SimpleOption<unsigned int> *model_input_width{ nullptr };
234     SimpleOption<unsigned int> *model_input_height{ nullptr };
235     Stream                      graph;
236 
237 private:
block35_repeat(const std::string & data_path,DataLayout weights_layout,unsigned int num_blocks)238     void block35_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks)
239     {
240         for(unsigned int i = 0; i < num_blocks; ++i)
241         {
242             std::stringstream unit_path_ss;
243             unit_path_ss << "Repeat_block35_" << (i + 1) << "_";
244             std::stringstream unit_name_ss;
245             unit_name_ss << "Repeat/block35_" << (i + 1) << "/";
246 
247             std::string unit_path = unit_path_ss.str();
248             std::string unit_name = unit_name_ss.str();
249 
250             // Create left and write substreams
251             SubStream i_l(graph);
252             SubStream i_r(graph);
253 
254             // Branch 0
255             SubStream i_la(i_l);
256             i_la << ConvolutionLayer(1U, 1U, 32U,
257                                      get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
258                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
259                                      PadStrideInfo(1, 1, 0, 0))
260                  .set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
261                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
262                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
263                                             get_random_accessor(1.f, 1.f),
264                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
265                                             batch_norm_epsilon)
266                  .set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
267                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
268 
269             // Branch 1
270             SubStream i_lb(i_l);
271             i_lb << ConvolutionLayer(1U, 1U, 32U,
272                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
273                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
274                                      PadStrideInfo(1, 1, 0, 0))
275                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
276                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
277                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
278                                             get_random_accessor(1.f, 1.f),
279                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
280                                             batch_norm_epsilon)
281                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
282                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
283                  << ConvolutionLayer(3U, 3U, 32U,
284                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
285                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
286                                      PadStrideInfo(1, 1, 1, 1))
287                  .set_name(unit_name + "Branch_1/Conv2d_0b_3x3/convolution")
288                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
289                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
290                                             get_random_accessor(1.f, 1.f),
291                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
292                                             batch_norm_epsilon)
293                  .set_name(unit_name + "Branch_1/Conv2d_0b_3x3/BatchNorm")
294                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_3x3/Relu");
295 
296             // Branch 2
297             SubStream i_lc(i_l);
298             i_lc << ConvolutionLayer(1U, 1U, 32U,
299                                      get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
300                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
301                                      PadStrideInfo(1, 1, 0, 0))
302                  .set_name(unit_name + "Branch_2/Conv2d_0a_1x1/convolution")
303                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
304                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
305                                             get_random_accessor(1.f, 1.f),
306                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
307                                             batch_norm_epsilon)
308                  .set_name(unit_name + "Branch_2/Conv2d_0a_1x1/BatchNorm")
309                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0a_1x1/Relu")
310                  << ConvolutionLayer(3U, 3U, 32U,
311                                      get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
312                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
313                                      PadStrideInfo(1, 1, 1, 1))
314                  .set_name(unit_name + "Branch_2/Conv2d_0b_3x3/convolution")
315                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
316                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
317                                             get_random_accessor(1.f, 1.f),
318                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
319                                             batch_norm_epsilon)
320                  .set_name(unit_name + "Branch_2/Conv2d_0b_3x3/BatchNorm")
321                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0b_3x3/Relu")
322                  << ConvolutionLayer(3U, 3U, 32U,
323                                      get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_weights.npy", weights_layout),
324                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
325                                      PadStrideInfo(1, 1, 1, 1))
326                  .set_name(unit_name + "Branch_2/Conv2d_0c_3x3/convolution")
327                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"),
328                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"),
329                                             get_random_accessor(1.f, 1.f),
330                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"),
331                                             batch_norm_epsilon)
332                  .set_name(unit_name + "Branch_2/Conv2d_0c_3x3/BatchNorm")
333                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0c_3x3/Relu");
334 
335             // Concatenate
336             i_l << ConcatLayer(std::move(i_la), std::move(i_lb), std::move(i_lc)).set_name(unit_name + "concat")
337                 << ConvolutionLayer(1U, 1U, 256U,
338                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
339                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
340                                     PadStrideInfo(1, 1, 0, 0))
341                 .set_name(unit_name + "Conv2d_1x1/convolution")
342                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.17f, 0.f)).set_name(unit_name + "mul");
343 
344             graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add")
345                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
346         }
347     }
348 
block17_repeat(const std::string & data_path,DataLayout weights_layout,unsigned int num_blocks)349     void block17_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks)
350     {
351         for(unsigned int i = 0; i < num_blocks; ++i)
352         {
353             std::stringstream unit_path_ss;
354             unit_path_ss << "Repeat_1_block17_" << (i + 1) << "_";
355             std::stringstream unit_name_ss;
356             unit_name_ss << "Repeat_1/block17_" << (i + 1) << "/";
357 
358             std::string unit_path = unit_path_ss.str();
359             std::string unit_name = unit_name_ss.str();
360 
361             // Create left and write substreams
362             SubStream i_l(graph);
363             SubStream i_r(graph);
364 
365             // Branch 0
366             SubStream i_la(i_l);
367             i_la << ConvolutionLayer(1U, 1U, 128U,
368                                      get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
369                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
370                                      PadStrideInfo(1, 1, 0, 0))
371                  .set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
372                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
373                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
374                                             get_random_accessor(1.f, 1.f),
375                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
376                                             batch_norm_epsilon)
377                  .set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
378                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
379 
380             // Branch 1
381             SubStream i_lb(i_l);
382             i_lb << ConvolutionLayer(1U, 1U, 128U,
383                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
384                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
385                                      PadStrideInfo(1, 1, 0, 0))
386                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
387                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
388                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
389                                             get_random_accessor(1.f, 1.f),
390                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
391                                             batch_norm_epsilon)
392                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
393                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
394                  << ConvolutionLayer(7U, 1U, 128U,
395                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_weights.npy", weights_layout),
396                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
397                                      PadStrideInfo(1, 1, 3, 0))
398                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x7/convolution")
399                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
400                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
401                                             get_random_accessor(1.f, 1.f),
402                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
403                                             batch_norm_epsilon)
404                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x7/BatchNorm")
405                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_1x7/Relu")
406                  << ConvolutionLayer(1U, 7U, 128U,
407                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_weights.npy", weights_layout),
408                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
409                                      PadStrideInfo(1, 1, 0, 3))
410                  .set_name(unit_name + "Branch_1/Conv2d_0c_7x1/convolution")
411                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
412                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
413                                             get_random_accessor(1.f, 1.f),
414                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
415                                             batch_norm_epsilon)
416                  .set_name(unit_name + "Branch_1/Conv2d_0c_7x1/BatchNorm")
417                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0c_7x1/Relu");
418 
419             // Concatenate
420             i_l << ConcatLayer(std::move(i_la), std::move(i_lb)).set_name(unit_name + "concat")
421                 << ConvolutionLayer(1U, 1U, 896U,
422                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
423                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
424                                     PadStrideInfo(1, 1, 0, 0))
425                 .set_name(unit_name + "Conv2d_1x1/convolution")
426                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.10f, 0.f)).set_name(unit_name + "mul");
427 
428             graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add")
429                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
430         }
431     }
432 
block8_repeat(const std::string & data_path,DataLayout weights_layout,unsigned int num_blocks,float scale,bool has_activation)433     void block8_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks, float scale, bool has_activation)
434     {
435         for(unsigned int i = 0; i < num_blocks; ++i)
436         {
437             std::stringstream unit_path_ss;
438             std::stringstream unit_name_ss;
439             if(num_blocks != 1)
440             {
441                 unit_path_ss << "Repeat_2_block8_" << (i + 1) << "_";
442                 unit_name_ss << "Repeat_2/block8_" << (i + 1) << "/";
443             }
444             else
445             {
446                 unit_path_ss << "Block8_";
447                 unit_name_ss << "Block8/";
448             }
449 
450             std::string unit_path = unit_path_ss.str();
451             std::string unit_name = unit_name_ss.str();
452 
453             // Create left and write substreams
454             SubStream i_l(graph);
455             SubStream i_r(graph);
456 
457             // Branch 0
458             SubStream i_la(i_l);
459             i_la << ConvolutionLayer(1U, 1U, 192U,
460                                      get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
461                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
462                                      PadStrideInfo(1, 1, 0, 0))
463                  .set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
464                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
465                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
466                                             get_random_accessor(1.f, 1.f),
467                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
468                                             batch_norm_epsilon)
469                  .set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
470                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
471 
472             // Branch 1
473             SubStream i_lb(i_l);
474             i_lb << ConvolutionLayer(1U, 1U, 192U,
475                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
476                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
477                                      PadStrideInfo(1, 1, 0, 0))
478                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
479                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
480                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
481                                             get_random_accessor(1.f, 1.f),
482                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
483                                             batch_norm_epsilon)
484                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
485                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
486                  << ConvolutionLayer(3U, 1U, 192U,
487                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_weights.npy", weights_layout),
488                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
489                                      PadStrideInfo(1, 1, 1, 0))
490                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x3/convolution")
491                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_mean.npy"),
492                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_variance.npy"),
493                                             get_random_accessor(1.f, 1.f),
494                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_beta.npy"),
495                                             batch_norm_epsilon)
496                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x3/BatchNorm")
497                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_1x3/Relu")
498                  << ConvolutionLayer(1U, 3U, 192U,
499                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_weights.npy", weights_layout),
500                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
501                                      PadStrideInfo(1, 1, 0, 1))
502                  .set_name(unit_name + "Branch_1/Conv2d_0c_3x1/convolution")
503                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_mean.npy"),
504                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_variance.npy"),
505                                             get_random_accessor(1.f, 1.f),
506                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_beta.npy"),
507                                             batch_norm_epsilon)
508                  .set_name(unit_name + "Branch_1/Conv2d_0c_3x1/BatchNorm")
509                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0c_3x1/Relu");
510 
511             // Concatenate
512             i_l << ConcatLayer(std::move(i_la), std::move(i_lb)).set_name(unit_name + "concat")
513                 << ConvolutionLayer(1U, 1U, 1792U,
514                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
515                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
516                                     PadStrideInfo(1, 1, 0, 0))
517                 .set_name(unit_name + "Conv2d_1x1/convolution");
518 
519             // Scale result
520             if(scale != 1.f)
521             {
522                 i_l << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, scale, 0.f)).set_name(unit_name + "mul");
523             }
524 
525             // Residual add
526             graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add");
527 
528             // Apply activation if needed
529             if(has_activation)
530             {
531                 graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
532             }
533         }
534     }
535 
reduction_a(const std::string & data_path,DataLayout weights_layout)536     void reduction_a(const std::string &data_path, DataLayout weights_layout)
537     {
538         // Branch 0
539         SubStream i_a(graph);
540         i_a << ConvolutionLayer(3U, 3U, 384U,
541                                 get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
542                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
543                                 PadStrideInfo(2, 2, 0, 0))
544             .set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/convolution")
545             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
546                                        get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
547                                        get_random_accessor(1.f, 1.f),
548                                        get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
549                                        batch_norm_epsilon)
550             .set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm")
551             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/Relu");
552 
553         // Branch 1
554         SubStream i_b(graph);
555         i_b << ConvolutionLayer(1U, 1U, 192U,
556                                 get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
557                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
558                                 PadStrideInfo(1, 1, 0, 0))
559             .set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/convolution")
560             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
561                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
562                                        get_random_accessor(1.f, 1.f),
563                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
564                                        batch_norm_epsilon)
565             .set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm")
566             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/Relu")
567             << ConvolutionLayer(3U, 3U, 192U,
568                                 get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
569                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
570                                 PadStrideInfo(1, 1, 1, 1))
571             .set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/convolution")
572             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
573                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
574                                        get_random_accessor(1.f, 1.f),
575                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
576                                        batch_norm_epsilon)
577             .set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm")
578             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/Relu")
579             << ConvolutionLayer(3U, 3U, 256U,
580                                 get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
581                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
582                                 PadStrideInfo(2, 2, 0, 0))
583             .set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/convolution")
584             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
585                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
586                                        get_random_accessor(1.f, 1.f),
587                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
588                                        batch_norm_epsilon)
589             .set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm")
590             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/Relu");
591 
592         // Branch 2
593         SubStream i_c(graph);
594         i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0), true)).set_name("Mixed_6a/Branch_2/MaxPool_1a_3x3");
595 
596         // Concatenate
597         graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c)).set_name("Mixed_6a/concat");
598     }
599 
reduction_b(const std::string & data_path,DataLayout weights_layout)600     void reduction_b(const std::string &data_path, DataLayout weights_layout)
601     {
602         // Branch 0
603         SubStream i_a(graph);
604         i_a << ConvolutionLayer(1U, 1U, 256U,
605                                 get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
606                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
607                                 PadStrideInfo(1, 1, 0, 0))
608             .set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/convolution")
609             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
610                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
611                                        get_random_accessor(1.f, 1.f),
612                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
613                                        batch_norm_epsilon)
614             .set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/BatchNorm")
615             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/Relu")
616             << ConvolutionLayer(3U, 3U, 384U,
617                                 get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
618                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
619                                 PadStrideInfo(2, 2, 0, 0))
620             .set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/convolution")
621             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
622                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
623                                        get_random_accessor(1.f, 1.f),
624                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
625                                        batch_norm_epsilon)
626             .set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm")
627             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/Relu");
628 
629         // Branch 1
630         SubStream i_b(graph);
631         i_b << ConvolutionLayer(1U, 1U, 256U,
632                                 get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
633                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
634                                 PadStrideInfo(1, 1, 0, 0))
635             .set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/convolution")
636             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
637                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
638                                        get_random_accessor(1.f, 1.f),
639                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
640                                        batch_norm_epsilon)
641             .set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm")
642             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Relu")
643             << ConvolutionLayer(3U, 3U, 256U,
644                                 get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
645                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
646                                 PadStrideInfo(2, 2, 0, 0))
647             .set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/convolution")
648             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
649                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
650                                        get_random_accessor(1.f, 1.f),
651                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
652                                        batch_norm_epsilon)
653             .set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm")
654             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/Relu");
655 
656         // Branch 2
657         SubStream i_c(graph);
658         i_c << ConvolutionLayer(1U, 1U, 256U,
659                                 get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
660                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
661                                 PadStrideInfo(1, 1, 0, 0))
662             .set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/convolution")
663             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
664                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
665                                        get_random_accessor(1.f, 1.f),
666                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
667                                        batch_norm_epsilon)
668             .set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/BatchNorm")
669             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/Relu")
670             << ConvolutionLayer(3U, 3U, 256U,
671                                 get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
672                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
673                                 PadStrideInfo(1, 1, 1, 1))
674             .set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/convolution")
675             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
676                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
677                                        get_random_accessor(1.f, 1.f),
678                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
679                                        batch_norm_epsilon)
680             .set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/BatchNorm")
681             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/Relu")
682             << ConvolutionLayer(3U, 3U, 256U,
683                                 get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_weights.npy", weights_layout),
684                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
685                                 PadStrideInfo(2, 2, 0, 0))
686             .set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/convolution")
687             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
688                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
689                                        get_random_accessor(1.f, 1.f),
690                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_beta.npy"),
691                                        batch_norm_epsilon)
692             .set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/BatchNorm")
693             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/Relu");
694 
695         // Branch 3
696         SubStream i_d(graph);
697         i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0), true)).set_name("Mixed_7a/Branch_3/MaxPool_1a_3x3");
698 
699         // Concatenate
700         graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)).set_name("Mixed_7a/concat");
701     }
702 };
703 
704 /** Main program for Inception ResNet V1
705  *
706  * Model is based on:
707  *      https://arxiv.org/abs/1602.07261
708  *      "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"
709  *      Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
710  *
711  * @note To list all the possible arguments execute the binary appended with the --help option
712  *
713  * @param[in] argc Number of arguments
714  * @param[in] argv Arguments
715  */
main(int argc,char ** argv)716 int main(int argc, char **argv)
717 {
718     return arm_compute::utils::run_example<InceptionResNetV1Example>(argc, argv);
719 }
720