• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_x86.h"
18 
19 #include "arch/x86/jni_frame_x86.h"
20 #include "art_method-inl.h"
21 #include "class_table.h"
22 #include "code_generator_utils.h"
23 #include "compiled_method.h"
24 #include "entrypoints/quick/quick_entrypoints.h"
25 #include "entrypoints/quick/quick_entrypoints_enum.h"
26 #include "gc/accounting/card_table.h"
27 #include "gc/space/image_space.h"
28 #include "heap_poisoning.h"
29 #include "interpreter/mterp/nterp.h"
30 #include "intrinsics.h"
31 #include "intrinsics_utils.h"
32 #include "intrinsics_x86.h"
33 #include "jit/profiling_info.h"
34 #include "linker/linker_patch.h"
35 #include "lock_word.h"
36 #include "mirror/array-inl.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/var_handle.h"
39 #include "scoped_thread_state_change-inl.h"
40 #include "thread.h"
41 #include "utils/assembler.h"
42 #include "utils/stack_checks.h"
43 #include "utils/x86/assembler_x86.h"
44 #include "utils/x86/managed_register_x86.h"
45 
46 namespace art {
47 
48 template<class MirrorType>
49 class GcRoot;
50 
51 namespace x86 {
52 
53 static constexpr int kCurrentMethodStackOffset = 0;
54 static constexpr Register kMethodRegisterArgument = EAX;
55 static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
56 
57 static constexpr int kC2ConditionMask = 0x400;
58 
59 static constexpr int kFakeReturnRegister = Register(8);
60 
61 static constexpr int64_t kDoubleNaN = INT64_C(0x7FF8000000000000);
62 static constexpr int32_t kFloatNaN = INT32_C(0x7FC00000);
63 
OneRegInReferenceOutSaveEverythingCallerSaves()64 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
65   InvokeRuntimeCallingConvention calling_convention;
66   RegisterSet caller_saves = RegisterSet::Empty();
67   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
68   // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
69   // that the the kPrimNot result register is the same as the first argument register.
70   return caller_saves;
71 }
72 
73 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
74 #define __ down_cast<X86Assembler*>(codegen->GetAssembler())->  // NOLINT
75 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, x).Int32Value()
76 
77 class NullCheckSlowPathX86 : public SlowPathCode {
78  public:
NullCheckSlowPathX86(HNullCheck * instruction)79   explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
80 
EmitNativeCode(CodeGenerator * codegen)81   void EmitNativeCode(CodeGenerator* codegen) override {
82     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
83     __ Bind(GetEntryLabel());
84     if (instruction_->CanThrowIntoCatchBlock()) {
85       // Live registers will be restored in the catch block if caught.
86       SaveLiveRegisters(codegen, instruction_->GetLocations());
87     }
88     x86_codegen->InvokeRuntime(kQuickThrowNullPointer,
89                                instruction_,
90                                instruction_->GetDexPc(),
91                                this);
92     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
93   }
94 
IsFatal() const95   bool IsFatal() const override { return true; }
96 
GetDescription() const97   const char* GetDescription() const override { return "NullCheckSlowPathX86"; }
98 
99  private:
100   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
101 };
102 
103 class DivZeroCheckSlowPathX86 : public SlowPathCode {
104  public:
DivZeroCheckSlowPathX86(HDivZeroCheck * instruction)105   explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
106 
EmitNativeCode(CodeGenerator * codegen)107   void EmitNativeCode(CodeGenerator* codegen) override {
108     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
109     __ Bind(GetEntryLabel());
110     x86_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
111     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
112   }
113 
IsFatal() const114   bool IsFatal() const override { return true; }
115 
GetDescription() const116   const char* GetDescription() const override { return "DivZeroCheckSlowPathX86"; }
117 
118  private:
119   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
120 };
121 
122 class DivRemMinusOneSlowPathX86 : public SlowPathCode {
123  public:
DivRemMinusOneSlowPathX86(HInstruction * instruction,Register reg,bool is_div)124   DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
125       : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
126 
EmitNativeCode(CodeGenerator * codegen)127   void EmitNativeCode(CodeGenerator* codegen) override {
128     __ Bind(GetEntryLabel());
129     if (is_div_) {
130       __ negl(reg_);
131     } else {
132       __ movl(reg_, Immediate(0));
133     }
134     __ jmp(GetExitLabel());
135   }
136 
GetDescription() const137   const char* GetDescription() const override { return "DivRemMinusOneSlowPathX86"; }
138 
139  private:
140   Register reg_;
141   bool is_div_;
142   DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
143 };
144 
145 class BoundsCheckSlowPathX86 : public SlowPathCode {
146  public:
BoundsCheckSlowPathX86(HBoundsCheck * instruction)147   explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
148 
EmitNativeCode(CodeGenerator * codegen)149   void EmitNativeCode(CodeGenerator* codegen) override {
150     LocationSummary* locations = instruction_->GetLocations();
151     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
152     __ Bind(GetEntryLabel());
153     if (instruction_->CanThrowIntoCatchBlock()) {
154       // Live registers will be restored in the catch block if caught.
155       SaveLiveRegisters(codegen, locations);
156     }
157 
158     Location index_loc = locations->InAt(0);
159     Location length_loc = locations->InAt(1);
160     InvokeRuntimeCallingConvention calling_convention;
161     Location index_arg = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
162     Location length_arg = Location::RegisterLocation(calling_convention.GetRegisterAt(1));
163 
164     // Are we using an array length from memory?
165     if (!length_loc.IsValid()) {
166       DCHECK(instruction_->InputAt(1)->IsArrayLength());
167       HArrayLength* array_length = instruction_->InputAt(1)->AsArrayLength();
168       DCHECK(array_length->IsEmittedAtUseSite());
169       uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length);
170       Location array_loc = array_length->GetLocations()->InAt(0);
171       if (!index_loc.Equals(length_arg)) {
172         // The index is not clobbered by loading the length directly to `length_arg`.
173         __ movl(length_arg.AsRegister<Register>(),
174                 Address(array_loc.AsRegister<Register>(), len_offset));
175         x86_codegen->Move32(index_arg, index_loc);
176       } else if (!array_loc.Equals(index_arg)) {
177         // The array reference is not clobbered by the index move.
178         x86_codegen->Move32(index_arg, index_loc);
179         __ movl(length_arg.AsRegister<Register>(),
180                 Address(array_loc.AsRegister<Register>(), len_offset));
181       } else {
182         // We do not have a temporary we could use, so swap the registers using the
183         // parallel move resolver and replace the array with the length afterwards.
184         codegen->EmitParallelMoves(
185             index_loc,
186             index_arg,
187             DataType::Type::kInt32,
188             array_loc,
189             length_arg,
190             DataType::Type::kReference);
191         __ movl(length_arg.AsRegister<Register>(),
192                 Address(length_arg.AsRegister<Register>(), len_offset));
193       }
194       if (mirror::kUseStringCompression && array_length->IsStringLength()) {
195         __ shrl(length_arg.AsRegister<Register>(), Immediate(1));
196       }
197     } else {
198       // We're moving two locations to locations that could overlap,
199       // so we need a parallel move resolver.
200       codegen->EmitParallelMoves(
201           index_loc,
202           index_arg,
203           DataType::Type::kInt32,
204           length_loc,
205           length_arg,
206           DataType::Type::kInt32);
207     }
208 
209     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
210         ? kQuickThrowStringBounds
211         : kQuickThrowArrayBounds;
212     x86_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
213     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
214     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
215   }
216 
IsFatal() const217   bool IsFatal() const override { return true; }
218 
GetDescription() const219   const char* GetDescription() const override { return "BoundsCheckSlowPathX86"; }
220 
221  private:
222   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
223 };
224 
225 class SuspendCheckSlowPathX86 : public SlowPathCode {
226  public:
SuspendCheckSlowPathX86(HSuspendCheck * instruction,HBasicBlock * successor)227   SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
228       : SlowPathCode(instruction), successor_(successor) {}
229 
EmitNativeCode(CodeGenerator * codegen)230   void EmitNativeCode(CodeGenerator* codegen) override {
231     LocationSummary* locations = instruction_->GetLocations();
232     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
233     __ Bind(GetEntryLabel());
234     SaveLiveRegisters(codegen, locations);  // Only saves full width XMM for SIMD.
235     x86_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
236     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
237     RestoreLiveRegisters(codegen, locations);  // Only restores full width XMM for SIMD.
238     if (successor_ == nullptr) {
239       __ jmp(GetReturnLabel());
240     } else {
241       __ jmp(x86_codegen->GetLabelOf(successor_));
242     }
243   }
244 
GetReturnLabel()245   Label* GetReturnLabel() {
246     DCHECK(successor_ == nullptr);
247     return &return_label_;
248   }
249 
GetSuccessor() const250   HBasicBlock* GetSuccessor() const {
251     return successor_;
252   }
253 
GetDescription() const254   const char* GetDescription() const override { return "SuspendCheckSlowPathX86"; }
255 
256  private:
257   HBasicBlock* const successor_;
258   Label return_label_;
259 
260   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
261 };
262 
263 class LoadStringSlowPathX86 : public SlowPathCode {
264  public:
LoadStringSlowPathX86(HLoadString * instruction)265   explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
266 
EmitNativeCode(CodeGenerator * codegen)267   void EmitNativeCode(CodeGenerator* codegen) override {
268     LocationSummary* locations = instruction_->GetLocations();
269     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
270 
271     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
272     __ Bind(GetEntryLabel());
273     SaveLiveRegisters(codegen, locations);
274 
275     InvokeRuntimeCallingConvention calling_convention;
276     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
277     __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index.index_));
278     x86_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
279     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
280     x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
281     RestoreLiveRegisters(codegen, locations);
282 
283     __ jmp(GetExitLabel());
284   }
285 
GetDescription() const286   const char* GetDescription() const override { return "LoadStringSlowPathX86"; }
287 
288  private:
289   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
290 };
291 
292 class LoadClassSlowPathX86 : public SlowPathCode {
293  public:
LoadClassSlowPathX86(HLoadClass * cls,HInstruction * at)294   LoadClassSlowPathX86(HLoadClass* cls, HInstruction* at)
295       : SlowPathCode(at), cls_(cls) {
296     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
297     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
298   }
299 
EmitNativeCode(CodeGenerator * codegen)300   void EmitNativeCode(CodeGenerator* codegen) override {
301     LocationSummary* locations = instruction_->GetLocations();
302     Location out = locations->Out();
303     const uint32_t dex_pc = instruction_->GetDexPc();
304     bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
305     bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
306 
307     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
308     __ Bind(GetEntryLabel());
309     SaveLiveRegisters(codegen, locations);
310 
311     InvokeRuntimeCallingConvention calling_convention;
312     if (must_resolve_type) {
313       DCHECK(IsSameDexFile(cls_->GetDexFile(), x86_codegen->GetGraph()->GetDexFile()) ||
314              x86_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
315              ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
316                              &cls_->GetDexFile()));
317       dex::TypeIndex type_index = cls_->GetTypeIndex();
318       __ movl(calling_convention.GetRegisterAt(0), Immediate(type_index.index_));
319       if (cls_->NeedsAccessCheck()) {
320         CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
321         x86_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
322       } else {
323         CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
324         x86_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
325       }
326       // If we also must_do_clinit, the resolved type is now in the correct register.
327     } else {
328       DCHECK(must_do_clinit);
329       Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
330       x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), source);
331     }
332     if (must_do_clinit) {
333       x86_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
334       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
335     }
336 
337     // Move the class to the desired location.
338     if (out.IsValid()) {
339       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
340       x86_codegen->Move32(out, Location::RegisterLocation(EAX));
341     }
342     RestoreLiveRegisters(codegen, locations);
343     __ jmp(GetExitLabel());
344   }
345 
GetDescription() const346   const char* GetDescription() const override { return "LoadClassSlowPathX86"; }
347 
348  private:
349   // The class this slow path will load.
350   HLoadClass* const cls_;
351 
352   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
353 };
354 
355 class TypeCheckSlowPathX86 : public SlowPathCode {
356  public:
TypeCheckSlowPathX86(HInstruction * instruction,bool is_fatal)357   TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
358       : SlowPathCode(instruction), is_fatal_(is_fatal) {}
359 
EmitNativeCode(CodeGenerator * codegen)360   void EmitNativeCode(CodeGenerator* codegen) override {
361     LocationSummary* locations = instruction_->GetLocations();
362     DCHECK(instruction_->IsCheckCast()
363            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
364 
365     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
366     __ Bind(GetEntryLabel());
367 
368     if (kPoisonHeapReferences &&
369         instruction_->IsCheckCast() &&
370         instruction_->AsCheckCast()->GetTypeCheckKind() == TypeCheckKind::kInterfaceCheck) {
371       // First, unpoison the `cls` reference that was poisoned for direct memory comparison.
372       __ UnpoisonHeapReference(locations->InAt(1).AsRegister<Register>());
373     }
374 
375     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
376       SaveLiveRegisters(codegen, locations);
377     }
378 
379     // We're moving two locations to locations that could overlap, so we need a parallel
380     // move resolver.
381     InvokeRuntimeCallingConvention calling_convention;
382     x86_codegen->EmitParallelMoves(locations->InAt(0),
383                                    Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
384                                    DataType::Type::kReference,
385                                    locations->InAt(1),
386                                    Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
387                                    DataType::Type::kReference);
388     if (instruction_->IsInstanceOf()) {
389       x86_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
390                                  instruction_,
391                                  instruction_->GetDexPc(),
392                                  this);
393       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
394     } else {
395       DCHECK(instruction_->IsCheckCast());
396       x86_codegen->InvokeRuntime(kQuickCheckInstanceOf,
397                                  instruction_,
398                                  instruction_->GetDexPc(),
399                                  this);
400       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
401     }
402 
403     if (!is_fatal_) {
404       if (instruction_->IsInstanceOf()) {
405         x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
406       }
407       RestoreLiveRegisters(codegen, locations);
408 
409       __ jmp(GetExitLabel());
410     }
411   }
412 
GetDescription() const413   const char* GetDescription() const override { return "TypeCheckSlowPathX86"; }
IsFatal() const414   bool IsFatal() const override { return is_fatal_; }
415 
416  private:
417   const bool is_fatal_;
418 
419   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
420 };
421 
422 class DeoptimizationSlowPathX86 : public SlowPathCode {
423  public:
DeoptimizationSlowPathX86(HDeoptimize * instruction)424   explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
425     : SlowPathCode(instruction) {}
426 
EmitNativeCode(CodeGenerator * codegen)427   void EmitNativeCode(CodeGenerator* codegen) override {
428     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
429     __ Bind(GetEntryLabel());
430     LocationSummary* locations = instruction_->GetLocations();
431     SaveLiveRegisters(codegen, locations);
432     InvokeRuntimeCallingConvention calling_convention;
433     x86_codegen->Load32BitValue(
434         calling_convention.GetRegisterAt(0),
435         static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
436     x86_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
437     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
438   }
439 
GetDescription() const440   const char* GetDescription() const override { return "DeoptimizationSlowPathX86"; }
441 
442  private:
443   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
444 };
445 
446 class ArraySetSlowPathX86 : public SlowPathCode {
447  public:
ArraySetSlowPathX86(HInstruction * instruction)448   explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
449 
EmitNativeCode(CodeGenerator * codegen)450   void EmitNativeCode(CodeGenerator* codegen) override {
451     LocationSummary* locations = instruction_->GetLocations();
452     __ Bind(GetEntryLabel());
453     SaveLiveRegisters(codegen, locations);
454 
455     InvokeRuntimeCallingConvention calling_convention;
456     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
457     parallel_move.AddMove(
458         locations->InAt(0),
459         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
460         DataType::Type::kReference,
461         nullptr);
462     parallel_move.AddMove(
463         locations->InAt(1),
464         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
465         DataType::Type::kInt32,
466         nullptr);
467     parallel_move.AddMove(
468         locations->InAt(2),
469         Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
470         DataType::Type::kReference,
471         nullptr);
472     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
473 
474     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
475     x86_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
476     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
477     RestoreLiveRegisters(codegen, locations);
478     __ jmp(GetExitLabel());
479   }
480 
GetDescription() const481   const char* GetDescription() const override { return "ArraySetSlowPathX86"; }
482 
483  private:
484   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
485 };
486 
487 // Slow path marking an object reference `ref` during a read
488 // barrier. The field `obj.field` in the object `obj` holding this
489 // reference does not get updated by this slow path after marking (see
490 // ReadBarrierMarkAndUpdateFieldSlowPathX86 below for that).
491 //
492 // This means that after the execution of this slow path, `ref` will
493 // always be up-to-date, but `obj.field` may not; i.e., after the
494 // flip, `ref` will be a to-space reference, but `obj.field` will
495 // probably still be a from-space reference (unless it gets updated by
496 // another thread, or if another thread installed another object
497 // reference (different from `ref`) in `obj.field`).
498 class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
499  public:
ReadBarrierMarkSlowPathX86(HInstruction * instruction,Location ref,bool unpoison_ref_before_marking)500   ReadBarrierMarkSlowPathX86(HInstruction* instruction,
501                              Location ref,
502                              bool unpoison_ref_before_marking)
503       : SlowPathCode(instruction),
504         ref_(ref),
505         unpoison_ref_before_marking_(unpoison_ref_before_marking) {
506     DCHECK(kEmitCompilerReadBarrier);
507   }
508 
GetDescription() const509   const char* GetDescription() const override { return "ReadBarrierMarkSlowPathX86"; }
510 
EmitNativeCode(CodeGenerator * codegen)511   void EmitNativeCode(CodeGenerator* codegen) override {
512     LocationSummary* locations = instruction_->GetLocations();
513     Register ref_reg = ref_.AsRegister<Register>();
514     DCHECK(locations->CanCall());
515     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
516     DCHECK(instruction_->IsInstanceFieldGet() ||
517            instruction_->IsPredicatedInstanceFieldGet() ||
518            instruction_->IsStaticFieldGet() ||
519            instruction_->IsArrayGet() ||
520            instruction_->IsArraySet() ||
521            instruction_->IsLoadClass() ||
522            instruction_->IsLoadString() ||
523            instruction_->IsInstanceOf() ||
524            instruction_->IsCheckCast() ||
525            (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
526         << "Unexpected instruction in read barrier marking slow path: "
527         << instruction_->DebugName();
528 
529     __ Bind(GetEntryLabel());
530     if (unpoison_ref_before_marking_) {
531       // Object* ref = ref_addr->AsMirrorPtr()
532       __ MaybeUnpoisonHeapReference(ref_reg);
533     }
534     // No need to save live registers; it's taken care of by the
535     // entrypoint. Also, there is no need to update the stack mask,
536     // as this runtime call will not trigger a garbage collection.
537     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
538     DCHECK_NE(ref_reg, ESP);
539     DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg;
540     // "Compact" slow path, saving two moves.
541     //
542     // Instead of using the standard runtime calling convention (input
543     // and output in EAX):
544     //
545     //   EAX <- ref
546     //   EAX <- ReadBarrierMark(EAX)
547     //   ref <- EAX
548     //
549     // we just use rX (the register containing `ref`) as input and output
550     // of a dedicated entrypoint:
551     //
552     //   rX <- ReadBarrierMarkRegX(rX)
553     //
554     int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg);
555     // This runtime call does not require a stack map.
556     x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
557     __ jmp(GetExitLabel());
558   }
559 
560  private:
561   // The location (register) of the marked object reference.
562   const Location ref_;
563   // Should the reference in `ref_` be unpoisoned prior to marking it?
564   const bool unpoison_ref_before_marking_;
565 
566   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
567 };
568 
569 // Slow path marking an object reference `ref` during a read barrier,
570 // and if needed, atomically updating the field `obj.field` in the
571 // object `obj` holding this reference after marking (contrary to
572 // ReadBarrierMarkSlowPathX86 above, which never tries to update
573 // `obj.field`).
574 //
575 // This means that after the execution of this slow path, both `ref`
576 // and `obj.field` will be up-to-date; i.e., after the flip, both will
577 // hold the same to-space reference (unless another thread installed
578 // another object reference (different from `ref`) in `obj.field`).
579 class ReadBarrierMarkAndUpdateFieldSlowPathX86 : public SlowPathCode {
580  public:
ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction * instruction,Location ref,Register obj,const Address & field_addr,bool unpoison_ref_before_marking,Register temp)581   ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction* instruction,
582                                            Location ref,
583                                            Register obj,
584                                            const Address& field_addr,
585                                            bool unpoison_ref_before_marking,
586                                            Register temp)
587       : SlowPathCode(instruction),
588         ref_(ref),
589         obj_(obj),
590         field_addr_(field_addr),
591         unpoison_ref_before_marking_(unpoison_ref_before_marking),
592         temp_(temp) {
593     DCHECK(kEmitCompilerReadBarrier);
594   }
595 
GetDescription() const596   const char* GetDescription() const override { return "ReadBarrierMarkAndUpdateFieldSlowPathX86"; }
597 
EmitNativeCode(CodeGenerator * codegen)598   void EmitNativeCode(CodeGenerator* codegen) override {
599     LocationSummary* locations = instruction_->GetLocations();
600     Register ref_reg = ref_.AsRegister<Register>();
601     DCHECK(locations->CanCall());
602     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
603     DCHECK((instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
604         << "Unexpected instruction in read barrier marking and field updating slow path: "
605         << instruction_->DebugName();
606     HInvoke* invoke = instruction_->AsInvoke();
607     DCHECK(IsUnsafeCASObject(invoke) || IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic();
608 
609     __ Bind(GetEntryLabel());
610     if (unpoison_ref_before_marking_) {
611       // Object* ref = ref_addr->AsMirrorPtr()
612       __ MaybeUnpoisonHeapReference(ref_reg);
613     }
614 
615     // Save the old (unpoisoned) reference.
616     __ movl(temp_, ref_reg);
617 
618     // No need to save live registers; it's taken care of by the
619     // entrypoint. Also, there is no need to update the stack mask,
620     // as this runtime call will not trigger a garbage collection.
621     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
622     DCHECK_NE(ref_reg, ESP);
623     DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg;
624     // "Compact" slow path, saving two moves.
625     //
626     // Instead of using the standard runtime calling convention (input
627     // and output in EAX):
628     //
629     //   EAX <- ref
630     //   EAX <- ReadBarrierMark(EAX)
631     //   ref <- EAX
632     //
633     // we just use rX (the register containing `ref`) as input and output
634     // of a dedicated entrypoint:
635     //
636     //   rX <- ReadBarrierMarkRegX(rX)
637     //
638     int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg);
639     // This runtime call does not require a stack map.
640     x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
641 
642     // If the new reference is different from the old reference,
643     // update the field in the holder (`*field_addr`).
644     //
645     // Note that this field could also hold a different object, if
646     // another thread had concurrently changed it. In that case, the
647     // LOCK CMPXCHGL instruction in the compare-and-set (CAS)
648     // operation below would abort the CAS, leaving the field as-is.
649     NearLabel done;
650     __ cmpl(temp_, ref_reg);
651     __ j(kEqual, &done);
652 
653     // Update the the holder's field atomically.  This may fail if
654     // mutator updates before us, but it's OK.  This is achieved
655     // using a strong compare-and-set (CAS) operation with relaxed
656     // memory synchronization ordering, where the expected value is
657     // the old reference and the desired value is the new reference.
658     // This operation is implemented with a 32-bit LOCK CMPXLCHG
659     // instruction, which requires the expected value (the old
660     // reference) to be in EAX.  Save EAX beforehand, and move the
661     // expected value (stored in `temp_`) into EAX.
662     __ pushl(EAX);
663     __ movl(EAX, temp_);
664 
665     // Convenience aliases.
666     Register base = obj_;
667     Register expected = EAX;
668     Register value = ref_reg;
669 
670     bool base_equals_value = (base == value);
671     if (kPoisonHeapReferences) {
672       if (base_equals_value) {
673         // If `base` and `value` are the same register location, move
674         // `value` to a temporary register.  This way, poisoning
675         // `value` won't invalidate `base`.
676         value = temp_;
677         __ movl(value, base);
678       }
679 
680       // Check that the register allocator did not assign the location
681       // of `expected` (EAX) to `value` nor to `base`, so that heap
682       // poisoning (when enabled) works as intended below.
683       // - If `value` were equal to `expected`, both references would
684       //   be poisoned twice, meaning they would not be poisoned at
685       //   all, as heap poisoning uses address negation.
686       // - If `base` were equal to `expected`, poisoning `expected`
687       //   would invalidate `base`.
688       DCHECK_NE(value, expected);
689       DCHECK_NE(base, expected);
690 
691       __ PoisonHeapReference(expected);
692       __ PoisonHeapReference(value);
693     }
694 
695     __ LockCmpxchgl(field_addr_, value);
696 
697     // If heap poisoning is enabled, we need to unpoison the values
698     // that were poisoned earlier.
699     if (kPoisonHeapReferences) {
700       if (base_equals_value) {
701         // `value` has been moved to a temporary register, no need
702         // to unpoison it.
703       } else {
704         __ UnpoisonHeapReference(value);
705       }
706       // No need to unpoison `expected` (EAX), as it is be overwritten below.
707     }
708 
709     // Restore EAX.
710     __ popl(EAX);
711 
712     __ Bind(&done);
713     __ jmp(GetExitLabel());
714   }
715 
716  private:
717   // The location (register) of the marked object reference.
718   const Location ref_;
719   // The register containing the object holding the marked object reference field.
720   const Register obj_;
721   // The address of the marked reference field.  The base of this address must be `obj_`.
722   const Address field_addr_;
723 
724   // Should the reference in `ref_` be unpoisoned prior to marking it?
725   const bool unpoison_ref_before_marking_;
726 
727   const Register temp_;
728 
729   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86);
730 };
731 
732 // Slow path generating a read barrier for a heap reference.
733 class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
734  public:
ReadBarrierForHeapReferenceSlowPathX86(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)735   ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
736                                          Location out,
737                                          Location ref,
738                                          Location obj,
739                                          uint32_t offset,
740                                          Location index)
741       : SlowPathCode(instruction),
742         out_(out),
743         ref_(ref),
744         obj_(obj),
745         offset_(offset),
746         index_(index) {
747     DCHECK(kEmitCompilerReadBarrier);
748     // If `obj` is equal to `out` or `ref`, it means the initial object
749     // has been overwritten by (or after) the heap object reference load
750     // to be instrumented, e.g.:
751     //
752     //   __ movl(out, Address(out, offset));
753     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
754     //
755     // In that case, we have lost the information about the original
756     // object, and the emitted read barrier cannot work properly.
757     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
758     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
759   }
760 
EmitNativeCode(CodeGenerator * codegen)761   void EmitNativeCode(CodeGenerator* codegen) override {
762     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
763     LocationSummary* locations = instruction_->GetLocations();
764     Register reg_out = out_.AsRegister<Register>();
765     DCHECK(locations->CanCall());
766     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
767     DCHECK(instruction_->IsInstanceFieldGet() ||
768            instruction_->IsPredicatedInstanceFieldGet() ||
769            instruction_->IsStaticFieldGet() ||
770            instruction_->IsArrayGet() ||
771            instruction_->IsInstanceOf() ||
772            instruction_->IsCheckCast() ||
773            (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
774         << "Unexpected instruction in read barrier for heap reference slow path: "
775         << instruction_->DebugName();
776 
777     __ Bind(GetEntryLabel());
778     SaveLiveRegisters(codegen, locations);
779 
780     // We may have to change the index's value, but as `index_` is a
781     // constant member (like other "inputs" of this slow path),
782     // introduce a copy of it, `index`.
783     Location index = index_;
784     if (index_.IsValid()) {
785       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
786       if (instruction_->IsArrayGet()) {
787         // Compute the actual memory offset and store it in `index`.
788         Register index_reg = index_.AsRegister<Register>();
789         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
790         if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
791           // We are about to change the value of `index_reg` (see the
792           // calls to art::x86::X86Assembler::shll and
793           // art::x86::X86Assembler::AddImmediate below), but it has
794           // not been saved by the previous call to
795           // art::SlowPathCode::SaveLiveRegisters, as it is a
796           // callee-save register --
797           // art::SlowPathCode::SaveLiveRegisters does not consider
798           // callee-save registers, as it has been designed with the
799           // assumption that callee-save registers are supposed to be
800           // handled by the called function.  So, as a callee-save
801           // register, `index_reg` _would_ eventually be saved onto
802           // the stack, but it would be too late: we would have
803           // changed its value earlier.  Therefore, we manually save
804           // it here into another freely available register,
805           // `free_reg`, chosen of course among the caller-save
806           // registers (as a callee-save `free_reg` register would
807           // exhibit the same problem).
808           //
809           // Note we could have requested a temporary register from
810           // the register allocator instead; but we prefer not to, as
811           // this is a slow path, and we know we can find a
812           // caller-save register that is available.
813           Register free_reg = FindAvailableCallerSaveRegister(codegen);
814           __ movl(free_reg, index_reg);
815           index_reg = free_reg;
816           index = Location::RegisterLocation(index_reg);
817         } else {
818           // The initial register stored in `index_` has already been
819           // saved in the call to art::SlowPathCode::SaveLiveRegisters
820           // (as it is not a callee-save register), so we can freely
821           // use it.
822         }
823         // Shifting the index value contained in `index_reg` by the scale
824         // factor (2) cannot overflow in practice, as the runtime is
825         // unable to allocate object arrays with a size larger than
826         // 2^26 - 1 (that is, 2^28 - 4 bytes).
827         __ shll(index_reg, Immediate(TIMES_4));
828         static_assert(
829             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
830             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
831         __ AddImmediate(index_reg, Immediate(offset_));
832       } else {
833         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
834         // intrinsics, `index_` is not shifted by a scale factor of 2
835         // (as in the case of ArrayGet), as it is actually an offset
836         // to an object field within an object.
837         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
838         DCHECK(instruction_->GetLocations()->Intrinsified());
839         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
840                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile) ||
841                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kJdkUnsafeGetObject) ||
842                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kJdkUnsafeGetObjectVolatile) ||
843                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kJdkUnsafeGetObjectAcquire))
844             << instruction_->AsInvoke()->GetIntrinsic();
845         DCHECK_EQ(offset_, 0U);
846         DCHECK(index_.IsRegisterPair());
847         // UnsafeGet's offset location is a register pair, the low
848         // part contains the correct offset.
849         index = index_.ToLow();
850       }
851     }
852 
853     // We're moving two or three locations to locations that could
854     // overlap, so we need a parallel move resolver.
855     InvokeRuntimeCallingConvention calling_convention;
856     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
857     parallel_move.AddMove(ref_,
858                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
859                           DataType::Type::kReference,
860                           nullptr);
861     parallel_move.AddMove(obj_,
862                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
863                           DataType::Type::kReference,
864                           nullptr);
865     if (index.IsValid()) {
866       parallel_move.AddMove(index,
867                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
868                             DataType::Type::kInt32,
869                             nullptr);
870       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
871     } else {
872       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
873       __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
874     }
875     x86_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
876     CheckEntrypointTypes<
877         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
878     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
879 
880     RestoreLiveRegisters(codegen, locations);
881     __ jmp(GetExitLabel());
882   }
883 
GetDescription() const884   const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathX86"; }
885 
886  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)887   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
888     size_t ref = static_cast<int>(ref_.AsRegister<Register>());
889     size_t obj = static_cast<int>(obj_.AsRegister<Register>());
890     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
891       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
892         return static_cast<Register>(i);
893       }
894     }
895     // We shall never fail to find a free caller-save register, as
896     // there are more than two core caller-save registers on x86
897     // (meaning it is possible to find one which is different from
898     // `ref` and `obj`).
899     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
900     LOG(FATAL) << "Could not find a free caller-save register";
901     UNREACHABLE();
902   }
903 
904   const Location out_;
905   const Location ref_;
906   const Location obj_;
907   const uint32_t offset_;
908   // An additional location containing an index to an array.
909   // Only used for HArrayGet and the UnsafeGetObject &
910   // UnsafeGetObjectVolatile intrinsics.
911   const Location index_;
912 
913   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
914 };
915 
916 // Slow path generating a read barrier for a GC root.
917 class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
918  public:
ReadBarrierForRootSlowPathX86(HInstruction * instruction,Location out,Location root)919   ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
920       : SlowPathCode(instruction), out_(out), root_(root) {
921     DCHECK(kEmitCompilerReadBarrier);
922   }
923 
EmitNativeCode(CodeGenerator * codegen)924   void EmitNativeCode(CodeGenerator* codegen) override {
925     LocationSummary* locations = instruction_->GetLocations();
926     Register reg_out = out_.AsRegister<Register>();
927     DCHECK(locations->CanCall());
928     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
929     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
930         << "Unexpected instruction in read barrier for GC root slow path: "
931         << instruction_->DebugName();
932 
933     __ Bind(GetEntryLabel());
934     SaveLiveRegisters(codegen, locations);
935 
936     InvokeRuntimeCallingConvention calling_convention;
937     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
938     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
939     x86_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
940                                instruction_,
941                                instruction_->GetDexPc(),
942                                this);
943     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
944     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
945 
946     RestoreLiveRegisters(codegen, locations);
947     __ jmp(GetExitLabel());
948   }
949 
GetDescription() const950   const char* GetDescription() const override { return "ReadBarrierForRootSlowPathX86"; }
951 
952  private:
953   const Location out_;
954   const Location root_;
955 
956   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
957 };
958 
959 class MethodEntryExitHooksSlowPathX86 : public SlowPathCode {
960  public:
MethodEntryExitHooksSlowPathX86(HInstruction * instruction)961   explicit MethodEntryExitHooksSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
962 
EmitNativeCode(CodeGenerator * codegen)963   void EmitNativeCode(CodeGenerator* codegen) override {
964     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
965     LocationSummary* locations = instruction_->GetLocations();
966     QuickEntrypointEnum entry_point =
967         (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
968     __ Bind(GetEntryLabel());
969     SaveLiveRegisters(codegen, locations);
970     x86_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
971     RestoreLiveRegisters(codegen, locations);
972     __ jmp(GetExitLabel());
973   }
974 
GetDescription() const975   const char* GetDescription() const override {
976     return "MethodEntryExitHooksSlowPath";
977   }
978 
979  private:
980   DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathX86);
981 };
982 
983 class CompileOptimizedSlowPathX86 : public SlowPathCode {
984  public:
CompileOptimizedSlowPathX86()985   CompileOptimizedSlowPathX86() : SlowPathCode(/* instruction= */ nullptr) {}
986 
EmitNativeCode(CodeGenerator * codegen)987   void EmitNativeCode(CodeGenerator* codegen) override {
988     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
989     __ Bind(GetEntryLabel());
990     x86_codegen->GenerateInvokeRuntime(
991         GetThreadOffset<kX86PointerSize>(kQuickCompileOptimized).Int32Value());
992     __ jmp(GetExitLabel());
993   }
994 
GetDescription() const995   const char* GetDescription() const override {
996     return "CompileOptimizedSlowPath";
997   }
998 
999  private:
1000   DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathX86);
1001 };
1002 
1003 #undef __
1004 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
1005 #define __ down_cast<X86Assembler*>(GetAssembler())->  // NOLINT
1006 
X86Condition(IfCondition cond)1007 inline Condition X86Condition(IfCondition cond) {
1008   switch (cond) {
1009     case kCondEQ: return kEqual;
1010     case kCondNE: return kNotEqual;
1011     case kCondLT: return kLess;
1012     case kCondLE: return kLessEqual;
1013     case kCondGT: return kGreater;
1014     case kCondGE: return kGreaterEqual;
1015     case kCondB:  return kBelow;
1016     case kCondBE: return kBelowEqual;
1017     case kCondA:  return kAbove;
1018     case kCondAE: return kAboveEqual;
1019   }
1020   LOG(FATAL) << "Unreachable";
1021   UNREACHABLE();
1022 }
1023 
1024 // Maps signed condition to unsigned condition and FP condition to x86 name.
X86UnsignedOrFPCondition(IfCondition cond)1025 inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
1026   switch (cond) {
1027     case kCondEQ: return kEqual;
1028     case kCondNE: return kNotEqual;
1029     // Signed to unsigned, and FP to x86 name.
1030     case kCondLT: return kBelow;
1031     case kCondLE: return kBelowEqual;
1032     case kCondGT: return kAbove;
1033     case kCondGE: return kAboveEqual;
1034     // Unsigned remain unchanged.
1035     case kCondB:  return kBelow;
1036     case kCondBE: return kBelowEqual;
1037     case kCondA:  return kAbove;
1038     case kCondAE: return kAboveEqual;
1039   }
1040   LOG(FATAL) << "Unreachable";
1041   UNREACHABLE();
1042 }
1043 
DumpCoreRegister(std::ostream & stream,int reg) const1044 void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
1045   stream << Register(reg);
1046 }
1047 
DumpFloatingPointRegister(std::ostream & stream,int reg) const1048 void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1049   stream << XmmRegister(reg);
1050 }
1051 
GetInstructionSetFeatures() const1052 const X86InstructionSetFeatures& CodeGeneratorX86::GetInstructionSetFeatures() const {
1053   return *GetCompilerOptions().GetInstructionSetFeatures()->AsX86InstructionSetFeatures();
1054 }
1055 
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1056 size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1057   __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
1058   return kX86WordSize;
1059 }
1060 
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1061 size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1062   __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
1063   return kX86WordSize;
1064 }
1065 
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)1066 size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1067   if (GetGraph()->HasSIMD()) {
1068     __ movups(Address(ESP, stack_index), XmmRegister(reg_id));
1069   } else {
1070     __ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
1071   }
1072   return GetSlowPathFPWidth();
1073 }
1074 
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)1075 size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1076   if (GetGraph()->HasSIMD()) {
1077     __ movups(XmmRegister(reg_id), Address(ESP, stack_index));
1078   } else {
1079     __ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
1080   }
1081   return GetSlowPathFPWidth();
1082 }
1083 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1084 void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
1085                                      HInstruction* instruction,
1086                                      uint32_t dex_pc,
1087                                      SlowPathCode* slow_path) {
1088   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1089   GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(entrypoint).Int32Value());
1090   if (EntrypointRequiresStackMap(entrypoint)) {
1091     RecordPcInfo(instruction, dex_pc, slow_path);
1092   }
1093 }
1094 
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)1095 void CodeGeneratorX86::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1096                                                            HInstruction* instruction,
1097                                                            SlowPathCode* slow_path) {
1098   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1099   GenerateInvokeRuntime(entry_point_offset);
1100 }
1101 
GenerateInvokeRuntime(int32_t entry_point_offset)1102 void CodeGeneratorX86::GenerateInvokeRuntime(int32_t entry_point_offset) {
1103   __ fs()->call(Address::Absolute(entry_point_offset));
1104 }
1105 
CodeGeneratorX86(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1106 CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
1107                                    const CompilerOptions& compiler_options,
1108                                    OptimizingCompilerStats* stats)
1109     : CodeGenerator(graph,
1110                     kNumberOfCpuRegisters,
1111                     kNumberOfXmmRegisters,
1112                     kNumberOfRegisterPairs,
1113                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
1114                                         arraysize(kCoreCalleeSaves))
1115                         | (1 << kFakeReturnRegister),
1116                     0,
1117                     compiler_options,
1118                     stats),
1119       block_labels_(nullptr),
1120       location_builder_(graph, this),
1121       instruction_visitor_(graph, this),
1122       move_resolver_(graph->GetAllocator(), this),
1123       assembler_(graph->GetAllocator(),
1124                  compiler_options.GetInstructionSetFeatures()->AsX86InstructionSetFeatures()),
1125       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1126       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1127       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1128       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1129       public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1130       package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1131       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1132       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1133       boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1134       boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1135       jit_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1136       jit_class_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1137       constant_area_start_(-1),
1138       fixups_to_jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1139       method_address_offset_(std::less<uint32_t>(),
1140                              graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1141   // Use a fake return address register to mimic Quick.
1142   AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
1143 }
1144 
SetupBlockedRegisters() const1145 void CodeGeneratorX86::SetupBlockedRegisters() const {
1146   // Stack register is always reserved.
1147   blocked_core_registers_[ESP] = true;
1148 }
1149 
InstructionCodeGeneratorX86(HGraph * graph,CodeGeneratorX86 * codegen)1150 InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
1151       : InstructionCodeGenerator(graph, codegen),
1152         assembler_(codegen->GetAssembler()),
1153         codegen_(codegen) {}
1154 
DWARFReg(Register reg)1155 static dwarf::Reg DWARFReg(Register reg) {
1156   return dwarf::Reg::X86Core(static_cast<int>(reg));
1157 }
1158 
SetInForReturnValue(HInstruction * ret,LocationSummary * locations)1159 void SetInForReturnValue(HInstruction* ret, LocationSummary* locations) {
1160   switch (ret->InputAt(0)->GetType()) {
1161     case DataType::Type::kReference:
1162     case DataType::Type::kBool:
1163     case DataType::Type::kUint8:
1164     case DataType::Type::kInt8:
1165     case DataType::Type::kUint16:
1166     case DataType::Type::kInt16:
1167     case DataType::Type::kInt32:
1168       locations->SetInAt(0, Location::RegisterLocation(EAX));
1169       break;
1170 
1171     case DataType::Type::kInt64:
1172       locations->SetInAt(0, Location::RegisterPairLocation(EAX, EDX));
1173       break;
1174 
1175     case DataType::Type::kFloat32:
1176     case DataType::Type::kFloat64:
1177       locations->SetInAt(0, Location::FpuRegisterLocation(XMM0));
1178       break;
1179 
1180     case DataType::Type::kVoid:
1181       locations->SetInAt(0, Location::NoLocation());
1182       break;
1183 
1184     default:
1185       LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1186   }
1187 }
1188 
VisitMethodExitHook(HMethodExitHook * method_hook)1189 void LocationsBuilderX86::VisitMethodExitHook(HMethodExitHook* method_hook) {
1190   LocationSummary* locations = new (GetGraph()->GetAllocator())
1191       LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1192   SetInForReturnValue(method_hook, locations);
1193 }
1194 
GenerateMethodEntryExitHook(HInstruction * instruction)1195 void InstructionCodeGeneratorX86::GenerateMethodEntryExitHook(HInstruction* instruction) {
1196   SlowPathCode* slow_path =
1197       new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathX86(instruction);
1198   codegen_->AddSlowPath(slow_path);
1199 
1200   uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation());
1201   int offset = instrumentation::Instrumentation::NeedsEntryExitHooksOffset().Int32Value();
1202   __ cmpb(Address::Absolute(address + offset), Immediate(0));
1203   __ j(kNotEqual, slow_path->GetEntryLabel());
1204   __ Bind(slow_path->GetExitLabel());
1205 }
1206 
VisitMethodExitHook(HMethodExitHook * instruction)1207 void InstructionCodeGeneratorX86::VisitMethodExitHook(HMethodExitHook* instruction) {
1208   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1209   DCHECK(codegen_->RequiresCurrentMethod());
1210   GenerateMethodEntryExitHook(instruction);
1211 }
1212 
VisitMethodEntryHook(HMethodEntryHook * method_hook)1213 void LocationsBuilderX86::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
1214   new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1215 }
1216 
VisitMethodEntryHook(HMethodEntryHook * instruction)1217 void InstructionCodeGeneratorX86::VisitMethodEntryHook(HMethodEntryHook* instruction) {
1218   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1219   DCHECK(codegen_->RequiresCurrentMethod());
1220   GenerateMethodEntryExitHook(instruction);
1221 }
1222 
MaybeIncrementHotness(bool is_frame_entry)1223 void CodeGeneratorX86::MaybeIncrementHotness(bool is_frame_entry) {
1224   if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1225     Register reg = EAX;
1226     if (is_frame_entry) {
1227       reg = kMethodRegisterArgument;
1228     } else {
1229       __ pushl(EAX);
1230       __ cfi().AdjustCFAOffset(4);
1231       __ movl(EAX, Address(ESP, kX86WordSize));
1232     }
1233     NearLabel overflow;
1234     __ cmpw(Address(reg, ArtMethod::HotnessCountOffset().Int32Value()),
1235             Immediate(interpreter::kNterpHotnessValue));
1236     __ j(kEqual, &overflow);
1237     __ addw(Address(reg, ArtMethod::HotnessCountOffset().Int32Value()), Immediate(-1));
1238     __ Bind(&overflow);
1239     if (!is_frame_entry) {
1240       __ popl(EAX);
1241       __ cfi().AdjustCFAOffset(-4);
1242     }
1243   }
1244 
1245   if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
1246     SlowPathCode* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathX86();
1247     AddSlowPath(slow_path);
1248     ProfilingInfo* info = GetGraph()->GetProfilingInfo();
1249     DCHECK(info != nullptr);
1250     uint32_t address = reinterpret_cast32<uint32_t>(info) +
1251         ProfilingInfo::BaselineHotnessCountOffset().Int32Value();
1252     DCHECK(!HasEmptyFrame());
1253     // With multiple threads, this can overflow. This is OK, we will eventually get to see
1254     // it reaching 0. Also, at this point we have no register available to look
1255     // at the counter directly.
1256     __ addw(Address::Absolute(address), Immediate(-1));
1257     __ j(kEqual, slow_path->GetEntryLabel());
1258     __ Bind(slow_path->GetExitLabel());
1259   }
1260 }
1261 
GenerateFrameEntry()1262 void CodeGeneratorX86::GenerateFrameEntry() {
1263   __ cfi().SetCurrentCFAOffset(kX86WordSize);  // return address
1264   __ Bind(&frame_entry_label_);
1265   bool skip_overflow_check =
1266       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
1267   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1268 
1269   if (!skip_overflow_check) {
1270     size_t reserved_bytes = GetStackOverflowReservedBytes(InstructionSet::kX86);
1271     __ testl(EAX, Address(ESP, -static_cast<int32_t>(reserved_bytes)));
1272     RecordPcInfo(nullptr, 0);
1273   }
1274 
1275   if (!HasEmptyFrame()) {
1276     for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
1277       Register reg = kCoreCalleeSaves[i];
1278       if (allocated_registers_.ContainsCoreRegister(reg)) {
1279         __ pushl(reg);
1280         __ cfi().AdjustCFAOffset(kX86WordSize);
1281         __ cfi().RelOffset(DWARFReg(reg), 0);
1282       }
1283     }
1284 
1285     int adjust = GetFrameSize() - FrameEntrySpillSize();
1286     IncreaseFrame(adjust);
1287     // Save the current method if we need it. Note that we do not
1288     // do this in HCurrentMethod, as the instruction might have been removed
1289     // in the SSA graph.
1290     if (RequiresCurrentMethod()) {
1291       __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
1292     }
1293 
1294     if (GetGraph()->HasShouldDeoptimizeFlag()) {
1295       // Initialize should_deoptimize flag to 0.
1296       __ movl(Address(ESP, GetStackOffsetOfShouldDeoptimizeFlag()), Immediate(0));
1297     }
1298   }
1299 
1300   MaybeIncrementHotness(/* is_frame_entry= */ true);
1301 }
1302 
GenerateFrameExit()1303 void CodeGeneratorX86::GenerateFrameExit() {
1304   __ cfi().RememberState();
1305   if (!HasEmptyFrame()) {
1306     int adjust = GetFrameSize() - FrameEntrySpillSize();
1307     DecreaseFrame(adjust);
1308 
1309     for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
1310       Register reg = kCoreCalleeSaves[i];
1311       if (allocated_registers_.ContainsCoreRegister(reg)) {
1312         __ popl(reg);
1313         __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
1314         __ cfi().Restore(DWARFReg(reg));
1315       }
1316     }
1317   }
1318   __ ret();
1319   __ cfi().RestoreState();
1320   __ cfi().DefCFAOffset(GetFrameSize());
1321 }
1322 
Bind(HBasicBlock * block)1323 void CodeGeneratorX86::Bind(HBasicBlock* block) {
1324   __ Bind(GetLabelOf(block));
1325 }
1326 
GetReturnLocation(DataType::Type type) const1327 Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(DataType::Type type) const {
1328   switch (type) {
1329     case DataType::Type::kReference:
1330     case DataType::Type::kBool:
1331     case DataType::Type::kUint8:
1332     case DataType::Type::kInt8:
1333     case DataType::Type::kUint16:
1334     case DataType::Type::kInt16:
1335     case DataType::Type::kUint32:
1336     case DataType::Type::kInt32:
1337       return Location::RegisterLocation(EAX);
1338 
1339     case DataType::Type::kUint64:
1340     case DataType::Type::kInt64:
1341       return Location::RegisterPairLocation(EAX, EDX);
1342 
1343     case DataType::Type::kVoid:
1344       return Location::NoLocation();
1345 
1346     case DataType::Type::kFloat64:
1347     case DataType::Type::kFloat32:
1348       return Location::FpuRegisterLocation(XMM0);
1349   }
1350 
1351   UNREACHABLE();
1352 }
1353 
GetMethodLocation() const1354 Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
1355   return Location::RegisterLocation(kMethodRegisterArgument);
1356 }
1357 
GetNextLocation(DataType::Type type)1358 Location InvokeDexCallingConventionVisitorX86::GetNextLocation(DataType::Type type) {
1359   switch (type) {
1360     case DataType::Type::kReference:
1361     case DataType::Type::kBool:
1362     case DataType::Type::kUint8:
1363     case DataType::Type::kInt8:
1364     case DataType::Type::kUint16:
1365     case DataType::Type::kInt16:
1366     case DataType::Type::kInt32: {
1367       uint32_t index = gp_index_++;
1368       stack_index_++;
1369       if (index < calling_convention.GetNumberOfRegisters()) {
1370         return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
1371       } else {
1372         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
1373       }
1374     }
1375 
1376     case DataType::Type::kInt64: {
1377       uint32_t index = gp_index_;
1378       gp_index_ += 2;
1379       stack_index_ += 2;
1380       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1381         X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
1382             calling_convention.GetRegisterPairAt(index));
1383         return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
1384       } else {
1385         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
1386       }
1387     }
1388 
1389     case DataType::Type::kFloat32: {
1390       uint32_t index = float_index_++;
1391       stack_index_++;
1392       if (index < calling_convention.GetNumberOfFpuRegisters()) {
1393         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
1394       } else {
1395         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
1396       }
1397     }
1398 
1399     case DataType::Type::kFloat64: {
1400       uint32_t index = float_index_++;
1401       stack_index_ += 2;
1402       if (index < calling_convention.GetNumberOfFpuRegisters()) {
1403         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
1404       } else {
1405         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
1406       }
1407     }
1408 
1409     case DataType::Type::kUint32:
1410     case DataType::Type::kUint64:
1411     case DataType::Type::kVoid:
1412       LOG(FATAL) << "Unexpected parameter type " << type;
1413       UNREACHABLE();
1414   }
1415   return Location::NoLocation();
1416 }
1417 
GetNextLocation(DataType::Type type)1418 Location CriticalNativeCallingConventionVisitorX86::GetNextLocation(DataType::Type type) {
1419   DCHECK_NE(type, DataType::Type::kReference);
1420 
1421   Location location;
1422   if (DataType::Is64BitType(type)) {
1423     location = Location::DoubleStackSlot(stack_offset_);
1424     stack_offset_ += 2 * kFramePointerSize;
1425   } else {
1426     location = Location::StackSlot(stack_offset_);
1427     stack_offset_ += kFramePointerSize;
1428   }
1429   if (for_register_allocation_) {
1430     location = Location::Any();
1431   }
1432   return location;
1433 }
1434 
GetReturnLocation(DataType::Type type) const1435 Location CriticalNativeCallingConventionVisitorX86::GetReturnLocation(DataType::Type type) const {
1436   // We perform conversion to the managed ABI return register after the call if needed.
1437   InvokeDexCallingConventionVisitorX86 dex_calling_convention;
1438   return dex_calling_convention.GetReturnLocation(type);
1439 }
1440 
GetMethodLocation() const1441 Location CriticalNativeCallingConventionVisitorX86::GetMethodLocation() const {
1442   // Pass the method in the hidden argument EAX.
1443   return Location::RegisterLocation(EAX);
1444 }
1445 
Move32(Location destination,Location source)1446 void CodeGeneratorX86::Move32(Location destination, Location source) {
1447   if (source.Equals(destination)) {
1448     return;
1449   }
1450   if (destination.IsRegister()) {
1451     if (source.IsRegister()) {
1452       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
1453     } else if (source.IsFpuRegister()) {
1454       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
1455     } else if (source.IsConstant()) {
1456       int32_t value = GetInt32ValueOf(source.GetConstant());
1457       __ movl(destination.AsRegister<Register>(), Immediate(value));
1458     } else {
1459       DCHECK(source.IsStackSlot());
1460       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
1461     }
1462   } else if (destination.IsFpuRegister()) {
1463     if (source.IsRegister()) {
1464       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
1465     } else if (source.IsFpuRegister()) {
1466       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1467     } else {
1468       DCHECK(source.IsStackSlot());
1469       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1470     }
1471   } else {
1472     DCHECK(destination.IsStackSlot()) << destination;
1473     if (source.IsRegister()) {
1474       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
1475     } else if (source.IsFpuRegister()) {
1476       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1477     } else if (source.IsConstant()) {
1478       HConstant* constant = source.GetConstant();
1479       int32_t value = GetInt32ValueOf(constant);
1480       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
1481     } else {
1482       DCHECK(source.IsStackSlot());
1483       __ pushl(Address(ESP, source.GetStackIndex()));
1484       __ popl(Address(ESP, destination.GetStackIndex()));
1485     }
1486   }
1487 }
1488 
Move64(Location destination,Location source)1489 void CodeGeneratorX86::Move64(Location destination, Location source) {
1490   if (source.Equals(destination)) {
1491     return;
1492   }
1493   if (destination.IsRegisterPair()) {
1494     if (source.IsRegisterPair()) {
1495       EmitParallelMoves(
1496           Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1497           Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1498           DataType::Type::kInt32,
1499           Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1500           Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1501           DataType::Type::kInt32);
1502     } else if (source.IsFpuRegister()) {
1503       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
1504       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
1505       __ psrlq(src_reg, Immediate(32));
1506       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
1507     } else {
1508       // No conflict possible, so just do the moves.
1509       DCHECK(source.IsDoubleStackSlot());
1510       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
1511       __ movl(destination.AsRegisterPairHigh<Register>(),
1512               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
1513     }
1514   } else if (destination.IsFpuRegister()) {
1515     if (source.IsFpuRegister()) {
1516       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1517     } else if (source.IsDoubleStackSlot()) {
1518       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1519     } else if (source.IsRegisterPair()) {
1520       size_t elem_size = DataType::Size(DataType::Type::kInt32);
1521       // Push the 2 source registers to the stack.
1522       __ pushl(source.AsRegisterPairHigh<Register>());
1523       __ cfi().AdjustCFAOffset(elem_size);
1524       __ pushl(source.AsRegisterPairLow<Register>());
1525       __ cfi().AdjustCFAOffset(elem_size);
1526       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
1527       // And remove the temporary stack space we allocated.
1528       DecreaseFrame(2 * elem_size);
1529     } else {
1530       LOG(FATAL) << "Unimplemented";
1531     }
1532   } else {
1533     DCHECK(destination.IsDoubleStackSlot()) << destination;
1534     if (source.IsRegisterPair()) {
1535       // No conflict possible, so just do the moves.
1536       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
1537       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1538               source.AsRegisterPairHigh<Register>());
1539     } else if (source.IsFpuRegister()) {
1540       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1541     } else if (source.IsConstant()) {
1542       HConstant* constant = source.GetConstant();
1543       DCHECK(constant->IsLongConstant() || constant->IsDoubleConstant());
1544       int64_t value = GetInt64ValueOf(constant);
1545       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
1546       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1547               Immediate(High32Bits(value)));
1548     } else {
1549       DCHECK(source.IsDoubleStackSlot()) << source;
1550       EmitParallelMoves(
1551           Location::StackSlot(source.GetStackIndex()),
1552           Location::StackSlot(destination.GetStackIndex()),
1553           DataType::Type::kInt32,
1554           Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
1555           Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
1556           DataType::Type::kInt32);
1557     }
1558   }
1559 }
1560 
CreateAddress(Register base,Register index=Register::kNoRegister,ScaleFactor scale=TIMES_1,int32_t disp=0)1561 static Address CreateAddress(Register base,
1562                              Register index = Register::kNoRegister,
1563                              ScaleFactor scale = TIMES_1,
1564                              int32_t disp = 0) {
1565   if (index == Register::kNoRegister) {
1566     return Address(base, disp);
1567   }
1568 
1569   return Address(base, index, scale, disp);
1570 }
1571 
LoadFromMemoryNoBarrier(DataType::Type dst_type,Location dst,Address src,HInstruction * instr,XmmRegister temp,bool is_atomic_load)1572 void CodeGeneratorX86::LoadFromMemoryNoBarrier(DataType::Type dst_type,
1573                                                Location dst,
1574                                                Address src,
1575                                                HInstruction* instr,
1576                                                XmmRegister temp,
1577                                                bool is_atomic_load) {
1578   switch (dst_type) {
1579     case DataType::Type::kBool:
1580     case DataType::Type::kUint8:
1581       __ movzxb(dst.AsRegister<Register>(), src);
1582       break;
1583     case DataType::Type::kInt8:
1584       __ movsxb(dst.AsRegister<Register>(), src);
1585       break;
1586     case DataType::Type::kInt16:
1587       __ movsxw(dst.AsRegister<Register>(), src);
1588       break;
1589     case DataType::Type::kUint16:
1590       __ movzxw(dst.AsRegister<Register>(), src);
1591       break;
1592     case DataType::Type::kInt32:
1593       __ movl(dst.AsRegister<Register>(), src);
1594       break;
1595     case DataType::Type::kInt64: {
1596       if (is_atomic_load) {
1597         __ movsd(temp, src);
1598         if (instr != nullptr) {
1599           MaybeRecordImplicitNullCheck(instr);
1600         }
1601         __ movd(dst.AsRegisterPairLow<Register>(), temp);
1602         __ psrlq(temp, Immediate(32));
1603         __ movd(dst.AsRegisterPairHigh<Register>(), temp);
1604       } else {
1605         DCHECK_NE(src.GetBaseRegister(), dst.AsRegisterPairLow<Register>());
1606         Address src_high = Address::displace(src, kX86WordSize);
1607         __ movl(dst.AsRegisterPairLow<Register>(), src);
1608         if (instr != nullptr) {
1609           MaybeRecordImplicitNullCheck(instr);
1610         }
1611         __ movl(dst.AsRegisterPairHigh<Register>(), src_high);
1612       }
1613       break;
1614     }
1615     case DataType::Type::kFloat32:
1616       __ movss(dst.AsFpuRegister<XmmRegister>(), src);
1617       break;
1618     case DataType::Type::kFloat64:
1619       __ movsd(dst.AsFpuRegister<XmmRegister>(), src);
1620       break;
1621     case DataType::Type::kReference:
1622       DCHECK(!kEmitCompilerReadBarrier);
1623       __ movl(dst.AsRegister<Register>(), src);
1624       __ MaybeUnpoisonHeapReference(dst.AsRegister<Register>());
1625       break;
1626     default:
1627       LOG(FATAL) << "Unreachable type " << dst_type;
1628   }
1629   if (instr != nullptr && dst_type != DataType::Type::kInt64) {
1630     // kInt64 needs special handling that is done in the above switch.
1631     MaybeRecordImplicitNullCheck(instr);
1632   }
1633 }
1634 
MoveToMemory(DataType::Type src_type,Location src,Register dst_base,Register dst_index,ScaleFactor dst_scale,int32_t dst_disp)1635 void CodeGeneratorX86::MoveToMemory(DataType::Type src_type,
1636                                     Location src,
1637                                     Register dst_base,
1638                                     Register dst_index,
1639                                     ScaleFactor dst_scale,
1640                                     int32_t dst_disp) {
1641   DCHECK(dst_base != Register::kNoRegister);
1642   Address dst = CreateAddress(dst_base, dst_index, dst_scale, dst_disp);
1643 
1644   switch (src_type) {
1645     case DataType::Type::kBool:
1646     case DataType::Type::kUint8:
1647     case DataType::Type::kInt8: {
1648       if (src.IsConstant()) {
1649         __ movb(dst, Immediate(CodeGenerator::GetInt8ValueOf(src.GetConstant())));
1650       } else {
1651         __ movb(dst, src.AsRegister<ByteRegister>());
1652       }
1653       break;
1654     }
1655     case DataType::Type::kUint16:
1656     case DataType::Type::kInt16: {
1657       if (src.IsConstant()) {
1658         __ movw(dst, Immediate(CodeGenerator::GetInt16ValueOf(src.GetConstant())));
1659       } else {
1660         __ movw(dst, src.AsRegister<Register>());
1661       }
1662       break;
1663     }
1664     case DataType::Type::kUint32:
1665     case DataType::Type::kInt32: {
1666       if (src.IsConstant()) {
1667         int32_t v = CodeGenerator::GetInt32ValueOf(src.GetConstant());
1668         __ movl(dst, Immediate(v));
1669       } else {
1670         __ movl(dst, src.AsRegister<Register>());
1671       }
1672       break;
1673     }
1674     case DataType::Type::kUint64:
1675     case DataType::Type::kInt64: {
1676       Address dst_next_4_bytes = CreateAddress(dst_base, dst_index, dst_scale, dst_disp + 4);
1677       if (src.IsConstant()) {
1678         int64_t v = CodeGenerator::GetInt64ValueOf(src.GetConstant());
1679         __ movl(dst, Immediate(Low32Bits(v)));
1680         __ movl(dst_next_4_bytes, Immediate(High32Bits(v)));
1681       } else {
1682         __ movl(dst, src.AsRegisterPairLow<Register>());
1683         __ movl(dst_next_4_bytes, src.AsRegisterPairHigh<Register>());
1684       }
1685       break;
1686     }
1687     case DataType::Type::kFloat32: {
1688       if (src.IsConstant()) {
1689         int32_t v = CodeGenerator::GetInt32ValueOf(src.GetConstant());
1690         __ movl(dst, Immediate(v));
1691       } else {
1692         __ movss(dst, src.AsFpuRegister<XmmRegister>());
1693       }
1694       break;
1695     }
1696     case DataType::Type::kFloat64: {
1697       Address dst_next_4_bytes = CreateAddress(dst_base, dst_index, dst_scale, dst_disp + 4);
1698       if (src.IsConstant()) {
1699         int64_t v = CodeGenerator::GetInt64ValueOf(src.GetConstant());
1700         __ movl(dst, Immediate(Low32Bits(v)));
1701         __ movl(dst_next_4_bytes, Immediate(High32Bits(v)));
1702       } else {
1703         __ movsd(dst, src.AsFpuRegister<XmmRegister>());
1704       }
1705       break;
1706     }
1707     case DataType::Type::kVoid:
1708     case DataType::Type::kReference:
1709       LOG(FATAL) << "Unreachable type " << src_type;
1710   }
1711 }
1712 
MoveConstant(Location location,int32_t value)1713 void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
1714   DCHECK(location.IsRegister());
1715   __ movl(location.AsRegister<Register>(), Immediate(value));
1716 }
1717 
MoveLocation(Location dst,Location src,DataType::Type dst_type)1718 void CodeGeneratorX86::MoveLocation(Location dst, Location src, DataType::Type dst_type) {
1719   HParallelMove move(GetGraph()->GetAllocator());
1720   if (dst_type == DataType::Type::kInt64 && !src.IsConstant() && !src.IsFpuRegister()) {
1721     move.AddMove(src.ToLow(), dst.ToLow(), DataType::Type::kInt32, nullptr);
1722     move.AddMove(src.ToHigh(), dst.ToHigh(), DataType::Type::kInt32, nullptr);
1723   } else {
1724     move.AddMove(src, dst, dst_type, nullptr);
1725   }
1726   GetMoveResolver()->EmitNativeCode(&move);
1727 }
1728 
AddLocationAsTemp(Location location,LocationSummary * locations)1729 void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
1730   if (location.IsRegister()) {
1731     locations->AddTemp(location);
1732   } else if (location.IsRegisterPair()) {
1733     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1734     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1735   } else {
1736     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1737   }
1738 }
1739 
HandleGoto(HInstruction * got,HBasicBlock * successor)1740 void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1741   if (successor->IsExitBlock()) {
1742     DCHECK(got->GetPrevious()->AlwaysThrows());
1743     return;  // no code needed
1744   }
1745 
1746   HBasicBlock* block = got->GetBlock();
1747   HInstruction* previous = got->GetPrevious();
1748 
1749   HLoopInformation* info = block->GetLoopInformation();
1750   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1751     codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
1752     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1753     return;
1754   }
1755 
1756   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1757     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1758   }
1759   if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1760     __ jmp(codegen_->GetLabelOf(successor));
1761   }
1762 }
1763 
VisitGoto(HGoto * got)1764 void LocationsBuilderX86::VisitGoto(HGoto* got) {
1765   got->SetLocations(nullptr);
1766 }
1767 
VisitGoto(HGoto * got)1768 void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
1769   HandleGoto(got, got->GetSuccessor());
1770 }
1771 
VisitTryBoundary(HTryBoundary * try_boundary)1772 void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1773   try_boundary->SetLocations(nullptr);
1774 }
1775 
VisitTryBoundary(HTryBoundary * try_boundary)1776 void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1777   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1778   if (!successor->IsExitBlock()) {
1779     HandleGoto(try_boundary, successor);
1780   }
1781 }
1782 
VisitExit(HExit * exit)1783 void LocationsBuilderX86::VisitExit(HExit* exit) {
1784   exit->SetLocations(nullptr);
1785 }
1786 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)1787 void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1788 }
1789 
1790 template<class LabelType>
GenerateFPJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1791 void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
1792                                                   LabelType* true_label,
1793                                                   LabelType* false_label) {
1794   if (cond->IsFPConditionTrueIfNaN()) {
1795     __ j(kUnordered, true_label);
1796   } else if (cond->IsFPConditionFalseIfNaN()) {
1797     __ j(kUnordered, false_label);
1798   }
1799   __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
1800 }
1801 
1802 template<class LabelType>
GenerateLongComparesAndJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1803 void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
1804                                                                LabelType* true_label,
1805                                                                LabelType* false_label) {
1806   LocationSummary* locations = cond->GetLocations();
1807   Location left = locations->InAt(0);
1808   Location right = locations->InAt(1);
1809   IfCondition if_cond = cond->GetCondition();
1810 
1811   Register left_high = left.AsRegisterPairHigh<Register>();
1812   Register left_low = left.AsRegisterPairLow<Register>();
1813   IfCondition true_high_cond = if_cond;
1814   IfCondition false_high_cond = cond->GetOppositeCondition();
1815   Condition final_condition = X86UnsignedOrFPCondition(if_cond);  // unsigned on lower part
1816 
1817   // Set the conditions for the test, remembering that == needs to be
1818   // decided using the low words.
1819   switch (if_cond) {
1820     case kCondEQ:
1821     case kCondNE:
1822       // Nothing to do.
1823       break;
1824     case kCondLT:
1825       false_high_cond = kCondGT;
1826       break;
1827     case kCondLE:
1828       true_high_cond = kCondLT;
1829       break;
1830     case kCondGT:
1831       false_high_cond = kCondLT;
1832       break;
1833     case kCondGE:
1834       true_high_cond = kCondGT;
1835       break;
1836     case kCondB:
1837       false_high_cond = kCondA;
1838       break;
1839     case kCondBE:
1840       true_high_cond = kCondB;
1841       break;
1842     case kCondA:
1843       false_high_cond = kCondB;
1844       break;
1845     case kCondAE:
1846       true_high_cond = kCondA;
1847       break;
1848   }
1849 
1850   if (right.IsConstant()) {
1851     int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1852     int32_t val_high = High32Bits(value);
1853     int32_t val_low = Low32Bits(value);
1854 
1855     codegen_->Compare32BitValue(left_high, val_high);
1856     if (if_cond == kCondNE) {
1857       __ j(X86Condition(true_high_cond), true_label);
1858     } else if (if_cond == kCondEQ) {
1859       __ j(X86Condition(false_high_cond), false_label);
1860     } else {
1861       __ j(X86Condition(true_high_cond), true_label);
1862       __ j(X86Condition(false_high_cond), false_label);
1863     }
1864     // Must be equal high, so compare the lows.
1865     codegen_->Compare32BitValue(left_low, val_low);
1866   } else if (right.IsRegisterPair()) {
1867     Register right_high = right.AsRegisterPairHigh<Register>();
1868     Register right_low = right.AsRegisterPairLow<Register>();
1869 
1870     __ cmpl(left_high, right_high);
1871     if (if_cond == kCondNE) {
1872       __ j(X86Condition(true_high_cond), true_label);
1873     } else if (if_cond == kCondEQ) {
1874       __ j(X86Condition(false_high_cond), false_label);
1875     } else {
1876       __ j(X86Condition(true_high_cond), true_label);
1877       __ j(X86Condition(false_high_cond), false_label);
1878     }
1879     // Must be equal high, so compare the lows.
1880     __ cmpl(left_low, right_low);
1881   } else {
1882     DCHECK(right.IsDoubleStackSlot());
1883     __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
1884     if (if_cond == kCondNE) {
1885       __ j(X86Condition(true_high_cond), true_label);
1886     } else if (if_cond == kCondEQ) {
1887       __ j(X86Condition(false_high_cond), false_label);
1888     } else {
1889       __ j(X86Condition(true_high_cond), true_label);
1890       __ j(X86Condition(false_high_cond), false_label);
1891     }
1892     // Must be equal high, so compare the lows.
1893     __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
1894   }
1895   // The last comparison might be unsigned.
1896   __ j(final_condition, true_label);
1897 }
1898 
GenerateFPCompare(Location lhs,Location rhs,HInstruction * insn,bool is_double)1899 void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
1900                                                     Location rhs,
1901                                                     HInstruction* insn,
1902                                                     bool is_double) {
1903   HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
1904   if (is_double) {
1905     if (rhs.IsFpuRegister()) {
1906       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1907     } else if (const_area != nullptr) {
1908       DCHECK(const_area->IsEmittedAtUseSite());
1909       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
1910                  codegen_->LiteralDoubleAddress(
1911                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
1912                      const_area->GetBaseMethodAddress(),
1913                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1914     } else {
1915       DCHECK(rhs.IsDoubleStackSlot());
1916       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1917     }
1918   } else {
1919     if (rhs.IsFpuRegister()) {
1920       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1921     } else if (const_area != nullptr) {
1922       DCHECK(const_area->IsEmittedAtUseSite());
1923       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
1924                  codegen_->LiteralFloatAddress(
1925                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
1926                      const_area->GetBaseMethodAddress(),
1927                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1928     } else {
1929       DCHECK(rhs.IsStackSlot());
1930       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1931     }
1932   }
1933 }
1934 
1935 template<class LabelType>
GenerateCompareTestAndBranch(HCondition * condition,LabelType * true_target_in,LabelType * false_target_in)1936 void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
1937                                                                LabelType* true_target_in,
1938                                                                LabelType* false_target_in) {
1939   // Generated branching requires both targets to be explicit. If either of the
1940   // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1941   LabelType fallthrough_target;
1942   LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1943   LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1944 
1945   LocationSummary* locations = condition->GetLocations();
1946   Location left = locations->InAt(0);
1947   Location right = locations->InAt(1);
1948 
1949   DataType::Type type = condition->InputAt(0)->GetType();
1950   switch (type) {
1951     case DataType::Type::kInt64:
1952       GenerateLongComparesAndJumps(condition, true_target, false_target);
1953       break;
1954     case DataType::Type::kFloat32:
1955       GenerateFPCompare(left, right, condition, false);
1956       GenerateFPJumps(condition, true_target, false_target);
1957       break;
1958     case DataType::Type::kFloat64:
1959       GenerateFPCompare(left, right, condition, true);
1960       GenerateFPJumps(condition, true_target, false_target);
1961       break;
1962     default:
1963       LOG(FATAL) << "Unexpected compare type " << type;
1964   }
1965 
1966   if (false_target != &fallthrough_target) {
1967     __ jmp(false_target);
1968   }
1969 
1970   if (fallthrough_target.IsLinked()) {
1971     __ Bind(&fallthrough_target);
1972   }
1973 }
1974 
AreEflagsSetFrom(HInstruction * cond,HInstruction * branch)1975 static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
1976   // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
1977   // are set only strictly before `branch`. We can't use the eflags on long/FP
1978   // conditions if they are materialized due to the complex branching.
1979   return cond->IsCondition() &&
1980          cond->GetNext() == branch &&
1981          cond->InputAt(0)->GetType() != DataType::Type::kInt64 &&
1982          !DataType::IsFloatingPointType(cond->InputAt(0)->GetType());
1983 }
1984 
1985 template<class LabelType>
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,LabelType * true_target,LabelType * false_target)1986 void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
1987                                                         size_t condition_input_index,
1988                                                         LabelType* true_target,
1989                                                         LabelType* false_target) {
1990   HInstruction* cond = instruction->InputAt(condition_input_index);
1991 
1992   if (true_target == nullptr && false_target == nullptr) {
1993     // Nothing to do. The code always falls through.
1994     return;
1995   } else if (cond->IsIntConstant()) {
1996     // Constant condition, statically compared against "true" (integer value 1).
1997     if (cond->AsIntConstant()->IsTrue()) {
1998       if (true_target != nullptr) {
1999         __ jmp(true_target);
2000       }
2001     } else {
2002       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
2003       if (false_target != nullptr) {
2004         __ jmp(false_target);
2005       }
2006     }
2007     return;
2008   }
2009 
2010   // The following code generates these patterns:
2011   //  (1) true_target == nullptr && false_target != nullptr
2012   //        - opposite condition true => branch to false_target
2013   //  (2) true_target != nullptr && false_target == nullptr
2014   //        - condition true => branch to true_target
2015   //  (3) true_target != nullptr && false_target != nullptr
2016   //        - condition true => branch to true_target
2017   //        - branch to false_target
2018   if (IsBooleanValueOrMaterializedCondition(cond)) {
2019     if (AreEflagsSetFrom(cond, instruction)) {
2020       if (true_target == nullptr) {
2021         __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
2022       } else {
2023         __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
2024       }
2025     } else {
2026       // Materialized condition, compare against 0.
2027       Location lhs = instruction->GetLocations()->InAt(condition_input_index);
2028       if (lhs.IsRegister()) {
2029         __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
2030       } else {
2031         __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
2032       }
2033       if (true_target == nullptr) {
2034         __ j(kEqual, false_target);
2035       } else {
2036         __ j(kNotEqual, true_target);
2037       }
2038     }
2039   } else {
2040     // Condition has not been materialized, use its inputs as the comparison and
2041     // its condition as the branch condition.
2042     HCondition* condition = cond->AsCondition();
2043 
2044     // If this is a long or FP comparison that has been folded into
2045     // the HCondition, generate the comparison directly.
2046     DataType::Type type = condition->InputAt(0)->GetType();
2047     if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) {
2048       GenerateCompareTestAndBranch(condition, true_target, false_target);
2049       return;
2050     }
2051 
2052     Location lhs = condition->GetLocations()->InAt(0);
2053     Location rhs = condition->GetLocations()->InAt(1);
2054     // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
2055     codegen_->GenerateIntCompare(lhs, rhs);
2056     if (true_target == nullptr) {
2057       __ j(X86Condition(condition->GetOppositeCondition()), false_target);
2058     } else {
2059       __ j(X86Condition(condition->GetCondition()), true_target);
2060     }
2061   }
2062 
2063   // If neither branch falls through (case 3), the conditional branch to `true_target`
2064   // was already emitted (case 2) and we need to emit a jump to `false_target`.
2065   if (true_target != nullptr && false_target != nullptr) {
2066     __ jmp(false_target);
2067   }
2068 }
2069 
VisitIf(HIf * if_instr)2070 void LocationsBuilderX86::VisitIf(HIf* if_instr) {
2071   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
2072   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2073     locations->SetInAt(0, Location::Any());
2074   }
2075 }
2076 
VisitIf(HIf * if_instr)2077 void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
2078   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2079   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2080   Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2081       nullptr : codegen_->GetLabelOf(true_successor);
2082   Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2083       nullptr : codegen_->GetLabelOf(false_successor);
2084   GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
2085 }
2086 
VisitDeoptimize(HDeoptimize * deoptimize)2087 void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
2088   LocationSummary* locations = new (GetGraph()->GetAllocator())
2089       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2090   InvokeRuntimeCallingConvention calling_convention;
2091   RegisterSet caller_saves = RegisterSet::Empty();
2092   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2093   locations->SetCustomSlowPathCallerSaves(caller_saves);
2094   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2095     locations->SetInAt(0, Location::Any());
2096   }
2097 }
2098 
VisitDeoptimize(HDeoptimize * deoptimize)2099 void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
2100   SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
2101   GenerateTestAndBranch<Label>(deoptimize,
2102                                /* condition_input_index= */ 0,
2103                                slow_path->GetEntryLabel(),
2104                                /* false_target= */ nullptr);
2105 }
2106 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2107 void LocationsBuilderX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2108   LocationSummary* locations = new (GetGraph()->GetAllocator())
2109       LocationSummary(flag, LocationSummary::kNoCall);
2110   locations->SetOut(Location::RequiresRegister());
2111 }
2112 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2113 void InstructionCodeGeneratorX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2114   __ movl(flag->GetLocations()->Out().AsRegister<Register>(),
2115           Address(ESP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
2116 }
2117 
SelectCanUseCMOV(HSelect * select)2118 static bool SelectCanUseCMOV(HSelect* select) {
2119   // There are no conditional move instructions for XMMs.
2120   if (DataType::IsFloatingPointType(select->GetType())) {
2121     return false;
2122   }
2123 
2124   // A FP condition doesn't generate the single CC that we need.
2125   // In 32 bit mode, a long condition doesn't generate a single CC either.
2126   HInstruction* condition = select->GetCondition();
2127   if (condition->IsCondition()) {
2128     DataType::Type compare_type = condition->InputAt(0)->GetType();
2129     if (compare_type == DataType::Type::kInt64 ||
2130         DataType::IsFloatingPointType(compare_type)) {
2131       return false;
2132     }
2133   }
2134 
2135   // We can generate a CMOV for this Select.
2136   return true;
2137 }
2138 
VisitSelect(HSelect * select)2139 void LocationsBuilderX86::VisitSelect(HSelect* select) {
2140   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
2141   if (DataType::IsFloatingPointType(select->GetType())) {
2142     locations->SetInAt(0, Location::RequiresFpuRegister());
2143     locations->SetInAt(1, Location::Any());
2144   } else {
2145     locations->SetInAt(0, Location::RequiresRegister());
2146     if (SelectCanUseCMOV(select)) {
2147       if (select->InputAt(1)->IsConstant()) {
2148         // Cmov can't handle a constant value.
2149         locations->SetInAt(1, Location::RequiresRegister());
2150       } else {
2151         locations->SetInAt(1, Location::Any());
2152       }
2153     } else {
2154       locations->SetInAt(1, Location::Any());
2155     }
2156   }
2157   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
2158     locations->SetInAt(2, Location::RequiresRegister());
2159   }
2160   locations->SetOut(Location::SameAsFirstInput());
2161 }
2162 
VisitSelect(HSelect * select)2163 void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
2164   LocationSummary* locations = select->GetLocations();
2165   DCHECK(locations->InAt(0).Equals(locations->Out()));
2166   if (SelectCanUseCMOV(select)) {
2167     // If both the condition and the source types are integer, we can generate
2168     // a CMOV to implement Select.
2169 
2170     HInstruction* select_condition = select->GetCondition();
2171     Condition cond = kNotEqual;
2172 
2173     // Figure out how to test the 'condition'.
2174     if (select_condition->IsCondition()) {
2175       HCondition* condition = select_condition->AsCondition();
2176       if (!condition->IsEmittedAtUseSite()) {
2177         // This was a previously materialized condition.
2178         // Can we use the existing condition code?
2179         if (AreEflagsSetFrom(condition, select)) {
2180           // Materialization was the previous instruction. Condition codes are right.
2181           cond = X86Condition(condition->GetCondition());
2182         } else {
2183           // No, we have to recreate the condition code.
2184           Register cond_reg = locations->InAt(2).AsRegister<Register>();
2185           __ testl(cond_reg, cond_reg);
2186         }
2187       } else {
2188         // We can't handle FP or long here.
2189         DCHECK_NE(condition->InputAt(0)->GetType(), DataType::Type::kInt64);
2190         DCHECK(!DataType::IsFloatingPointType(condition->InputAt(0)->GetType()));
2191         LocationSummary* cond_locations = condition->GetLocations();
2192         codegen_->GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
2193         cond = X86Condition(condition->GetCondition());
2194       }
2195     } else {
2196       // Must be a Boolean condition, which needs to be compared to 0.
2197       Register cond_reg = locations->InAt(2).AsRegister<Register>();
2198       __ testl(cond_reg, cond_reg);
2199     }
2200 
2201     // If the condition is true, overwrite the output, which already contains false.
2202     Location false_loc = locations->InAt(0);
2203     Location true_loc = locations->InAt(1);
2204     if (select->GetType() == DataType::Type::kInt64) {
2205       // 64 bit conditional move.
2206       Register false_high = false_loc.AsRegisterPairHigh<Register>();
2207       Register false_low = false_loc.AsRegisterPairLow<Register>();
2208       if (true_loc.IsRegisterPair()) {
2209         __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
2210         __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
2211       } else {
2212         __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
2213         __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
2214       }
2215     } else {
2216       // 32 bit conditional move.
2217       Register false_reg = false_loc.AsRegister<Register>();
2218       if (true_loc.IsRegister()) {
2219         __ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
2220       } else {
2221         __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
2222       }
2223     }
2224   } else {
2225     NearLabel false_target;
2226     GenerateTestAndBranch<NearLabel>(
2227         select, /* condition_input_index= */ 2, /* true_target= */ nullptr, &false_target);
2228     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
2229     __ Bind(&false_target);
2230   }
2231 }
2232 
VisitNativeDebugInfo(HNativeDebugInfo * info)2233 void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
2234   new (GetGraph()->GetAllocator()) LocationSummary(info);
2235 }
2236 
VisitNativeDebugInfo(HNativeDebugInfo *)2237 void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
2238   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
2239 }
2240 
IncreaseFrame(size_t adjustment)2241 void CodeGeneratorX86::IncreaseFrame(size_t adjustment) {
2242   __ subl(ESP, Immediate(adjustment));
2243   __ cfi().AdjustCFAOffset(adjustment);
2244 }
2245 
DecreaseFrame(size_t adjustment)2246 void CodeGeneratorX86::DecreaseFrame(size_t adjustment) {
2247   __ addl(ESP, Immediate(adjustment));
2248   __ cfi().AdjustCFAOffset(-adjustment);
2249 }
2250 
GenerateNop()2251 void CodeGeneratorX86::GenerateNop() {
2252   __ nop();
2253 }
2254 
HandleCondition(HCondition * cond)2255 void LocationsBuilderX86::HandleCondition(HCondition* cond) {
2256   LocationSummary* locations =
2257       new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall);
2258   // Handle the long/FP comparisons made in instruction simplification.
2259   switch (cond->InputAt(0)->GetType()) {
2260     case DataType::Type::kInt64: {
2261       locations->SetInAt(0, Location::RequiresRegister());
2262       locations->SetInAt(1, Location::Any());
2263       if (!cond->IsEmittedAtUseSite()) {
2264         locations->SetOut(Location::RequiresRegister());
2265       }
2266       break;
2267     }
2268     case DataType::Type::kFloat32:
2269     case DataType::Type::kFloat64: {
2270       locations->SetInAt(0, Location::RequiresFpuRegister());
2271       if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
2272         DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
2273       } else if (cond->InputAt(1)->IsConstant()) {
2274         locations->SetInAt(1, Location::RequiresFpuRegister());
2275       } else {
2276         locations->SetInAt(1, Location::Any());
2277       }
2278       if (!cond->IsEmittedAtUseSite()) {
2279         locations->SetOut(Location::RequiresRegister());
2280       }
2281       break;
2282     }
2283     default:
2284       locations->SetInAt(0, Location::RequiresRegister());
2285       locations->SetInAt(1, Location::Any());
2286       if (!cond->IsEmittedAtUseSite()) {
2287         // We need a byte register.
2288         locations->SetOut(Location::RegisterLocation(ECX));
2289       }
2290       break;
2291   }
2292 }
2293 
HandleCondition(HCondition * cond)2294 void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
2295   if (cond->IsEmittedAtUseSite()) {
2296     return;
2297   }
2298 
2299   LocationSummary* locations = cond->GetLocations();
2300   Location lhs = locations->InAt(0);
2301   Location rhs = locations->InAt(1);
2302   Register reg = locations->Out().AsRegister<Register>();
2303   NearLabel true_label, false_label;
2304 
2305   switch (cond->InputAt(0)->GetType()) {
2306     default: {
2307       // Integer case.
2308 
2309       // Clear output register: setb only sets the low byte.
2310       __ xorl(reg, reg);
2311       codegen_->GenerateIntCompare(lhs, rhs);
2312       __ setb(X86Condition(cond->GetCondition()), reg);
2313       return;
2314     }
2315     case DataType::Type::kInt64:
2316       GenerateLongComparesAndJumps(cond, &true_label, &false_label);
2317       break;
2318     case DataType::Type::kFloat32:
2319       GenerateFPCompare(lhs, rhs, cond, false);
2320       GenerateFPJumps(cond, &true_label, &false_label);
2321       break;
2322     case DataType::Type::kFloat64:
2323       GenerateFPCompare(lhs, rhs, cond, true);
2324       GenerateFPJumps(cond, &true_label, &false_label);
2325       break;
2326   }
2327 
2328   // Convert the jumps into the result.
2329   NearLabel done_label;
2330 
2331   // False case: result = 0.
2332   __ Bind(&false_label);
2333   __ xorl(reg, reg);
2334   __ jmp(&done_label);
2335 
2336   // True case: result = 1.
2337   __ Bind(&true_label);
2338   __ movl(reg, Immediate(1));
2339   __ Bind(&done_label);
2340 }
2341 
VisitEqual(HEqual * comp)2342 void LocationsBuilderX86::VisitEqual(HEqual* comp) {
2343   HandleCondition(comp);
2344 }
2345 
VisitEqual(HEqual * comp)2346 void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
2347   HandleCondition(comp);
2348 }
2349 
VisitNotEqual(HNotEqual * comp)2350 void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
2351   HandleCondition(comp);
2352 }
2353 
VisitNotEqual(HNotEqual * comp)2354 void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
2355   HandleCondition(comp);
2356 }
2357 
VisitLessThan(HLessThan * comp)2358 void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
2359   HandleCondition(comp);
2360 }
2361 
VisitLessThan(HLessThan * comp)2362 void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
2363   HandleCondition(comp);
2364 }
2365 
VisitLessThanOrEqual(HLessThanOrEqual * comp)2366 void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
2367   HandleCondition(comp);
2368 }
2369 
VisitLessThanOrEqual(HLessThanOrEqual * comp)2370 void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
2371   HandleCondition(comp);
2372 }
2373 
VisitGreaterThan(HGreaterThan * comp)2374 void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
2375   HandleCondition(comp);
2376 }
2377 
VisitGreaterThan(HGreaterThan * comp)2378 void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
2379   HandleCondition(comp);
2380 }
2381 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)2382 void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
2383   HandleCondition(comp);
2384 }
2385 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)2386 void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
2387   HandleCondition(comp);
2388 }
2389 
VisitBelow(HBelow * comp)2390 void LocationsBuilderX86::VisitBelow(HBelow* comp) {
2391   HandleCondition(comp);
2392 }
2393 
VisitBelow(HBelow * comp)2394 void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
2395   HandleCondition(comp);
2396 }
2397 
VisitBelowOrEqual(HBelowOrEqual * comp)2398 void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
2399   HandleCondition(comp);
2400 }
2401 
VisitBelowOrEqual(HBelowOrEqual * comp)2402 void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
2403   HandleCondition(comp);
2404 }
2405 
VisitAbove(HAbove * comp)2406 void LocationsBuilderX86::VisitAbove(HAbove* comp) {
2407   HandleCondition(comp);
2408 }
2409 
VisitAbove(HAbove * comp)2410 void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
2411   HandleCondition(comp);
2412 }
2413 
VisitAboveOrEqual(HAboveOrEqual * comp)2414 void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
2415   HandleCondition(comp);
2416 }
2417 
VisitAboveOrEqual(HAboveOrEqual * comp)2418 void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
2419   HandleCondition(comp);
2420 }
2421 
VisitIntConstant(HIntConstant * constant)2422 void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
2423   LocationSummary* locations =
2424       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
2425   locations->SetOut(Location::ConstantLocation(constant));
2426 }
2427 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)2428 void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
2429   // Will be generated at use site.
2430 }
2431 
VisitNullConstant(HNullConstant * constant)2432 void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
2433   LocationSummary* locations =
2434       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
2435   locations->SetOut(Location::ConstantLocation(constant));
2436 }
2437 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)2438 void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
2439   // Will be generated at use site.
2440 }
2441 
VisitLongConstant(HLongConstant * constant)2442 void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
2443   LocationSummary* locations =
2444       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
2445   locations->SetOut(Location::ConstantLocation(constant));
2446 }
2447 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)2448 void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
2449   // Will be generated at use site.
2450 }
2451 
VisitFloatConstant(HFloatConstant * constant)2452 void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
2453   LocationSummary* locations =
2454       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
2455   locations->SetOut(Location::ConstantLocation(constant));
2456 }
2457 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)2458 void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2459   // Will be generated at use site.
2460 }
2461 
VisitDoubleConstant(HDoubleConstant * constant)2462 void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
2463   LocationSummary* locations =
2464       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
2465   locations->SetOut(Location::ConstantLocation(constant));
2466 }
2467 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)2468 void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2469   // Will be generated at use site.
2470 }
2471 
VisitConstructorFence(HConstructorFence * constructor_fence)2472 void LocationsBuilderX86::VisitConstructorFence(HConstructorFence* constructor_fence) {
2473   constructor_fence->SetLocations(nullptr);
2474 }
2475 
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)2476 void InstructionCodeGeneratorX86::VisitConstructorFence(
2477     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
2478   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
2479 }
2480 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)2481 void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2482   memory_barrier->SetLocations(nullptr);
2483 }
2484 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)2485 void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2486   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
2487 }
2488 
VisitReturnVoid(HReturnVoid * ret)2489 void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
2490   ret->SetLocations(nullptr);
2491 }
2492 
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)2493 void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
2494   codegen_->GenerateFrameExit();
2495 }
2496 
VisitReturn(HReturn * ret)2497 void LocationsBuilderX86::VisitReturn(HReturn* ret) {
2498   LocationSummary* locations =
2499       new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall);
2500   SetInForReturnValue(ret, locations);
2501 }
2502 
VisitReturn(HReturn * ret)2503 void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
2504   switch (ret->InputAt(0)->GetType()) {
2505     case DataType::Type::kReference:
2506     case DataType::Type::kBool:
2507     case DataType::Type::kUint8:
2508     case DataType::Type::kInt8:
2509     case DataType::Type::kUint16:
2510     case DataType::Type::kInt16:
2511     case DataType::Type::kInt32:
2512       DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
2513       break;
2514 
2515     case DataType::Type::kInt64:
2516       DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
2517       DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
2518       break;
2519 
2520     case DataType::Type::kFloat32:
2521       DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
2522       if (GetGraph()->IsCompilingOsr()) {
2523         // To simplify callers of an OSR method, we put the return value in both
2524         // floating point and core registers.
2525         __ movd(EAX, XMM0);
2526       }
2527       break;
2528 
2529     case DataType::Type::kFloat64:
2530       DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
2531       if (GetGraph()->IsCompilingOsr()) {
2532         // To simplify callers of an OSR method, we put the return value in both
2533         // floating point and core registers.
2534         __ movd(EAX, XMM0);
2535         // Use XMM1 as temporary register to not clobber XMM0.
2536         __ movaps(XMM1, XMM0);
2537         __ psrlq(XMM1, Immediate(32));
2538         __ movd(EDX, XMM1);
2539       }
2540       break;
2541 
2542     default:
2543       LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
2544   }
2545   codegen_->GenerateFrameExit();
2546 }
2547 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)2548 void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2549   // The trampoline uses the same calling convention as dex calling conventions,
2550   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
2551   // the method_idx.
2552   HandleInvoke(invoke);
2553 }
2554 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)2555 void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2556   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
2557 }
2558 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)2559 void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2560   // Explicit clinit checks triggered by static invokes must have been pruned by
2561   // art::PrepareForRegisterAllocation.
2562   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2563 
2564   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
2565   if (intrinsic.TryDispatch(invoke)) {
2566     if (invoke->GetLocations()->CanCall() &&
2567         invoke->HasPcRelativeMethodLoadKind() &&
2568         invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).IsInvalid()) {
2569       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
2570     }
2571     return;
2572   }
2573 
2574   if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
2575     CriticalNativeCallingConventionVisitorX86 calling_convention_visitor(
2576         /*for_register_allocation=*/ true);
2577     CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
2578   } else {
2579     HandleInvoke(invoke);
2580   }
2581 
2582   // For PC-relative load kinds the invoke has an extra input, the PC-relative address base.
2583   if (invoke->HasPcRelativeMethodLoadKind()) {
2584     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
2585   }
2586 }
2587 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorX86 * codegen)2588 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
2589   if (invoke->GetLocations()->Intrinsified()) {
2590     IntrinsicCodeGeneratorX86 intrinsic(codegen);
2591     intrinsic.Dispatch(invoke);
2592     return true;
2593   }
2594   return false;
2595 }
2596 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)2597 void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2598   // Explicit clinit checks triggered by static invokes must have been pruned by
2599   // art::PrepareForRegisterAllocation.
2600   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2601 
2602   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2603     return;
2604   }
2605 
2606   LocationSummary* locations = invoke->GetLocations();
2607   codegen_->GenerateStaticOrDirectCall(
2608       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
2609 }
2610 
VisitInvokeVirtual(HInvokeVirtual * invoke)2611 void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2612   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
2613   if (intrinsic.TryDispatch(invoke)) {
2614     return;
2615   }
2616 
2617   HandleInvoke(invoke);
2618 
2619   if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
2620     // Add one temporary for inline cache update.
2621     invoke->GetLocations()->AddTemp(Location::RegisterLocation(EBP));
2622   }
2623 }
2624 
HandleInvoke(HInvoke * invoke)2625 void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
2626   InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
2627   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
2628 }
2629 
VisitInvokeVirtual(HInvokeVirtual * invoke)2630 void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2631   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2632     return;
2633   }
2634 
2635   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
2636   DCHECK(!codegen_->IsLeafMethod());
2637 }
2638 
VisitInvokeInterface(HInvokeInterface * invoke)2639 void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2640   // This call to HandleInvoke allocates a temporary (core) register
2641   // which is also used to transfer the hidden argument from FP to
2642   // core register.
2643   HandleInvoke(invoke);
2644   // Add the hidden argument.
2645   invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
2646 
2647   if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
2648     // Add one temporary for inline cache update.
2649     invoke->GetLocations()->AddTemp(Location::RegisterLocation(EBP));
2650   }
2651 
2652   // For PC-relative load kinds the invoke has an extra input, the PC-relative address base.
2653   if (IsPcRelativeMethodLoadKind(invoke->GetHiddenArgumentLoadKind())) {
2654     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
2655   }
2656 
2657   if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
2658     invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1,
2659                                     Location::RequiresRegister());
2660   }
2661 }
2662 
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)2663 void CodeGeneratorX86::MaybeGenerateInlineCacheCheck(HInstruction* instruction, Register klass) {
2664   DCHECK_EQ(EAX, klass);
2665   // We know the destination of an intrinsic, so no need to record inline
2666   // caches (also the intrinsic location builder doesn't request an additional
2667   // temporary).
2668   if (!instruction->GetLocations()->Intrinsified() &&
2669       GetGraph()->IsCompilingBaseline() &&
2670       !Runtime::Current()->IsAotCompiler()) {
2671     DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
2672     ProfilingInfo* info = GetGraph()->GetProfilingInfo();
2673     DCHECK(info != nullptr);
2674     InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
2675     uint32_t address = reinterpret_cast32<uint32_t>(cache);
2676     if (kIsDebugBuild) {
2677       uint32_t temp_index = instruction->GetLocations()->GetTempCount() - 1u;
2678       CHECK_EQ(EBP, instruction->GetLocations()->GetTemp(temp_index).AsRegister<Register>());
2679     }
2680     Register temp = EBP;
2681     NearLabel done;
2682     __ movl(temp, Immediate(address));
2683     // Fast path for a monomorphic cache.
2684     __ cmpl(klass, Address(temp, InlineCache::ClassesOffset().Int32Value()));
2685     __ j(kEqual, &done);
2686     GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(kQuickUpdateInlineCache).Int32Value());
2687     __ Bind(&done);
2688   }
2689 }
2690 
VisitInvokeInterface(HInvokeInterface * invoke)2691 void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2692   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2693   LocationSummary* locations = invoke->GetLocations();
2694   Register temp = locations->GetTemp(0).AsRegister<Register>();
2695   XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2696   Location receiver = locations->InAt(0);
2697   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2698 
2699   // Set the hidden argument. This is safe to do this here, as XMM7
2700   // won't be modified thereafter, before the `call` instruction.
2701   DCHECK_EQ(XMM7, hidden_reg);
2702   if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
2703     __ movd(hidden_reg, locations->InAt(invoke->GetNumberOfArguments() - 1).AsRegister<Register>());
2704   } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
2705     codegen_->LoadMethod(invoke->GetHiddenArgumentLoadKind(), locations->GetTemp(0), invoke);
2706     __ movd(hidden_reg, temp);
2707   }
2708 
2709   if (receiver.IsStackSlot()) {
2710     __ movl(temp, Address(ESP, receiver.GetStackIndex()));
2711     // /* HeapReference<Class> */ temp = temp->klass_
2712     __ movl(temp, Address(temp, class_offset));
2713   } else {
2714     // /* HeapReference<Class> */ temp = receiver->klass_
2715     __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
2716   }
2717   codegen_->MaybeRecordImplicitNullCheck(invoke);
2718   // Instead of simply (possibly) unpoisoning `temp` here, we should
2719   // emit a read barrier for the previous class reference load.
2720   // However this is not required in practice, as this is an
2721   // intermediate/temporary reference and because the current
2722   // concurrent copying collector keeps the from-space memory
2723   // intact/accessible until the end of the marking phase (the
2724   // concurrent copying collector may not in the future).
2725   __ MaybeUnpoisonHeapReference(temp);
2726 
2727   codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
2728 
2729   // temp = temp->GetAddressOfIMT()
2730   __ movl(temp,
2731       Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
2732   // temp = temp->GetImtEntryAt(method_offset);
2733   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2734       invoke->GetImtIndex(), kX86PointerSize));
2735   __ movl(temp, Address(temp, method_offset));
2736   if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
2737     // We pass the method from the IMT in case of a conflict. This will ensure
2738     // we go into the runtime to resolve the actual method.
2739     __ movd(hidden_reg, temp);
2740   }
2741   // call temp->GetEntryPoint();
2742   __ call(Address(temp,
2743                   ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value()));
2744 
2745   DCHECK(!codegen_->IsLeafMethod());
2746   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2747 }
2748 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)2749 void LocationsBuilderX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
2750   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
2751   if (intrinsic.TryDispatch(invoke)) {
2752     return;
2753   }
2754   HandleInvoke(invoke);
2755 }
2756 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)2757 void InstructionCodeGeneratorX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
2758   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2759     return;
2760   }
2761   codegen_->GenerateInvokePolymorphicCall(invoke);
2762 }
2763 
VisitInvokeCustom(HInvokeCustom * invoke)2764 void LocationsBuilderX86::VisitInvokeCustom(HInvokeCustom* invoke) {
2765   HandleInvoke(invoke);
2766 }
2767 
VisitInvokeCustom(HInvokeCustom * invoke)2768 void InstructionCodeGeneratorX86::VisitInvokeCustom(HInvokeCustom* invoke) {
2769   codegen_->GenerateInvokeCustomCall(invoke);
2770 }
2771 
VisitNeg(HNeg * neg)2772 void LocationsBuilderX86::VisitNeg(HNeg* neg) {
2773   LocationSummary* locations =
2774       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
2775   switch (neg->GetResultType()) {
2776     case DataType::Type::kInt32:
2777     case DataType::Type::kInt64:
2778       locations->SetInAt(0, Location::RequiresRegister());
2779       locations->SetOut(Location::SameAsFirstInput());
2780       break;
2781 
2782     case DataType::Type::kFloat32:
2783       locations->SetInAt(0, Location::RequiresFpuRegister());
2784       locations->SetOut(Location::SameAsFirstInput());
2785       locations->AddTemp(Location::RequiresRegister());
2786       locations->AddTemp(Location::RequiresFpuRegister());
2787       break;
2788 
2789     case DataType::Type::kFloat64:
2790       locations->SetInAt(0, Location::RequiresFpuRegister());
2791       locations->SetOut(Location::SameAsFirstInput());
2792       locations->AddTemp(Location::RequiresFpuRegister());
2793       break;
2794 
2795     default:
2796       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2797   }
2798 }
2799 
VisitNeg(HNeg * neg)2800 void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
2801   LocationSummary* locations = neg->GetLocations();
2802   Location out = locations->Out();
2803   Location in = locations->InAt(0);
2804   switch (neg->GetResultType()) {
2805     case DataType::Type::kInt32:
2806       DCHECK(in.IsRegister());
2807       DCHECK(in.Equals(out));
2808       __ negl(out.AsRegister<Register>());
2809       break;
2810 
2811     case DataType::Type::kInt64:
2812       DCHECK(in.IsRegisterPair());
2813       DCHECK(in.Equals(out));
2814       __ negl(out.AsRegisterPairLow<Register>());
2815       // Negation is similar to subtraction from zero.  The least
2816       // significant byte triggers a borrow when it is different from
2817       // zero; to take it into account, add 1 to the most significant
2818       // byte if the carry flag (CF) is set to 1 after the first NEGL
2819       // operation.
2820       __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
2821       __ negl(out.AsRegisterPairHigh<Register>());
2822       break;
2823 
2824     case DataType::Type::kFloat32: {
2825       DCHECK(in.Equals(out));
2826       Register constant = locations->GetTemp(0).AsRegister<Register>();
2827       XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2828       // Implement float negation with an exclusive or with value
2829       // 0x80000000 (mask for bit 31, representing the sign of a
2830       // single-precision floating-point number).
2831       __ movl(constant, Immediate(INT32_C(0x80000000)));
2832       __ movd(mask, constant);
2833       __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2834       break;
2835     }
2836 
2837     case DataType::Type::kFloat64: {
2838       DCHECK(in.Equals(out));
2839       XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2840       // Implement double negation with an exclusive or with value
2841       // 0x8000000000000000 (mask for bit 63, representing the sign of
2842       // a double-precision floating-point number).
2843       __ LoadLongConstant(mask, INT64_C(0x8000000000000000));
2844       __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2845       break;
2846     }
2847 
2848     default:
2849       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2850   }
2851 }
2852 
VisitX86FPNeg(HX86FPNeg * neg)2853 void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
2854   LocationSummary* locations =
2855       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
2856   DCHECK(DataType::IsFloatingPointType(neg->GetType()));
2857   locations->SetInAt(0, Location::RequiresFpuRegister());
2858   locations->SetInAt(1, Location::RequiresRegister());
2859   locations->SetOut(Location::SameAsFirstInput());
2860   locations->AddTemp(Location::RequiresFpuRegister());
2861 }
2862 
VisitX86FPNeg(HX86FPNeg * neg)2863 void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
2864   LocationSummary* locations = neg->GetLocations();
2865   Location out = locations->Out();
2866   DCHECK(locations->InAt(0).Equals(out));
2867 
2868   Register constant_area = locations->InAt(1).AsRegister<Register>();
2869   XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2870   if (neg->GetType() == DataType::Type::kFloat32) {
2871     __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000),
2872                                                  neg->GetBaseMethodAddress(),
2873                                                  constant_area));
2874     __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2875   } else {
2876      __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000),
2877                                                   neg->GetBaseMethodAddress(),
2878                                                   constant_area));
2879      __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2880   }
2881 }
2882 
VisitTypeConversion(HTypeConversion * conversion)2883 void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
2884   DataType::Type result_type = conversion->GetResultType();
2885   DataType::Type input_type = conversion->GetInputType();
2886   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
2887       << input_type << " -> " << result_type;
2888 
2889   // The float-to-long and double-to-long type conversions rely on a
2890   // call to the runtime.
2891   LocationSummary::CallKind call_kind =
2892       ((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64)
2893        && result_type == DataType::Type::kInt64)
2894       ? LocationSummary::kCallOnMainOnly
2895       : LocationSummary::kNoCall;
2896   LocationSummary* locations =
2897       new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
2898 
2899   switch (result_type) {
2900     case DataType::Type::kUint8:
2901     case DataType::Type::kInt8:
2902       switch (input_type) {
2903         case DataType::Type::kUint8:
2904         case DataType::Type::kInt8:
2905         case DataType::Type::kUint16:
2906         case DataType::Type::kInt16:
2907         case DataType::Type::kInt32:
2908           locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
2909           // Make the output overlap to please the register allocator. This greatly simplifies
2910           // the validation of the linear scan implementation
2911           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2912           break;
2913         case DataType::Type::kInt64: {
2914           HInstruction* input = conversion->InputAt(0);
2915           Location input_location = input->IsConstant()
2916               ? Location::ConstantLocation(input->AsConstant())
2917               : Location::RegisterPairLocation(EAX, EDX);
2918           locations->SetInAt(0, input_location);
2919           // Make the output overlap to please the register allocator. This greatly simplifies
2920           // the validation of the linear scan implementation
2921           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2922           break;
2923         }
2924 
2925         default:
2926           LOG(FATAL) << "Unexpected type conversion from " << input_type
2927                      << " to " << result_type;
2928       }
2929       break;
2930 
2931     case DataType::Type::kUint16:
2932     case DataType::Type::kInt16:
2933       DCHECK(DataType::IsIntegralType(input_type)) << input_type;
2934       locations->SetInAt(0, Location::Any());
2935       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2936       break;
2937 
2938     case DataType::Type::kInt32:
2939       switch (input_type) {
2940         case DataType::Type::kInt64:
2941           locations->SetInAt(0, Location::Any());
2942           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2943           break;
2944 
2945         case DataType::Type::kFloat32:
2946           locations->SetInAt(0, Location::RequiresFpuRegister());
2947           locations->SetOut(Location::RequiresRegister());
2948           locations->AddTemp(Location::RequiresFpuRegister());
2949           break;
2950 
2951         case DataType::Type::kFloat64:
2952           locations->SetInAt(0, Location::RequiresFpuRegister());
2953           locations->SetOut(Location::RequiresRegister());
2954           locations->AddTemp(Location::RequiresFpuRegister());
2955           break;
2956 
2957         default:
2958           LOG(FATAL) << "Unexpected type conversion from " << input_type
2959                      << " to " << result_type;
2960       }
2961       break;
2962 
2963     case DataType::Type::kInt64:
2964       switch (input_type) {
2965         case DataType::Type::kBool:
2966         case DataType::Type::kUint8:
2967         case DataType::Type::kInt8:
2968         case DataType::Type::kUint16:
2969         case DataType::Type::kInt16:
2970         case DataType::Type::kInt32:
2971           locations->SetInAt(0, Location::RegisterLocation(EAX));
2972           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2973           break;
2974 
2975         case DataType::Type::kFloat32:
2976         case DataType::Type::kFloat64: {
2977           InvokeRuntimeCallingConvention calling_convention;
2978           XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
2979           locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
2980 
2981           // The runtime helper puts the result in EAX, EDX.
2982           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2983         }
2984         break;
2985 
2986         default:
2987           LOG(FATAL) << "Unexpected type conversion from " << input_type
2988                      << " to " << result_type;
2989       }
2990       break;
2991 
2992     case DataType::Type::kFloat32:
2993       switch (input_type) {
2994         case DataType::Type::kBool:
2995         case DataType::Type::kUint8:
2996         case DataType::Type::kInt8:
2997         case DataType::Type::kUint16:
2998         case DataType::Type::kInt16:
2999         case DataType::Type::kInt32:
3000           locations->SetInAt(0, Location::RequiresRegister());
3001           locations->SetOut(Location::RequiresFpuRegister());
3002           break;
3003 
3004         case DataType::Type::kInt64:
3005           locations->SetInAt(0, Location::Any());
3006           locations->SetOut(Location::Any());
3007           break;
3008 
3009         case DataType::Type::kFloat64:
3010           locations->SetInAt(0, Location::RequiresFpuRegister());
3011           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3012           break;
3013 
3014         default:
3015           LOG(FATAL) << "Unexpected type conversion from " << input_type
3016                      << " to " << result_type;
3017       }
3018       break;
3019 
3020     case DataType::Type::kFloat64:
3021       switch (input_type) {
3022         case DataType::Type::kBool:
3023         case DataType::Type::kUint8:
3024         case DataType::Type::kInt8:
3025         case DataType::Type::kUint16:
3026         case DataType::Type::kInt16:
3027         case DataType::Type::kInt32:
3028           locations->SetInAt(0, Location::RequiresRegister());
3029           locations->SetOut(Location::RequiresFpuRegister());
3030           break;
3031 
3032         case DataType::Type::kInt64:
3033           locations->SetInAt(0, Location::Any());
3034           locations->SetOut(Location::Any());
3035           break;
3036 
3037         case DataType::Type::kFloat32:
3038           locations->SetInAt(0, Location::RequiresFpuRegister());
3039           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3040           break;
3041 
3042         default:
3043           LOG(FATAL) << "Unexpected type conversion from " << input_type
3044                      << " to " << result_type;
3045       }
3046       break;
3047 
3048     default:
3049       LOG(FATAL) << "Unexpected type conversion from " << input_type
3050                  << " to " << result_type;
3051   }
3052 }
3053 
VisitTypeConversion(HTypeConversion * conversion)3054 void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
3055   LocationSummary* locations = conversion->GetLocations();
3056   Location out = locations->Out();
3057   Location in = locations->InAt(0);
3058   DataType::Type result_type = conversion->GetResultType();
3059   DataType::Type input_type = conversion->GetInputType();
3060   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3061       << input_type << " -> " << result_type;
3062   switch (result_type) {
3063     case DataType::Type::kUint8:
3064       switch (input_type) {
3065         case DataType::Type::kInt8:
3066         case DataType::Type::kUint16:
3067         case DataType::Type::kInt16:
3068         case DataType::Type::kInt32:
3069           if (in.IsRegister()) {
3070             __ movzxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
3071           } else {
3072             DCHECK(in.GetConstant()->IsIntConstant());
3073             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
3074             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint8_t>(value)));
3075           }
3076           break;
3077         case DataType::Type::kInt64:
3078           if (in.IsRegisterPair()) {
3079             __ movzxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
3080           } else {
3081             DCHECK(in.GetConstant()->IsLongConstant());
3082             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3083             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint8_t>(value)));
3084           }
3085           break;
3086 
3087         default:
3088           LOG(FATAL) << "Unexpected type conversion from " << input_type
3089                      << " to " << result_type;
3090       }
3091       break;
3092 
3093     case DataType::Type::kInt8:
3094       switch (input_type) {
3095         case DataType::Type::kUint8:
3096         case DataType::Type::kUint16:
3097         case DataType::Type::kInt16:
3098         case DataType::Type::kInt32:
3099           if (in.IsRegister()) {
3100             __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
3101           } else {
3102             DCHECK(in.GetConstant()->IsIntConstant());
3103             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
3104             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
3105           }
3106           break;
3107         case DataType::Type::kInt64:
3108           if (in.IsRegisterPair()) {
3109             __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
3110           } else {
3111             DCHECK(in.GetConstant()->IsLongConstant());
3112             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3113             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
3114           }
3115           break;
3116 
3117         default:
3118           LOG(FATAL) << "Unexpected type conversion from " << input_type
3119                      << " to " << result_type;
3120       }
3121       break;
3122 
3123     case DataType::Type::kUint16:
3124       switch (input_type) {
3125         case DataType::Type::kInt8:
3126         case DataType::Type::kInt16:
3127         case DataType::Type::kInt32:
3128           if (in.IsRegister()) {
3129             __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
3130           } else if (in.IsStackSlot()) {
3131             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
3132           } else {
3133             DCHECK(in.GetConstant()->IsIntConstant());
3134             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
3135             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
3136           }
3137           break;
3138         case DataType::Type::kInt64:
3139           if (in.IsRegisterPair()) {
3140             __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
3141           } else if (in.IsDoubleStackSlot()) {
3142             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
3143           } else {
3144             DCHECK(in.GetConstant()->IsLongConstant());
3145             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3146             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
3147           }
3148           break;
3149 
3150         default:
3151           LOG(FATAL) << "Unexpected type conversion from " << input_type
3152                      << " to " << result_type;
3153       }
3154       break;
3155 
3156     case DataType::Type::kInt16:
3157       switch (input_type) {
3158         case DataType::Type::kUint16:
3159         case DataType::Type::kInt32:
3160           if (in.IsRegister()) {
3161             __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
3162           } else if (in.IsStackSlot()) {
3163             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
3164           } else {
3165             DCHECK(in.GetConstant()->IsIntConstant());
3166             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
3167             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
3168           }
3169           break;
3170         case DataType::Type::kInt64:
3171           if (in.IsRegisterPair()) {
3172             __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
3173           } else if (in.IsDoubleStackSlot()) {
3174             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
3175           } else {
3176             DCHECK(in.GetConstant()->IsLongConstant());
3177             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3178             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
3179           }
3180           break;
3181 
3182         default:
3183           LOG(FATAL) << "Unexpected type conversion from " << input_type
3184                      << " to " << result_type;
3185       }
3186       break;
3187 
3188     case DataType::Type::kInt32:
3189       switch (input_type) {
3190         case DataType::Type::kInt64:
3191           if (in.IsRegisterPair()) {
3192             __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
3193           } else if (in.IsDoubleStackSlot()) {
3194             __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
3195           } else {
3196             DCHECK(in.IsConstant());
3197             DCHECK(in.GetConstant()->IsLongConstant());
3198             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3199             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
3200           }
3201           break;
3202 
3203         case DataType::Type::kFloat32: {
3204           XmmRegister input = in.AsFpuRegister<XmmRegister>();
3205           Register output = out.AsRegister<Register>();
3206           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
3207           NearLabel done, nan;
3208 
3209           __ movl(output, Immediate(kPrimIntMax));
3210           // temp = int-to-float(output)
3211           __ cvtsi2ss(temp, output);
3212           // if input >= temp goto done
3213           __ comiss(input, temp);
3214           __ j(kAboveEqual, &done);
3215           // if input == NaN goto nan
3216           __ j(kUnordered, &nan);
3217           // output = float-to-int-truncate(input)
3218           __ cvttss2si(output, input);
3219           __ jmp(&done);
3220           __ Bind(&nan);
3221           //  output = 0
3222           __ xorl(output, output);
3223           __ Bind(&done);
3224           break;
3225         }
3226 
3227         case DataType::Type::kFloat64: {
3228           XmmRegister input = in.AsFpuRegister<XmmRegister>();
3229           Register output = out.AsRegister<Register>();
3230           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
3231           NearLabel done, nan;
3232 
3233           __ movl(output, Immediate(kPrimIntMax));
3234           // temp = int-to-double(output)
3235           __ cvtsi2sd(temp, output);
3236           // if input >= temp goto done
3237           __ comisd(input, temp);
3238           __ j(kAboveEqual, &done);
3239           // if input == NaN goto nan
3240           __ j(kUnordered, &nan);
3241           // output = double-to-int-truncate(input)
3242           __ cvttsd2si(output, input);
3243           __ jmp(&done);
3244           __ Bind(&nan);
3245           //  output = 0
3246           __ xorl(output, output);
3247           __ Bind(&done);
3248           break;
3249         }
3250 
3251         default:
3252           LOG(FATAL) << "Unexpected type conversion from " << input_type
3253                      << " to " << result_type;
3254       }
3255       break;
3256 
3257     case DataType::Type::kInt64:
3258       switch (input_type) {
3259         case DataType::Type::kBool:
3260         case DataType::Type::kUint8:
3261         case DataType::Type::kInt8:
3262         case DataType::Type::kUint16:
3263         case DataType::Type::kInt16:
3264         case DataType::Type::kInt32:
3265           DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
3266           DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
3267           DCHECK_EQ(in.AsRegister<Register>(), EAX);
3268           __ cdq();
3269           break;
3270 
3271         case DataType::Type::kFloat32:
3272           codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
3273           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
3274           break;
3275 
3276         case DataType::Type::kFloat64:
3277           codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
3278           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
3279           break;
3280 
3281         default:
3282           LOG(FATAL) << "Unexpected type conversion from " << input_type
3283                      << " to " << result_type;
3284       }
3285       break;
3286 
3287     case DataType::Type::kFloat32:
3288       switch (input_type) {
3289         case DataType::Type::kBool:
3290         case DataType::Type::kUint8:
3291         case DataType::Type::kInt8:
3292         case DataType::Type::kUint16:
3293         case DataType::Type::kInt16:
3294         case DataType::Type::kInt32:
3295           __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
3296           break;
3297 
3298         case DataType::Type::kInt64: {
3299           size_t adjustment = 0;
3300 
3301           // Create stack space for the call to
3302           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
3303           // TODO: enhance register allocator to ask for stack temporaries.
3304           if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
3305             adjustment = DataType::Size(DataType::Type::kInt64);
3306             codegen_->IncreaseFrame(adjustment);
3307           }
3308 
3309           // Load the value to the FP stack, using temporaries if needed.
3310           PushOntoFPStack(in, 0, adjustment, false, true);
3311 
3312           if (out.IsStackSlot()) {
3313             __ fstps(Address(ESP, out.GetStackIndex() + adjustment));
3314           } else {
3315             __ fstps(Address(ESP, 0));
3316             Location stack_temp = Location::StackSlot(0);
3317             codegen_->Move32(out, stack_temp);
3318           }
3319 
3320           // Remove the temporary stack space we allocated.
3321           if (adjustment != 0) {
3322             codegen_->DecreaseFrame(adjustment);
3323           }
3324           break;
3325         }
3326 
3327         case DataType::Type::kFloat64:
3328           __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
3329           break;
3330 
3331         default:
3332           LOG(FATAL) << "Unexpected type conversion from " << input_type
3333                      << " to " << result_type;
3334       }
3335       break;
3336 
3337     case DataType::Type::kFloat64:
3338       switch (input_type) {
3339         case DataType::Type::kBool:
3340         case DataType::Type::kUint8:
3341         case DataType::Type::kInt8:
3342         case DataType::Type::kUint16:
3343         case DataType::Type::kInt16:
3344         case DataType::Type::kInt32:
3345           __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
3346           break;
3347 
3348         case DataType::Type::kInt64: {
3349           size_t adjustment = 0;
3350 
3351           // Create stack space for the call to
3352           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
3353           // TODO: enhance register allocator to ask for stack temporaries.
3354           if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
3355             adjustment = DataType::Size(DataType::Type::kInt64);
3356             codegen_->IncreaseFrame(adjustment);
3357           }
3358 
3359           // Load the value to the FP stack, using temporaries if needed.
3360           PushOntoFPStack(in, 0, adjustment, false, true);
3361 
3362           if (out.IsDoubleStackSlot()) {
3363             __ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
3364           } else {
3365             __ fstpl(Address(ESP, 0));
3366             Location stack_temp = Location::DoubleStackSlot(0);
3367             codegen_->Move64(out, stack_temp);
3368           }
3369 
3370           // Remove the temporary stack space we allocated.
3371           if (adjustment != 0) {
3372             codegen_->DecreaseFrame(adjustment);
3373           }
3374           break;
3375         }
3376 
3377         case DataType::Type::kFloat32:
3378           __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
3379           break;
3380 
3381         default:
3382           LOG(FATAL) << "Unexpected type conversion from " << input_type
3383                      << " to " << result_type;
3384       }
3385       break;
3386 
3387     default:
3388       LOG(FATAL) << "Unexpected type conversion from " << input_type
3389                  << " to " << result_type;
3390   }
3391 }
3392 
VisitAdd(HAdd * add)3393 void LocationsBuilderX86::VisitAdd(HAdd* add) {
3394   LocationSummary* locations =
3395       new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall);
3396   switch (add->GetResultType()) {
3397     case DataType::Type::kInt32: {
3398       locations->SetInAt(0, Location::RequiresRegister());
3399       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
3400       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3401       break;
3402     }
3403 
3404     case DataType::Type::kInt64: {
3405       locations->SetInAt(0, Location::RequiresRegister());
3406       locations->SetInAt(1, Location::Any());
3407       locations->SetOut(Location::SameAsFirstInput());
3408       break;
3409     }
3410 
3411     case DataType::Type::kFloat32:
3412     case DataType::Type::kFloat64: {
3413       locations->SetInAt(0, Location::RequiresFpuRegister());
3414       if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
3415         DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
3416       } else if (add->InputAt(1)->IsConstant()) {
3417         locations->SetInAt(1, Location::RequiresFpuRegister());
3418       } else {
3419         locations->SetInAt(1, Location::Any());
3420       }
3421       locations->SetOut(Location::SameAsFirstInput());
3422       break;
3423     }
3424 
3425     default:
3426       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3427       UNREACHABLE();
3428   }
3429 }
3430 
VisitAdd(HAdd * add)3431 void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
3432   LocationSummary* locations = add->GetLocations();
3433   Location first = locations->InAt(0);
3434   Location second = locations->InAt(1);
3435   Location out = locations->Out();
3436 
3437   switch (add->GetResultType()) {
3438     case DataType::Type::kInt32: {
3439       if (second.IsRegister()) {
3440         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
3441           __ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
3442         } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
3443           __ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
3444         } else {
3445           __ leal(out.AsRegister<Register>(), Address(
3446               first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
3447           }
3448       } else if (second.IsConstant()) {
3449         int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
3450         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
3451           __ addl(out.AsRegister<Register>(), Immediate(value));
3452         } else {
3453           __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
3454         }
3455       } else {
3456         DCHECK(first.Equals(locations->Out()));
3457         __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3458       }
3459       break;
3460     }
3461 
3462     case DataType::Type::kInt64: {
3463       if (second.IsRegisterPair()) {
3464         __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
3465         __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
3466       } else if (second.IsDoubleStackSlot()) {
3467         __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
3468         __ adcl(first.AsRegisterPairHigh<Register>(),
3469                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
3470       } else {
3471         DCHECK(second.IsConstant()) << second;
3472         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3473         __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
3474         __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
3475       }
3476       break;
3477     }
3478 
3479     case DataType::Type::kFloat32: {
3480       if (second.IsFpuRegister()) {
3481         __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3482       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
3483         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
3484         DCHECK(const_area->IsEmittedAtUseSite());
3485         __ addss(first.AsFpuRegister<XmmRegister>(),
3486                  codegen_->LiteralFloatAddress(
3487                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3488                      const_area->GetBaseMethodAddress(),
3489                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3490       } else {
3491         DCHECK(second.IsStackSlot());
3492         __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3493       }
3494       break;
3495     }
3496 
3497     case DataType::Type::kFloat64: {
3498       if (second.IsFpuRegister()) {
3499         __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3500       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
3501         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
3502         DCHECK(const_area->IsEmittedAtUseSite());
3503         __ addsd(first.AsFpuRegister<XmmRegister>(),
3504                  codegen_->LiteralDoubleAddress(
3505                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3506                      const_area->GetBaseMethodAddress(),
3507                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3508       } else {
3509         DCHECK(second.IsDoubleStackSlot());
3510         __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3511       }
3512       break;
3513     }
3514 
3515     default:
3516       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3517   }
3518 }
3519 
VisitSub(HSub * sub)3520 void LocationsBuilderX86::VisitSub(HSub* sub) {
3521   LocationSummary* locations =
3522       new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall);
3523   switch (sub->GetResultType()) {
3524     case DataType::Type::kInt32:
3525     case DataType::Type::kInt64: {
3526       locations->SetInAt(0, Location::RequiresRegister());
3527       locations->SetInAt(1, Location::Any());
3528       locations->SetOut(Location::SameAsFirstInput());
3529       break;
3530     }
3531     case DataType::Type::kFloat32:
3532     case DataType::Type::kFloat64: {
3533       locations->SetInAt(0, Location::RequiresFpuRegister());
3534       if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
3535         DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
3536       } else if (sub->InputAt(1)->IsConstant()) {
3537         locations->SetInAt(1, Location::RequiresFpuRegister());
3538       } else {
3539         locations->SetInAt(1, Location::Any());
3540       }
3541       locations->SetOut(Location::SameAsFirstInput());
3542       break;
3543     }
3544 
3545     default:
3546       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3547   }
3548 }
3549 
VisitSub(HSub * sub)3550 void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
3551   LocationSummary* locations = sub->GetLocations();
3552   Location first = locations->InAt(0);
3553   Location second = locations->InAt(1);
3554   DCHECK(first.Equals(locations->Out()));
3555   switch (sub->GetResultType()) {
3556     case DataType::Type::kInt32: {
3557       if (second.IsRegister()) {
3558         __ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
3559       } else if (second.IsConstant()) {
3560         __ subl(first.AsRegister<Register>(),
3561                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
3562       } else {
3563         __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3564       }
3565       break;
3566     }
3567 
3568     case DataType::Type::kInt64: {
3569       if (second.IsRegisterPair()) {
3570         __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
3571         __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
3572       } else if (second.IsDoubleStackSlot()) {
3573         __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
3574         __ sbbl(first.AsRegisterPairHigh<Register>(),
3575                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
3576       } else {
3577         DCHECK(second.IsConstant()) << second;
3578         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3579         __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
3580         __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
3581       }
3582       break;
3583     }
3584 
3585     case DataType::Type::kFloat32: {
3586       if (second.IsFpuRegister()) {
3587         __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3588       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
3589         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
3590         DCHECK(const_area->IsEmittedAtUseSite());
3591         __ subss(first.AsFpuRegister<XmmRegister>(),
3592                  codegen_->LiteralFloatAddress(
3593                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3594                      const_area->GetBaseMethodAddress(),
3595                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3596       } else {
3597         DCHECK(second.IsStackSlot());
3598         __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3599       }
3600       break;
3601     }
3602 
3603     case DataType::Type::kFloat64: {
3604       if (second.IsFpuRegister()) {
3605         __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3606       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
3607         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
3608         DCHECK(const_area->IsEmittedAtUseSite());
3609         __ subsd(first.AsFpuRegister<XmmRegister>(),
3610                  codegen_->LiteralDoubleAddress(
3611                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3612                      const_area->GetBaseMethodAddress(),
3613                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3614       } else {
3615         DCHECK(second.IsDoubleStackSlot());
3616         __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3617       }
3618       break;
3619     }
3620 
3621     default:
3622       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3623   }
3624 }
3625 
VisitMul(HMul * mul)3626 void LocationsBuilderX86::VisitMul(HMul* mul) {
3627   LocationSummary* locations =
3628       new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
3629   switch (mul->GetResultType()) {
3630     case DataType::Type::kInt32:
3631       locations->SetInAt(0, Location::RequiresRegister());
3632       locations->SetInAt(1, Location::Any());
3633       if (mul->InputAt(1)->IsIntConstant()) {
3634         // Can use 3 operand multiply.
3635         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3636       } else {
3637         locations->SetOut(Location::SameAsFirstInput());
3638       }
3639       break;
3640     case DataType::Type::kInt64: {
3641       locations->SetInAt(0, Location::RequiresRegister());
3642       locations->SetInAt(1, Location::Any());
3643       locations->SetOut(Location::SameAsFirstInput());
3644       // Needed for imul on 32bits with 64bits output.
3645       locations->AddTemp(Location::RegisterLocation(EAX));
3646       locations->AddTemp(Location::RegisterLocation(EDX));
3647       break;
3648     }
3649     case DataType::Type::kFloat32:
3650     case DataType::Type::kFloat64: {
3651       locations->SetInAt(0, Location::RequiresFpuRegister());
3652       if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3653         DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
3654       } else if (mul->InputAt(1)->IsConstant()) {
3655         locations->SetInAt(1, Location::RequiresFpuRegister());
3656       } else {
3657         locations->SetInAt(1, Location::Any());
3658       }
3659       locations->SetOut(Location::SameAsFirstInput());
3660       break;
3661     }
3662 
3663     default:
3664       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3665   }
3666 }
3667 
VisitMul(HMul * mul)3668 void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
3669   LocationSummary* locations = mul->GetLocations();
3670   Location first = locations->InAt(0);
3671   Location second = locations->InAt(1);
3672   Location out = locations->Out();
3673 
3674   switch (mul->GetResultType()) {
3675     case DataType::Type::kInt32:
3676       // The constant may have ended up in a register, so test explicitly to avoid
3677       // problems where the output may not be the same as the first operand.
3678       if (mul->InputAt(1)->IsIntConstant()) {
3679         Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
3680         __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
3681       } else if (second.IsRegister()) {
3682         DCHECK(first.Equals(out));
3683         __ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
3684       } else {
3685         DCHECK(second.IsStackSlot());
3686         DCHECK(first.Equals(out));
3687         __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3688       }
3689       break;
3690 
3691     case DataType::Type::kInt64: {
3692       Register in1_hi = first.AsRegisterPairHigh<Register>();
3693       Register in1_lo = first.AsRegisterPairLow<Register>();
3694       Register eax = locations->GetTemp(0).AsRegister<Register>();
3695       Register edx = locations->GetTemp(1).AsRegister<Register>();
3696 
3697       DCHECK_EQ(EAX, eax);
3698       DCHECK_EQ(EDX, edx);
3699 
3700       // input: in1 - 64 bits, in2 - 64 bits.
3701       // output: in1
3702       // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3703       // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3704       // parts: in1.lo = (in1.lo * in2.lo)[31:0]
3705       if (second.IsConstant()) {
3706         DCHECK(second.GetConstant()->IsLongConstant());
3707 
3708         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3709         int32_t low_value = Low32Bits(value);
3710         int32_t high_value = High32Bits(value);
3711         Immediate low(low_value);
3712         Immediate high(high_value);
3713 
3714         __ movl(eax, high);
3715         // eax <- in1.lo * in2.hi
3716         __ imull(eax, in1_lo);
3717         // in1.hi <- in1.hi * in2.lo
3718         __ imull(in1_hi, low);
3719         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3720         __ addl(in1_hi, eax);
3721         // move in2_lo to eax to prepare for double precision
3722         __ movl(eax, low);
3723         // edx:eax <- in1.lo * in2.lo
3724         __ mull(in1_lo);
3725         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3726         __ addl(in1_hi, edx);
3727         // in1.lo <- (in1.lo * in2.lo)[31:0];
3728         __ movl(in1_lo, eax);
3729       } else if (second.IsRegisterPair()) {
3730         Register in2_hi = second.AsRegisterPairHigh<Register>();
3731         Register in2_lo = second.AsRegisterPairLow<Register>();
3732 
3733         __ movl(eax, in2_hi);
3734         // eax <- in1.lo * in2.hi
3735         __ imull(eax, in1_lo);
3736         // in1.hi <- in1.hi * in2.lo
3737         __ imull(in1_hi, in2_lo);
3738         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3739         __ addl(in1_hi, eax);
3740         // move in1_lo to eax to prepare for double precision
3741         __ movl(eax, in1_lo);
3742         // edx:eax <- in1.lo * in2.lo
3743         __ mull(in2_lo);
3744         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3745         __ addl(in1_hi, edx);
3746         // in1.lo <- (in1.lo * in2.lo)[31:0];
3747         __ movl(in1_lo, eax);
3748       } else {
3749         DCHECK(second.IsDoubleStackSlot()) << second;
3750         Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
3751         Address in2_lo(ESP, second.GetStackIndex());
3752 
3753         __ movl(eax, in2_hi);
3754         // eax <- in1.lo * in2.hi
3755         __ imull(eax, in1_lo);
3756         // in1.hi <- in1.hi * in2.lo
3757         __ imull(in1_hi, in2_lo);
3758         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3759         __ addl(in1_hi, eax);
3760         // move in1_lo to eax to prepare for double precision
3761         __ movl(eax, in1_lo);
3762         // edx:eax <- in1.lo * in2.lo
3763         __ mull(in2_lo);
3764         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3765         __ addl(in1_hi, edx);
3766         // in1.lo <- (in1.lo * in2.lo)[31:0];
3767         __ movl(in1_lo, eax);
3768       }
3769 
3770       break;
3771     }
3772 
3773     case DataType::Type::kFloat32: {
3774       DCHECK(first.Equals(locations->Out()));
3775       if (second.IsFpuRegister()) {
3776         __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3777       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3778         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3779         DCHECK(const_area->IsEmittedAtUseSite());
3780         __ mulss(first.AsFpuRegister<XmmRegister>(),
3781                  codegen_->LiteralFloatAddress(
3782                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3783                      const_area->GetBaseMethodAddress(),
3784                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3785       } else {
3786         DCHECK(second.IsStackSlot());
3787         __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3788       }
3789       break;
3790     }
3791 
3792     case DataType::Type::kFloat64: {
3793       DCHECK(first.Equals(locations->Out()));
3794       if (second.IsFpuRegister()) {
3795         __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3796       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3797         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3798         DCHECK(const_area->IsEmittedAtUseSite());
3799         __ mulsd(first.AsFpuRegister<XmmRegister>(),
3800                  codegen_->LiteralDoubleAddress(
3801                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3802                      const_area->GetBaseMethodAddress(),
3803                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3804       } else {
3805         DCHECK(second.IsDoubleStackSlot());
3806         __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3807       }
3808       break;
3809     }
3810 
3811     default:
3812       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3813   }
3814 }
3815 
PushOntoFPStack(Location source,uint32_t temp_offset,uint32_t stack_adjustment,bool is_fp,bool is_wide)3816 void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
3817                                                   uint32_t temp_offset,
3818                                                   uint32_t stack_adjustment,
3819                                                   bool is_fp,
3820                                                   bool is_wide) {
3821   if (source.IsStackSlot()) {
3822     DCHECK(!is_wide);
3823     if (is_fp) {
3824       __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3825     } else {
3826       __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3827     }
3828   } else if (source.IsDoubleStackSlot()) {
3829     DCHECK(is_wide);
3830     if (is_fp) {
3831       __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3832     } else {
3833       __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3834     }
3835   } else {
3836     // Write the value to the temporary location on the stack and load to FP stack.
3837     if (!is_wide) {
3838       Location stack_temp = Location::StackSlot(temp_offset);
3839       codegen_->Move32(stack_temp, source);
3840       if (is_fp) {
3841         __ flds(Address(ESP, temp_offset));
3842       } else {
3843         __ filds(Address(ESP, temp_offset));
3844       }
3845     } else {
3846       Location stack_temp = Location::DoubleStackSlot(temp_offset);
3847       codegen_->Move64(stack_temp, source);
3848       if (is_fp) {
3849         __ fldl(Address(ESP, temp_offset));
3850       } else {
3851         __ fildl(Address(ESP, temp_offset));
3852       }
3853     }
3854   }
3855 }
3856 
GenerateRemFP(HRem * rem)3857 void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
3858   DataType::Type type = rem->GetResultType();
3859   bool is_float = type == DataType::Type::kFloat32;
3860   size_t elem_size = DataType::Size(type);
3861   LocationSummary* locations = rem->GetLocations();
3862   Location first = locations->InAt(0);
3863   Location second = locations->InAt(1);
3864   Location out = locations->Out();
3865 
3866   // Create stack space for 2 elements.
3867   // TODO: enhance register allocator to ask for stack temporaries.
3868   codegen_->IncreaseFrame(2 * elem_size);
3869 
3870   // Load the values to the FP stack in reverse order, using temporaries if needed.
3871   const bool is_wide = !is_float;
3872   PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp= */ true, is_wide);
3873   PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp= */ true, is_wide);
3874 
3875   // Loop doing FPREM until we stabilize.
3876   NearLabel retry;
3877   __ Bind(&retry);
3878   __ fprem();
3879 
3880   // Move FP status to AX.
3881   __ fstsw();
3882 
3883   // And see if the argument reduction is complete. This is signaled by the
3884   // C2 FPU flag bit set to 0.
3885   __ andl(EAX, Immediate(kC2ConditionMask));
3886   __ j(kNotEqual, &retry);
3887 
3888   // We have settled on the final value. Retrieve it into an XMM register.
3889   // Store FP top of stack to real stack.
3890   if (is_float) {
3891     __ fsts(Address(ESP, 0));
3892   } else {
3893     __ fstl(Address(ESP, 0));
3894   }
3895 
3896   // Pop the 2 items from the FP stack.
3897   __ fucompp();
3898 
3899   // Load the value from the stack into an XMM register.
3900   DCHECK(out.IsFpuRegister()) << out;
3901   if (is_float) {
3902     __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3903   } else {
3904     __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3905   }
3906 
3907   // And remove the temporary stack space we allocated.
3908   codegen_->DecreaseFrame(2 * elem_size);
3909 }
3910 
3911 
DivRemOneOrMinusOne(HBinaryOperation * instruction)3912 void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3913   DCHECK(instruction->IsDiv() || instruction->IsRem());
3914 
3915   LocationSummary* locations = instruction->GetLocations();
3916   DCHECK(locations->InAt(1).IsConstant());
3917   DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
3918 
3919   Register out_register = locations->Out().AsRegister<Register>();
3920   Register input_register = locations->InAt(0).AsRegister<Register>();
3921   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3922 
3923   DCHECK(imm == 1 || imm == -1);
3924 
3925   if (instruction->IsRem()) {
3926     __ xorl(out_register, out_register);
3927   } else {
3928     __ movl(out_register, input_register);
3929     if (imm == -1) {
3930       __ negl(out_register);
3931     }
3932   }
3933 }
3934 
RemByPowerOfTwo(HRem * instruction)3935 void InstructionCodeGeneratorX86::RemByPowerOfTwo(HRem* instruction) {
3936   LocationSummary* locations = instruction->GetLocations();
3937   Location second = locations->InAt(1);
3938 
3939   Register out = locations->Out().AsRegister<Register>();
3940   Register numerator = locations->InAt(0).AsRegister<Register>();
3941 
3942   int32_t imm = Int64FromConstant(second.GetConstant());
3943   DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
3944   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3945 
3946   Register tmp = locations->GetTemp(0).AsRegister<Register>();
3947   NearLabel done;
3948   __ movl(out, numerator);
3949   __ andl(out, Immediate(abs_imm-1));
3950   __ j(Condition::kZero, &done);
3951   __ leal(tmp, Address(out, static_cast<int32_t>(~(abs_imm-1))));
3952   __ testl(numerator, numerator);
3953   __ cmovl(Condition::kLess, out, tmp);
3954   __ Bind(&done);
3955 }
3956 
DivByPowerOfTwo(HDiv * instruction)3957 void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
3958   LocationSummary* locations = instruction->GetLocations();
3959 
3960   Register out_register = locations->Out().AsRegister<Register>();
3961   Register input_register = locations->InAt(0).AsRegister<Register>();
3962   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3963   DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
3964   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3965 
3966   Register num = locations->GetTemp(0).AsRegister<Register>();
3967 
3968   __ leal(num, Address(input_register, abs_imm - 1));
3969   __ testl(input_register, input_register);
3970   __ cmovl(kGreaterEqual, num, input_register);
3971   int shift = CTZ(imm);
3972   __ sarl(num, Immediate(shift));
3973 
3974   if (imm < 0) {
3975     __ negl(num);
3976   }
3977 
3978   __ movl(out_register, num);
3979 }
3980 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3981 void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3982   DCHECK(instruction->IsDiv() || instruction->IsRem());
3983 
3984   LocationSummary* locations = instruction->GetLocations();
3985   int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3986 
3987   Register eax = locations->InAt(0).AsRegister<Register>();
3988   Register out = locations->Out().AsRegister<Register>();
3989   Register num;
3990   Register edx;
3991 
3992   if (instruction->IsDiv()) {
3993     edx = locations->GetTemp(0).AsRegister<Register>();
3994     num = locations->GetTemp(1).AsRegister<Register>();
3995   } else {
3996     edx = locations->Out().AsRegister<Register>();
3997     num = locations->GetTemp(0).AsRegister<Register>();
3998   }
3999 
4000   DCHECK_EQ(EAX, eax);
4001   DCHECK_EQ(EDX, edx);
4002   if (instruction->IsDiv()) {
4003     DCHECK_EQ(EAX, out);
4004   } else {
4005     DCHECK_EQ(EDX, out);
4006   }
4007 
4008   int64_t magic;
4009   int shift;
4010   CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
4011 
4012   // Save the numerator.
4013   __ movl(num, eax);
4014 
4015   // EAX = magic
4016   __ movl(eax, Immediate(magic));
4017 
4018   // EDX:EAX = magic * numerator
4019   __ imull(num);
4020 
4021   if (imm > 0 && magic < 0) {
4022     // EDX += num
4023     __ addl(edx, num);
4024   } else if (imm < 0 && magic > 0) {
4025     __ subl(edx, num);
4026   }
4027 
4028   // Shift if needed.
4029   if (shift != 0) {
4030     __ sarl(edx, Immediate(shift));
4031   }
4032 
4033   // EDX += 1 if EDX < 0
4034   __ movl(eax, edx);
4035   __ shrl(edx, Immediate(31));
4036   __ addl(edx, eax);
4037 
4038   if (instruction->IsRem()) {
4039     __ movl(eax, num);
4040     __ imull(edx, Immediate(imm));
4041     __ subl(eax, edx);
4042     __ movl(edx, eax);
4043   } else {
4044     __ movl(eax, edx);
4045   }
4046 }
4047 
GenerateDivRemIntegral(HBinaryOperation * instruction)4048 void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
4049   DCHECK(instruction->IsDiv() || instruction->IsRem());
4050 
4051   LocationSummary* locations = instruction->GetLocations();
4052   Location out = locations->Out();
4053   Location first = locations->InAt(0);
4054   Location second = locations->InAt(1);
4055   bool is_div = instruction->IsDiv();
4056 
4057   switch (instruction->GetResultType()) {
4058     case DataType::Type::kInt32: {
4059       DCHECK_EQ(EAX, first.AsRegister<Register>());
4060       DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
4061 
4062       if (second.IsConstant()) {
4063         int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
4064 
4065         if (imm == 0) {
4066           // Do not generate anything for 0. DivZeroCheck would forbid any generated code.
4067         } else if (imm == 1 || imm == -1) {
4068           DivRemOneOrMinusOne(instruction);
4069         } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4070           if (is_div) {
4071             DivByPowerOfTwo(instruction->AsDiv());
4072           } else {
4073             RemByPowerOfTwo(instruction->AsRem());
4074           }
4075         } else {
4076           DCHECK(imm <= -2 || imm >= 2);
4077           GenerateDivRemWithAnyConstant(instruction);
4078         }
4079       } else {
4080         SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) DivRemMinusOneSlowPathX86(
4081             instruction, out.AsRegister<Register>(), is_div);
4082         codegen_->AddSlowPath(slow_path);
4083 
4084         Register second_reg = second.AsRegister<Register>();
4085         // 0x80000000/-1 triggers an arithmetic exception!
4086         // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
4087         // it's safe to just use negl instead of more complex comparisons.
4088 
4089         __ cmpl(second_reg, Immediate(-1));
4090         __ j(kEqual, slow_path->GetEntryLabel());
4091 
4092         // edx:eax <- sign-extended of eax
4093         __ cdq();
4094         // eax = quotient, edx = remainder
4095         __ idivl(second_reg);
4096         __ Bind(slow_path->GetExitLabel());
4097       }
4098       break;
4099     }
4100 
4101     case DataType::Type::kInt64: {
4102       InvokeRuntimeCallingConvention calling_convention;
4103       DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
4104       DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
4105       DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
4106       DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
4107       DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
4108       DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
4109 
4110       if (is_div) {
4111         codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
4112         CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4113       } else {
4114         codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
4115         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
4116       }
4117       break;
4118     }
4119 
4120     default:
4121       LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
4122   }
4123 }
4124 
VisitDiv(HDiv * div)4125 void LocationsBuilderX86::VisitDiv(HDiv* div) {
4126   LocationSummary::CallKind call_kind = (div->GetResultType() == DataType::Type::kInt64)
4127       ? LocationSummary::kCallOnMainOnly
4128       : LocationSummary::kNoCall;
4129   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
4130 
4131   switch (div->GetResultType()) {
4132     case DataType::Type::kInt32: {
4133       locations->SetInAt(0, Location::RegisterLocation(EAX));
4134       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
4135       locations->SetOut(Location::SameAsFirstInput());
4136       // Intel uses edx:eax as the dividend.
4137       locations->AddTemp(Location::RegisterLocation(EDX));
4138       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
4139       // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
4140       // output and request another temp.
4141       if (div->InputAt(1)->IsIntConstant()) {
4142         locations->AddTemp(Location::RequiresRegister());
4143       }
4144       break;
4145     }
4146     case DataType::Type::kInt64: {
4147       InvokeRuntimeCallingConvention calling_convention;
4148       locations->SetInAt(0, Location::RegisterPairLocation(
4149           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4150       locations->SetInAt(1, Location::RegisterPairLocation(
4151           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4152       // Runtime helper puts the result in EAX, EDX.
4153       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
4154       break;
4155     }
4156     case DataType::Type::kFloat32:
4157     case DataType::Type::kFloat64: {
4158       locations->SetInAt(0, Location::RequiresFpuRegister());
4159       if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
4160         DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
4161       } else if (div->InputAt(1)->IsConstant()) {
4162         locations->SetInAt(1, Location::RequiresFpuRegister());
4163       } else {
4164         locations->SetInAt(1, Location::Any());
4165       }
4166       locations->SetOut(Location::SameAsFirstInput());
4167       break;
4168     }
4169 
4170     default:
4171       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4172   }
4173 }
4174 
VisitDiv(HDiv * div)4175 void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
4176   LocationSummary* locations = div->GetLocations();
4177   Location first = locations->InAt(0);
4178   Location second = locations->InAt(1);
4179 
4180   switch (div->GetResultType()) {
4181     case DataType::Type::kInt32:
4182     case DataType::Type::kInt64: {
4183       GenerateDivRemIntegral(div);
4184       break;
4185     }
4186 
4187     case DataType::Type::kFloat32: {
4188       if (second.IsFpuRegister()) {
4189         __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
4190       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
4191         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
4192         DCHECK(const_area->IsEmittedAtUseSite());
4193         __ divss(first.AsFpuRegister<XmmRegister>(),
4194                  codegen_->LiteralFloatAddress(
4195                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
4196                    const_area->GetBaseMethodAddress(),
4197                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
4198       } else {
4199         DCHECK(second.IsStackSlot());
4200         __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
4201       }
4202       break;
4203     }
4204 
4205     case DataType::Type::kFloat64: {
4206       if (second.IsFpuRegister()) {
4207         __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
4208       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
4209         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
4210         DCHECK(const_area->IsEmittedAtUseSite());
4211         __ divsd(first.AsFpuRegister<XmmRegister>(),
4212                  codegen_->LiteralDoubleAddress(
4213                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
4214                      const_area->GetBaseMethodAddress(),
4215                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
4216       } else {
4217         DCHECK(second.IsDoubleStackSlot());
4218         __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
4219       }
4220       break;
4221     }
4222 
4223     default:
4224       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4225   }
4226 }
4227 
VisitRem(HRem * rem)4228 void LocationsBuilderX86::VisitRem(HRem* rem) {
4229   DataType::Type type = rem->GetResultType();
4230 
4231   LocationSummary::CallKind call_kind = (rem->GetResultType() == DataType::Type::kInt64)
4232       ? LocationSummary::kCallOnMainOnly
4233       : LocationSummary::kNoCall;
4234   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
4235 
4236   switch (type) {
4237     case DataType::Type::kInt32: {
4238       locations->SetInAt(0, Location::RegisterLocation(EAX));
4239       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
4240       locations->SetOut(Location::RegisterLocation(EDX));
4241       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
4242       // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
4243       // output and request another temp.
4244       if (rem->InputAt(1)->IsIntConstant()) {
4245         locations->AddTemp(Location::RequiresRegister());
4246       }
4247       break;
4248     }
4249     case DataType::Type::kInt64: {
4250       InvokeRuntimeCallingConvention calling_convention;
4251       locations->SetInAt(0, Location::RegisterPairLocation(
4252           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4253       locations->SetInAt(1, Location::RegisterPairLocation(
4254           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4255       // Runtime helper puts the result in EAX, EDX.
4256       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
4257       break;
4258     }
4259     case DataType::Type::kFloat64:
4260     case DataType::Type::kFloat32: {
4261       locations->SetInAt(0, Location::Any());
4262       locations->SetInAt(1, Location::Any());
4263       locations->SetOut(Location::RequiresFpuRegister());
4264       locations->AddTemp(Location::RegisterLocation(EAX));
4265       break;
4266     }
4267 
4268     default:
4269       LOG(FATAL) << "Unexpected rem type " << type;
4270   }
4271 }
4272 
VisitRem(HRem * rem)4273 void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
4274   DataType::Type type = rem->GetResultType();
4275   switch (type) {
4276     case DataType::Type::kInt32:
4277     case DataType::Type::kInt64: {
4278       GenerateDivRemIntegral(rem);
4279       break;
4280     }
4281     case DataType::Type::kFloat32:
4282     case DataType::Type::kFloat64: {
4283       GenerateRemFP(rem);
4284       break;
4285     }
4286     default:
4287       LOG(FATAL) << "Unexpected rem type " << type;
4288   }
4289 }
4290 
CreateMinMaxLocations(ArenaAllocator * allocator,HBinaryOperation * minmax)4291 static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
4292   LocationSummary* locations = new (allocator) LocationSummary(minmax);
4293   switch (minmax->GetResultType()) {
4294     case DataType::Type::kInt32:
4295       locations->SetInAt(0, Location::RequiresRegister());
4296       locations->SetInAt(1, Location::RequiresRegister());
4297       locations->SetOut(Location::SameAsFirstInput());
4298       break;
4299     case DataType::Type::kInt64:
4300       locations->SetInAt(0, Location::RequiresRegister());
4301       locations->SetInAt(1, Location::RequiresRegister());
4302       locations->SetOut(Location::SameAsFirstInput());
4303       // Register to use to perform a long subtract to set cc.
4304       locations->AddTemp(Location::RequiresRegister());
4305       break;
4306     case DataType::Type::kFloat32:
4307       locations->SetInAt(0, Location::RequiresFpuRegister());
4308       locations->SetInAt(1, Location::RequiresFpuRegister());
4309       locations->SetOut(Location::SameAsFirstInput());
4310       locations->AddTemp(Location::RequiresRegister());
4311       break;
4312     case DataType::Type::kFloat64:
4313       locations->SetInAt(0, Location::RequiresFpuRegister());
4314       locations->SetInAt(1, Location::RequiresFpuRegister());
4315       locations->SetOut(Location::SameAsFirstInput());
4316       break;
4317     default:
4318       LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
4319   }
4320 }
4321 
GenerateMinMaxInt(LocationSummary * locations,bool is_min,DataType::Type type)4322 void InstructionCodeGeneratorX86::GenerateMinMaxInt(LocationSummary* locations,
4323                                                     bool is_min,
4324                                                     DataType::Type type) {
4325   Location op1_loc = locations->InAt(0);
4326   Location op2_loc = locations->InAt(1);
4327 
4328   // Shortcut for same input locations.
4329   if (op1_loc.Equals(op2_loc)) {
4330     // Can return immediately, as op1_loc == out_loc.
4331     // Note: if we ever support separate registers, e.g., output into memory, we need to check for
4332     //       a copy here.
4333     DCHECK(locations->Out().Equals(op1_loc));
4334     return;
4335   }
4336 
4337   if (type == DataType::Type::kInt64) {
4338     // Need to perform a subtract to get the sign right.
4339     // op1 is already in the same location as the output.
4340     Location output = locations->Out();
4341     Register output_lo = output.AsRegisterPairLow<Register>();
4342     Register output_hi = output.AsRegisterPairHigh<Register>();
4343 
4344     Register op2_lo = op2_loc.AsRegisterPairLow<Register>();
4345     Register op2_hi = op2_loc.AsRegisterPairHigh<Register>();
4346 
4347     // The comparison is performed by subtracting the second operand from
4348     // the first operand and then setting the status flags in the same
4349     // manner as the SUB instruction."
4350     __ cmpl(output_lo, op2_lo);
4351 
4352     // Now use a temp and the borrow to finish the subtraction of op2_hi.
4353     Register temp = locations->GetTemp(0).AsRegister<Register>();
4354     __ movl(temp, output_hi);
4355     __ sbbl(temp, op2_hi);
4356 
4357     // Now the condition code is correct.
4358     Condition cond = is_min ? Condition::kGreaterEqual : Condition::kLess;
4359     __ cmovl(cond, output_lo, op2_lo);
4360     __ cmovl(cond, output_hi, op2_hi);
4361   } else {
4362     DCHECK_EQ(type, DataType::Type::kInt32);
4363     Register out = locations->Out().AsRegister<Register>();
4364     Register op2 = op2_loc.AsRegister<Register>();
4365 
4366     //  (out := op1)
4367     //  out <=? op2
4368     //  if out is min jmp done
4369     //  out := op2
4370     // done:
4371 
4372     __ cmpl(out, op2);
4373     Condition cond = is_min ? Condition::kGreater : Condition::kLess;
4374     __ cmovl(cond, out, op2);
4375   }
4376 }
4377 
GenerateMinMaxFP(LocationSummary * locations,bool is_min,DataType::Type type)4378 void InstructionCodeGeneratorX86::GenerateMinMaxFP(LocationSummary* locations,
4379                                                    bool is_min,
4380                                                    DataType::Type type) {
4381   Location op1_loc = locations->InAt(0);
4382   Location op2_loc = locations->InAt(1);
4383   Location out_loc = locations->Out();
4384   XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
4385 
4386   // Shortcut for same input locations.
4387   if (op1_loc.Equals(op2_loc)) {
4388     DCHECK(out_loc.Equals(op1_loc));
4389     return;
4390   }
4391 
4392   //  (out := op1)
4393   //  out <=? op2
4394   //  if Nan jmp Nan_label
4395   //  if out is min jmp done
4396   //  if op2 is min jmp op2_label
4397   //  handle -0/+0
4398   //  jmp done
4399   // Nan_label:
4400   //  out := NaN
4401   // op2_label:
4402   //  out := op2
4403   // done:
4404   //
4405   // This removes one jmp, but needs to copy one input (op1) to out.
4406   //
4407   // TODO: This is straight from Quick (except literal pool). Make NaN an out-of-line slowpath?
4408 
4409   XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>();
4410 
4411   NearLabel nan, done, op2_label;
4412   if (type == DataType::Type::kFloat64) {
4413     __ ucomisd(out, op2);
4414   } else {
4415     DCHECK_EQ(type, DataType::Type::kFloat32);
4416     __ ucomiss(out, op2);
4417   }
4418 
4419   __ j(Condition::kParityEven, &nan);
4420 
4421   __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label);
4422   __ j(is_min ? Condition::kBelow : Condition::kAbove, &done);
4423 
4424   // Handle 0.0/-0.0.
4425   if (is_min) {
4426     if (type == DataType::Type::kFloat64) {
4427       __ orpd(out, op2);
4428     } else {
4429       __ orps(out, op2);
4430     }
4431   } else {
4432     if (type == DataType::Type::kFloat64) {
4433       __ andpd(out, op2);
4434     } else {
4435       __ andps(out, op2);
4436     }
4437   }
4438   __ jmp(&done);
4439 
4440   // NaN handling.
4441   __ Bind(&nan);
4442   if (type == DataType::Type::kFloat64) {
4443     // TODO: Use a constant from the constant table (requires extra input).
4444     __ LoadLongConstant(out, kDoubleNaN);
4445   } else {
4446     Register constant = locations->GetTemp(0).AsRegister<Register>();
4447     __ movl(constant, Immediate(kFloatNaN));
4448     __ movd(out, constant);
4449   }
4450   __ jmp(&done);
4451 
4452   // out := op2;
4453   __ Bind(&op2_label);
4454   if (type == DataType::Type::kFloat64) {
4455     __ movsd(out, op2);
4456   } else {
4457     __ movss(out, op2);
4458   }
4459 
4460   // Done.
4461   __ Bind(&done);
4462 }
4463 
GenerateMinMax(HBinaryOperation * minmax,bool is_min)4464 void InstructionCodeGeneratorX86::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
4465   DataType::Type type = minmax->GetResultType();
4466   switch (type) {
4467     case DataType::Type::kInt32:
4468     case DataType::Type::kInt64:
4469       GenerateMinMaxInt(minmax->GetLocations(), is_min, type);
4470       break;
4471     case DataType::Type::kFloat32:
4472     case DataType::Type::kFloat64:
4473       GenerateMinMaxFP(minmax->GetLocations(), is_min, type);
4474       break;
4475     default:
4476       LOG(FATAL) << "Unexpected type for HMinMax " << type;
4477   }
4478 }
4479 
VisitMin(HMin * min)4480 void LocationsBuilderX86::VisitMin(HMin* min) {
4481   CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
4482 }
4483 
VisitMin(HMin * min)4484 void InstructionCodeGeneratorX86::VisitMin(HMin* min) {
4485   GenerateMinMax(min, /*is_min*/ true);
4486 }
4487 
VisitMax(HMax * max)4488 void LocationsBuilderX86::VisitMax(HMax* max) {
4489   CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
4490 }
4491 
VisitMax(HMax * max)4492 void InstructionCodeGeneratorX86::VisitMax(HMax* max) {
4493   GenerateMinMax(max, /*is_min*/ false);
4494 }
4495 
VisitAbs(HAbs * abs)4496 void LocationsBuilderX86::VisitAbs(HAbs* abs) {
4497   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
4498   switch (abs->GetResultType()) {
4499     case DataType::Type::kInt32:
4500       locations->SetInAt(0, Location::RegisterLocation(EAX));
4501       locations->SetOut(Location::SameAsFirstInput());
4502       locations->AddTemp(Location::RegisterLocation(EDX));
4503       break;
4504     case DataType::Type::kInt64:
4505       locations->SetInAt(0, Location::RequiresRegister());
4506       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4507       locations->AddTemp(Location::RequiresRegister());
4508       break;
4509     case DataType::Type::kFloat32:
4510       locations->SetInAt(0, Location::RequiresFpuRegister());
4511       locations->SetOut(Location::SameAsFirstInput());
4512       locations->AddTemp(Location::RequiresFpuRegister());
4513       locations->AddTemp(Location::RequiresRegister());
4514       break;
4515     case DataType::Type::kFloat64:
4516       locations->SetInAt(0, Location::RequiresFpuRegister());
4517       locations->SetOut(Location::SameAsFirstInput());
4518       locations->AddTemp(Location::RequiresFpuRegister());
4519       break;
4520     default:
4521       LOG(FATAL) << "Unexpected type for HAbs " << abs->GetResultType();
4522   }
4523 }
4524 
VisitAbs(HAbs * abs)4525 void InstructionCodeGeneratorX86::VisitAbs(HAbs* abs) {
4526   LocationSummary* locations = abs->GetLocations();
4527   switch (abs->GetResultType()) {
4528     case DataType::Type::kInt32: {
4529       Register out = locations->Out().AsRegister<Register>();
4530       DCHECK_EQ(out, EAX);
4531       Register temp = locations->GetTemp(0).AsRegister<Register>();
4532       DCHECK_EQ(temp, EDX);
4533       // Sign extend EAX into EDX.
4534       __ cdq();
4535       // XOR EAX with sign.
4536       __ xorl(EAX, EDX);
4537       // Subtract out sign to correct.
4538       __ subl(EAX, EDX);
4539       // The result is in EAX.
4540       break;
4541     }
4542     case DataType::Type::kInt64: {
4543       Location input = locations->InAt(0);
4544       Register input_lo = input.AsRegisterPairLow<Register>();
4545       Register input_hi = input.AsRegisterPairHigh<Register>();
4546       Location output = locations->Out();
4547       Register output_lo = output.AsRegisterPairLow<Register>();
4548       Register output_hi = output.AsRegisterPairHigh<Register>();
4549       Register temp = locations->GetTemp(0).AsRegister<Register>();
4550       // Compute the sign into the temporary.
4551       __ movl(temp, input_hi);
4552       __ sarl(temp, Immediate(31));
4553       // Store the sign into the output.
4554       __ movl(output_lo, temp);
4555       __ movl(output_hi, temp);
4556       // XOR the input to the output.
4557       __ xorl(output_lo, input_lo);
4558       __ xorl(output_hi, input_hi);
4559       // Subtract the sign.
4560       __ subl(output_lo, temp);
4561       __ sbbl(output_hi, temp);
4562       break;
4563     }
4564     case DataType::Type::kFloat32: {
4565       XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
4566       XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4567       Register constant = locations->GetTemp(1).AsRegister<Register>();
4568       __ movl(constant, Immediate(INT32_C(0x7FFFFFFF)));
4569       __ movd(temp, constant);
4570       __ andps(out, temp);
4571       break;
4572     }
4573     case DataType::Type::kFloat64: {
4574       XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
4575       XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4576       // TODO: Use a constant from the constant table (requires extra input).
4577       __ LoadLongConstant(temp, INT64_C(0x7FFFFFFFFFFFFFFF));
4578       __ andpd(out, temp);
4579       break;
4580     }
4581     default:
4582       LOG(FATAL) << "Unexpected type for HAbs " << abs->GetResultType();
4583   }
4584 }
4585 
VisitDivZeroCheck(HDivZeroCheck * instruction)4586 void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4587   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4588   switch (instruction->GetType()) {
4589     case DataType::Type::kBool:
4590     case DataType::Type::kUint8:
4591     case DataType::Type::kInt8:
4592     case DataType::Type::kUint16:
4593     case DataType::Type::kInt16:
4594     case DataType::Type::kInt32: {
4595       locations->SetInAt(0, Location::Any());
4596       break;
4597     }
4598     case DataType::Type::kInt64: {
4599       locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
4600       if (!instruction->IsConstant()) {
4601         locations->AddTemp(Location::RequiresRegister());
4602       }
4603       break;
4604     }
4605     default:
4606       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
4607   }
4608 }
4609 
VisitDivZeroCheck(HDivZeroCheck * instruction)4610 void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4611   SlowPathCode* slow_path =
4612       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathX86(instruction);
4613   codegen_->AddSlowPath(slow_path);
4614 
4615   LocationSummary* locations = instruction->GetLocations();
4616   Location value = locations->InAt(0);
4617 
4618   switch (instruction->GetType()) {
4619     case DataType::Type::kBool:
4620     case DataType::Type::kUint8:
4621     case DataType::Type::kInt8:
4622     case DataType::Type::kUint16:
4623     case DataType::Type::kInt16:
4624     case DataType::Type::kInt32: {
4625       if (value.IsRegister()) {
4626         __ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
4627         __ j(kEqual, slow_path->GetEntryLabel());
4628       } else if (value.IsStackSlot()) {
4629         __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
4630         __ j(kEqual, slow_path->GetEntryLabel());
4631       } else {
4632         DCHECK(value.IsConstant()) << value;
4633         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
4634           __ jmp(slow_path->GetEntryLabel());
4635         }
4636       }
4637       break;
4638     }
4639     case DataType::Type::kInt64: {
4640       if (value.IsRegisterPair()) {
4641         Register temp = locations->GetTemp(0).AsRegister<Register>();
4642         __ movl(temp, value.AsRegisterPairLow<Register>());
4643         __ orl(temp, value.AsRegisterPairHigh<Register>());
4644         __ j(kEqual, slow_path->GetEntryLabel());
4645       } else {
4646         DCHECK(value.IsConstant()) << value;
4647         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
4648           __ jmp(slow_path->GetEntryLabel());
4649         }
4650       }
4651       break;
4652     }
4653     default:
4654       LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
4655   }
4656 }
4657 
HandleShift(HBinaryOperation * op)4658 void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
4659   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
4660 
4661   LocationSummary* locations =
4662       new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall);
4663 
4664   switch (op->GetResultType()) {
4665     case DataType::Type::kInt32:
4666     case DataType::Type::kInt64: {
4667       // Can't have Location::Any() and output SameAsFirstInput()
4668       locations->SetInAt(0, Location::RequiresRegister());
4669       // The shift count needs to be in CL or a constant.
4670       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
4671       locations->SetOut(Location::SameAsFirstInput());
4672       break;
4673     }
4674     default:
4675       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
4676   }
4677 }
4678 
HandleShift(HBinaryOperation * op)4679 void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
4680   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
4681 
4682   LocationSummary* locations = op->GetLocations();
4683   Location first = locations->InAt(0);
4684   Location second = locations->InAt(1);
4685   DCHECK(first.Equals(locations->Out()));
4686 
4687   switch (op->GetResultType()) {
4688     case DataType::Type::kInt32: {
4689       DCHECK(first.IsRegister());
4690       Register first_reg = first.AsRegister<Register>();
4691       if (second.IsRegister()) {
4692         Register second_reg = second.AsRegister<Register>();
4693         DCHECK_EQ(ECX, second_reg);
4694         if (op->IsShl()) {
4695           __ shll(first_reg, second_reg);
4696         } else if (op->IsShr()) {
4697           __ sarl(first_reg, second_reg);
4698         } else {
4699           __ shrl(first_reg, second_reg);
4700         }
4701       } else {
4702         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
4703         if (shift == 0) {
4704           return;
4705         }
4706         Immediate imm(shift);
4707         if (op->IsShl()) {
4708           __ shll(first_reg, imm);
4709         } else if (op->IsShr()) {
4710           __ sarl(first_reg, imm);
4711         } else {
4712           __ shrl(first_reg, imm);
4713         }
4714       }
4715       break;
4716     }
4717     case DataType::Type::kInt64: {
4718       if (second.IsRegister()) {
4719         Register second_reg = second.AsRegister<Register>();
4720         DCHECK_EQ(ECX, second_reg);
4721         if (op->IsShl()) {
4722           GenerateShlLong(first, second_reg);
4723         } else if (op->IsShr()) {
4724           GenerateShrLong(first, second_reg);
4725         } else {
4726           GenerateUShrLong(first, second_reg);
4727         }
4728       } else {
4729         // Shift by a constant.
4730         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
4731         // Nothing to do if the shift is 0, as the input is already the output.
4732         if (shift != 0) {
4733           if (op->IsShl()) {
4734             GenerateShlLong(first, shift);
4735           } else if (op->IsShr()) {
4736             GenerateShrLong(first, shift);
4737           } else {
4738             GenerateUShrLong(first, shift);
4739           }
4740         }
4741       }
4742       break;
4743     }
4744     default:
4745       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
4746   }
4747 }
4748 
GenerateShlLong(const Location & loc,int shift)4749 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
4750   Register low = loc.AsRegisterPairLow<Register>();
4751   Register high = loc.AsRegisterPairHigh<Register>();
4752   if (shift == 1) {
4753     // This is just an addition.
4754     __ addl(low, low);
4755     __ adcl(high, high);
4756   } else if (shift == 32) {
4757     // Shift by 32 is easy. High gets low, and low gets 0.
4758     codegen_->EmitParallelMoves(
4759         loc.ToLow(),
4760         loc.ToHigh(),
4761         DataType::Type::kInt32,
4762         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
4763         loc.ToLow(),
4764         DataType::Type::kInt32);
4765   } else if (shift > 32) {
4766     // Low part becomes 0.  High part is low part << (shift-32).
4767     __ movl(high, low);
4768     __ shll(high, Immediate(shift - 32));
4769     __ xorl(low, low);
4770   } else {
4771     // Between 1 and 31.
4772     __ shld(high, low, Immediate(shift));
4773     __ shll(low, Immediate(shift));
4774   }
4775 }
4776 
GenerateShlLong(const Location & loc,Register shifter)4777 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
4778   NearLabel done;
4779   __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
4780   __ shll(loc.AsRegisterPairLow<Register>(), shifter);
4781   __ testl(shifter, Immediate(32));
4782   __ j(kEqual, &done);
4783   __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
4784   __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
4785   __ Bind(&done);
4786 }
4787 
GenerateShrLong(const Location & loc,int shift)4788 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
4789   Register low = loc.AsRegisterPairLow<Register>();
4790   Register high = loc.AsRegisterPairHigh<Register>();
4791   if (shift == 32) {
4792     // Need to copy the sign.
4793     DCHECK_NE(low, high);
4794     __ movl(low, high);
4795     __ sarl(high, Immediate(31));
4796   } else if (shift > 32) {
4797     DCHECK_NE(low, high);
4798     // High part becomes sign. Low part is shifted by shift - 32.
4799     __ movl(low, high);
4800     __ sarl(high, Immediate(31));
4801     __ sarl(low, Immediate(shift - 32));
4802   } else {
4803     // Between 1 and 31.
4804     __ shrd(low, high, Immediate(shift));
4805     __ sarl(high, Immediate(shift));
4806   }
4807 }
4808 
GenerateShrLong(const Location & loc,Register shifter)4809 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
4810   NearLabel done;
4811   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
4812   __ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
4813   __ testl(shifter, Immediate(32));
4814   __ j(kEqual, &done);
4815   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
4816   __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
4817   __ Bind(&done);
4818 }
4819 
GenerateUShrLong(const Location & loc,int shift)4820 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
4821   Register low = loc.AsRegisterPairLow<Register>();
4822   Register high = loc.AsRegisterPairHigh<Register>();
4823   if (shift == 32) {
4824     // Shift by 32 is easy. Low gets high, and high gets 0.
4825     codegen_->EmitParallelMoves(
4826         loc.ToHigh(),
4827         loc.ToLow(),
4828         DataType::Type::kInt32,
4829         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
4830         loc.ToHigh(),
4831         DataType::Type::kInt32);
4832   } else if (shift > 32) {
4833     // Low part is high >> (shift - 32). High part becomes 0.
4834     __ movl(low, high);
4835     __ shrl(low, Immediate(shift - 32));
4836     __ xorl(high, high);
4837   } else {
4838     // Between 1 and 31.
4839     __ shrd(low, high, Immediate(shift));
4840     __ shrl(high, Immediate(shift));
4841   }
4842 }
4843 
GenerateUShrLong(const Location & loc,Register shifter)4844 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
4845   NearLabel done;
4846   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
4847   __ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
4848   __ testl(shifter, Immediate(32));
4849   __ j(kEqual, &done);
4850   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
4851   __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
4852   __ Bind(&done);
4853 }
4854 
VisitRor(HRor * ror)4855 void LocationsBuilderX86::VisitRor(HRor* ror) {
4856   LocationSummary* locations =
4857       new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall);
4858 
4859   switch (ror->GetResultType()) {
4860     case DataType::Type::kInt64:
4861       // Add the temporary needed.
4862       locations->AddTemp(Location::RequiresRegister());
4863       FALLTHROUGH_INTENDED;
4864     case DataType::Type::kInt32:
4865       locations->SetInAt(0, Location::RequiresRegister());
4866       // The shift count needs to be in CL (unless it is a constant).
4867       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
4868       locations->SetOut(Location::SameAsFirstInput());
4869       break;
4870     default:
4871       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
4872       UNREACHABLE();
4873   }
4874 }
4875 
VisitRor(HRor * ror)4876 void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
4877   LocationSummary* locations = ror->GetLocations();
4878   Location first = locations->InAt(0);
4879   Location second = locations->InAt(1);
4880 
4881   if (ror->GetResultType() == DataType::Type::kInt32) {
4882     Register first_reg = first.AsRegister<Register>();
4883     if (second.IsRegister()) {
4884       Register second_reg = second.AsRegister<Register>();
4885       __ rorl(first_reg, second_reg);
4886     } else {
4887       Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
4888       __ rorl(first_reg, imm);
4889     }
4890     return;
4891   }
4892 
4893   DCHECK_EQ(ror->GetResultType(), DataType::Type::kInt64);
4894   Register first_reg_lo = first.AsRegisterPairLow<Register>();
4895   Register first_reg_hi = first.AsRegisterPairHigh<Register>();
4896   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
4897   if (second.IsRegister()) {
4898     Register second_reg = second.AsRegister<Register>();
4899     DCHECK_EQ(second_reg, ECX);
4900     __ movl(temp_reg, first_reg_hi);
4901     __ shrd(first_reg_hi, first_reg_lo, second_reg);
4902     __ shrd(first_reg_lo, temp_reg, second_reg);
4903     __ movl(temp_reg, first_reg_hi);
4904     __ testl(second_reg, Immediate(32));
4905     __ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
4906     __ cmovl(kNotEqual, first_reg_lo, temp_reg);
4907   } else {
4908     int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
4909     if (shift_amt == 0) {
4910       // Already fine.
4911       return;
4912     }
4913     if (shift_amt == 32) {
4914       // Just swap.
4915       __ movl(temp_reg, first_reg_lo);
4916       __ movl(first_reg_lo, first_reg_hi);
4917       __ movl(first_reg_hi, temp_reg);
4918       return;
4919     }
4920 
4921     Immediate imm(shift_amt);
4922     // Save the constents of the low value.
4923     __ movl(temp_reg, first_reg_lo);
4924 
4925     // Shift right into low, feeding bits from high.
4926     __ shrd(first_reg_lo, first_reg_hi, imm);
4927 
4928     // Shift right into high, feeding bits from the original low.
4929     __ shrd(first_reg_hi, temp_reg, imm);
4930 
4931     // Swap if needed.
4932     if (shift_amt > 32) {
4933       __ movl(temp_reg, first_reg_lo);
4934       __ movl(first_reg_lo, first_reg_hi);
4935       __ movl(first_reg_hi, temp_reg);
4936     }
4937   }
4938 }
4939 
VisitShl(HShl * shl)4940 void LocationsBuilderX86::VisitShl(HShl* shl) {
4941   HandleShift(shl);
4942 }
4943 
VisitShl(HShl * shl)4944 void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
4945   HandleShift(shl);
4946 }
4947 
VisitShr(HShr * shr)4948 void LocationsBuilderX86::VisitShr(HShr* shr) {
4949   HandleShift(shr);
4950 }
4951 
VisitShr(HShr * shr)4952 void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
4953   HandleShift(shr);
4954 }
4955 
VisitUShr(HUShr * ushr)4956 void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
4957   HandleShift(ushr);
4958 }
4959 
VisitUShr(HUShr * ushr)4960 void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
4961   HandleShift(ushr);
4962 }
4963 
VisitNewInstance(HNewInstance * instruction)4964 void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
4965   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
4966       instruction, LocationSummary::kCallOnMainOnly);
4967   locations->SetOut(Location::RegisterLocation(EAX));
4968   InvokeRuntimeCallingConvention calling_convention;
4969   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4970 }
4971 
VisitNewInstance(HNewInstance * instruction)4972 void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
4973   codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
4974   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
4975   DCHECK(!codegen_->IsLeafMethod());
4976 }
4977 
VisitNewArray(HNewArray * instruction)4978 void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
4979   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
4980       instruction, LocationSummary::kCallOnMainOnly);
4981   locations->SetOut(Location::RegisterLocation(EAX));
4982   InvokeRuntimeCallingConvention calling_convention;
4983   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4984   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
4985 }
4986 
VisitNewArray(HNewArray * instruction)4987 void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
4988   // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
4989   QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
4990   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
4991   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
4992   DCHECK(!codegen_->IsLeafMethod());
4993 }
4994 
VisitParameterValue(HParameterValue * instruction)4995 void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
4996   LocationSummary* locations =
4997       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
4998   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4999   if (location.IsStackSlot()) {
5000     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5001   } else if (location.IsDoubleStackSlot()) {
5002     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5003   }
5004   locations->SetOut(location);
5005 }
5006 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5007 void InstructionCodeGeneratorX86::VisitParameterValue(
5008     HParameterValue* instruction ATTRIBUTE_UNUSED) {
5009 }
5010 
VisitCurrentMethod(HCurrentMethod * instruction)5011 void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
5012   LocationSummary* locations =
5013       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5014   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
5015 }
5016 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5017 void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5018 }
5019 
VisitClassTableGet(HClassTableGet * instruction)5020 void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
5021   LocationSummary* locations =
5022       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5023   locations->SetInAt(0, Location::RequiresRegister());
5024   locations->SetOut(Location::RequiresRegister());
5025 }
5026 
VisitClassTableGet(HClassTableGet * instruction)5027 void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
5028   LocationSummary* locations = instruction->GetLocations();
5029   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
5030     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
5031         instruction->GetIndex(), kX86PointerSize).SizeValue();
5032     __ movl(locations->Out().AsRegister<Register>(),
5033             Address(locations->InAt(0).AsRegister<Register>(), method_offset));
5034   } else {
5035     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
5036         instruction->GetIndex(), kX86PointerSize));
5037     __ movl(locations->Out().AsRegister<Register>(),
5038             Address(locations->InAt(0).AsRegister<Register>(),
5039                     mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
5040     // temp = temp->GetImtEntryAt(method_offset);
5041     __ movl(locations->Out().AsRegister<Register>(),
5042             Address(locations->Out().AsRegister<Register>(), method_offset));
5043   }
5044 }
5045 
VisitNot(HNot * not_)5046 void LocationsBuilderX86::VisitNot(HNot* not_) {
5047   LocationSummary* locations =
5048       new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall);
5049   locations->SetInAt(0, Location::RequiresRegister());
5050   locations->SetOut(Location::SameAsFirstInput());
5051 }
5052 
VisitNot(HNot * not_)5053 void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
5054   LocationSummary* locations = not_->GetLocations();
5055   Location in = locations->InAt(0);
5056   Location out = locations->Out();
5057   DCHECK(in.Equals(out));
5058   switch (not_->GetResultType()) {
5059     case DataType::Type::kInt32:
5060       __ notl(out.AsRegister<Register>());
5061       break;
5062 
5063     case DataType::Type::kInt64:
5064       __ notl(out.AsRegisterPairLow<Register>());
5065       __ notl(out.AsRegisterPairHigh<Register>());
5066       break;
5067 
5068     default:
5069       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
5070   }
5071 }
5072 
VisitBooleanNot(HBooleanNot * bool_not)5073 void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
5074   LocationSummary* locations =
5075       new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall);
5076   locations->SetInAt(0, Location::RequiresRegister());
5077   locations->SetOut(Location::SameAsFirstInput());
5078 }
5079 
VisitBooleanNot(HBooleanNot * bool_not)5080 void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
5081   LocationSummary* locations = bool_not->GetLocations();
5082   Location in = locations->InAt(0);
5083   Location out = locations->Out();
5084   DCHECK(in.Equals(out));
5085   __ xorl(out.AsRegister<Register>(), Immediate(1));
5086 }
5087 
VisitCompare(HCompare * compare)5088 void LocationsBuilderX86::VisitCompare(HCompare* compare) {
5089   LocationSummary* locations =
5090       new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
5091   switch (compare->InputAt(0)->GetType()) {
5092     case DataType::Type::kBool:
5093     case DataType::Type::kUint8:
5094     case DataType::Type::kInt8:
5095     case DataType::Type::kUint16:
5096     case DataType::Type::kInt16:
5097     case DataType::Type::kInt32:
5098     case DataType::Type::kInt64: {
5099       locations->SetInAt(0, Location::RequiresRegister());
5100       locations->SetInAt(1, Location::Any());
5101       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5102       break;
5103     }
5104     case DataType::Type::kFloat32:
5105     case DataType::Type::kFloat64: {
5106       locations->SetInAt(0, Location::RequiresFpuRegister());
5107       if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
5108         DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
5109       } else if (compare->InputAt(1)->IsConstant()) {
5110         locations->SetInAt(1, Location::RequiresFpuRegister());
5111       } else {
5112         locations->SetInAt(1, Location::Any());
5113       }
5114       locations->SetOut(Location::RequiresRegister());
5115       break;
5116     }
5117     default:
5118       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
5119   }
5120 }
5121 
VisitCompare(HCompare * compare)5122 void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
5123   LocationSummary* locations = compare->GetLocations();
5124   Register out = locations->Out().AsRegister<Register>();
5125   Location left = locations->InAt(0);
5126   Location right = locations->InAt(1);
5127 
5128   NearLabel less, greater, done;
5129   Condition less_cond = kLess;
5130 
5131   switch (compare->InputAt(0)->GetType()) {
5132     case DataType::Type::kBool:
5133     case DataType::Type::kUint8:
5134     case DataType::Type::kInt8:
5135     case DataType::Type::kUint16:
5136     case DataType::Type::kInt16:
5137     case DataType::Type::kInt32: {
5138       codegen_->GenerateIntCompare(left, right);
5139       break;
5140     }
5141     case DataType::Type::kInt64: {
5142       Register left_low = left.AsRegisterPairLow<Register>();
5143       Register left_high = left.AsRegisterPairHigh<Register>();
5144       int32_t val_low = 0;
5145       int32_t val_high = 0;
5146       bool right_is_const = false;
5147 
5148       if (right.IsConstant()) {
5149         DCHECK(right.GetConstant()->IsLongConstant());
5150         right_is_const = true;
5151         int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
5152         val_low = Low32Bits(val);
5153         val_high = High32Bits(val);
5154       }
5155 
5156       if (right.IsRegisterPair()) {
5157         __ cmpl(left_high, right.AsRegisterPairHigh<Register>());
5158       } else if (right.IsDoubleStackSlot()) {
5159         __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
5160       } else {
5161         DCHECK(right_is_const) << right;
5162         codegen_->Compare32BitValue(left_high, val_high);
5163       }
5164       __ j(kLess, &less);  // Signed compare.
5165       __ j(kGreater, &greater);  // Signed compare.
5166       if (right.IsRegisterPair()) {
5167         __ cmpl(left_low, right.AsRegisterPairLow<Register>());
5168       } else if (right.IsDoubleStackSlot()) {
5169         __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
5170       } else {
5171         DCHECK(right_is_const) << right;
5172         codegen_->Compare32BitValue(left_low, val_low);
5173       }
5174       less_cond = kBelow;  // for CF (unsigned).
5175       break;
5176     }
5177     case DataType::Type::kFloat32: {
5178       GenerateFPCompare(left, right, compare, false);
5179       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
5180       less_cond = kBelow;  // for CF (floats).
5181       break;
5182     }
5183     case DataType::Type::kFloat64: {
5184       GenerateFPCompare(left, right, compare, true);
5185       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
5186       less_cond = kBelow;  // for CF (floats).
5187       break;
5188     }
5189     default:
5190       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
5191   }
5192 
5193   __ movl(out, Immediate(0));
5194   __ j(kEqual, &done);
5195   __ j(less_cond, &less);
5196 
5197   __ Bind(&greater);
5198   __ movl(out, Immediate(1));
5199   __ jmp(&done);
5200 
5201   __ Bind(&less);
5202   __ movl(out, Immediate(-1));
5203 
5204   __ Bind(&done);
5205 }
5206 
VisitPhi(HPhi * instruction)5207 void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
5208   LocationSummary* locations =
5209       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5210   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5211     locations->SetInAt(i, Location::Any());
5212   }
5213   locations->SetOut(Location::Any());
5214 }
5215 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5216 void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5217   LOG(FATAL) << "Unreachable";
5218 }
5219 
GenerateMemoryBarrier(MemBarrierKind kind)5220 void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
5221   /*
5222    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
5223    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
5224    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
5225    */
5226   switch (kind) {
5227     case MemBarrierKind::kAnyAny: {
5228       MemoryFence();
5229       break;
5230     }
5231     case MemBarrierKind::kAnyStore:
5232     case MemBarrierKind::kLoadAny:
5233     case MemBarrierKind::kStoreStore: {
5234       // nop
5235       break;
5236     }
5237     case MemBarrierKind::kNTStoreStore:
5238       // Non-Temporal Store/Store needs an explicit fence.
5239       MemoryFence(/* non-temporal= */ true);
5240       break;
5241   }
5242 }
5243 
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)5244 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
5245       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
5246       ArtMethod* method ATTRIBUTE_UNUSED) {
5247   return desired_dispatch_info;
5248 }
5249 
GetInvokeExtraParameter(HInvoke * invoke,Register temp)5250 Register CodeGeneratorX86::GetInvokeExtraParameter(HInvoke* invoke, Register temp) {
5251   if (invoke->IsInvokeStaticOrDirect()) {
5252     return GetInvokeStaticOrDirectExtraParameter(invoke->AsInvokeStaticOrDirect(), temp);
5253   }
5254   DCHECK(invoke->IsInvokeInterface());
5255   Location location =
5256       invoke->GetLocations()->InAt(invoke->AsInvokeInterface()->GetSpecialInputIndex());
5257   return location.AsRegister<Register>();
5258 }
5259 
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,Register temp)5260 Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
5261                                                                  Register temp) {
5262   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
5263   if (!invoke->GetLocations()->Intrinsified()) {
5264     return location.AsRegister<Register>();
5265   }
5266   // For intrinsics we allow any location, so it may be on the stack.
5267   if (!location.IsRegister()) {
5268     __ movl(temp, Address(ESP, location.GetStackIndex()));
5269     return temp;
5270   }
5271   // For register locations, check if the register was saved. If so, get it from the stack.
5272   // Note: There is a chance that the register was saved but not overwritten, so we could
5273   // save one load. However, since this is just an intrinsic slow path we prefer this
5274   // simple and more robust approach rather that trying to determine if that's the case.
5275   SlowPathCode* slow_path = GetCurrentSlowPath();
5276   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
5277   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
5278     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
5279     __ movl(temp, Address(ESP, stack_offset));
5280     return temp;
5281   }
5282   return location.AsRegister<Register>();
5283 }
5284 
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)5285 void CodeGeneratorX86::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
5286   switch (load_kind) {
5287     case MethodLoadKind::kBootImageLinkTimePcRelative: {
5288       DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5289       Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>());
5290       __ leal(temp.AsRegister<Register>(),
5291               Address(base_reg, CodeGeneratorX86::kPlaceholder32BitOffset));
5292       RecordBootImageMethodPatch(invoke);
5293       break;
5294     }
5295     case MethodLoadKind::kBootImageRelRo: {
5296       size_t index = invoke->IsInvokeInterface()
5297           ? invoke->AsInvokeInterface()->GetSpecialInputIndex()
5298           : invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex();
5299       Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>());
5300       __ movl(temp.AsRegister<Register>(), Address(base_reg, kPlaceholder32BitOffset));
5301       RecordBootImageRelRoPatch(
5302           invoke->InputAt(index)->AsX86ComputeBaseMethodAddress(),
5303           GetBootImageOffset(invoke));
5304       break;
5305     }
5306     case MethodLoadKind::kBssEntry: {
5307       Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>());
5308       __ movl(temp.AsRegister<Register>(), Address(base_reg, kPlaceholder32BitOffset));
5309       RecordMethodBssEntryPatch(invoke);
5310       // No need for memory fence, thanks to the x86 memory model.
5311       break;
5312     }
5313     case MethodLoadKind::kJitDirectAddress: {
5314       __ movl(temp.AsRegister<Register>(),
5315               Immediate(reinterpret_cast32<uint32_t>(invoke->GetResolvedMethod())));
5316       break;
5317     }
5318     case MethodLoadKind::kRuntimeCall: {
5319       // Test situation, don't do anything.
5320       break;
5321     }
5322     default: {
5323       LOG(FATAL) << "Load kind should have already been handled " << load_kind;
5324       UNREACHABLE();
5325     }
5326   }
5327 }
5328 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)5329 void CodeGeneratorX86::GenerateStaticOrDirectCall(
5330     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
5331   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
5332   switch (invoke->GetMethodLoadKind()) {
5333     case MethodLoadKind::kStringInit: {
5334       // temp = thread->string_init_entrypoint
5335       uint32_t offset =
5336           GetThreadOffset<kX86PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
5337       __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(offset));
5338       break;
5339     }
5340     case MethodLoadKind::kRecursive: {
5341       callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
5342       break;
5343     }
5344     case MethodLoadKind::kRuntimeCall: {
5345       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
5346       return;  // No code pointer retrieval; the runtime performs the call directly.
5347     }
5348     case MethodLoadKind::kBootImageLinkTimePcRelative:
5349       // For kCallCriticalNative we skip loading the method and do the call directly.
5350       if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
5351         break;
5352       }
5353       FALLTHROUGH_INTENDED;
5354     default: {
5355       LoadMethod(invoke->GetMethodLoadKind(), callee_method, invoke);
5356     }
5357   }
5358 
5359   switch (invoke->GetCodePtrLocation()) {
5360     case CodePtrLocation::kCallSelf:
5361       DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
5362       __ call(GetFrameEntryLabel());
5363       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5364       break;
5365     case CodePtrLocation::kCallCriticalNative: {
5366       size_t out_frame_size =
5367           PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorX86,
5368                                     kNativeStackAlignment,
5369                                     GetCriticalNativeDirectCallFrameSize>(invoke);
5370       if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
5371         DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5372         Register base_reg = GetInvokeExtraParameter(invoke, temp.AsRegister<Register>());
5373         __ call(Address(base_reg, CodeGeneratorX86::kPlaceholder32BitOffset));
5374         RecordBootImageJniEntrypointPatch(invoke);
5375       } else {
5376         // (callee_method + offset_of_jni_entry_point)()
5377         __ call(Address(callee_method.AsRegister<Register>(),
5378                         ArtMethod::EntryPointFromJniOffset(kX86PointerSize).Int32Value()));
5379       }
5380       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5381       if (out_frame_size == 0u && DataType::IsFloatingPointType(invoke->GetType())) {
5382         // Create space for conversion.
5383         out_frame_size = 8u;
5384         IncreaseFrame(out_frame_size);
5385       }
5386       // Zero-/sign-extend or move the result when needed due to native and managed ABI mismatch.
5387       switch (invoke->GetType()) {
5388         case DataType::Type::kBool:
5389           __ movzxb(EAX, AL);
5390           break;
5391         case DataType::Type::kInt8:
5392           __ movsxb(EAX, AL);
5393           break;
5394         case DataType::Type::kUint16:
5395           __ movzxw(EAX, EAX);
5396           break;
5397         case DataType::Type::kInt16:
5398           __ movsxw(EAX, EAX);
5399           break;
5400         case DataType::Type::kFloat32:
5401           __ fstps(Address(ESP, 0));
5402           __ movss(XMM0, Address(ESP, 0));
5403           break;
5404         case DataType::Type::kFloat64:
5405           __ fstpl(Address(ESP, 0));
5406           __ movsd(XMM0, Address(ESP, 0));
5407           break;
5408         case DataType::Type::kInt32:
5409         case DataType::Type::kInt64:
5410         case DataType::Type::kVoid:
5411           break;
5412         default:
5413           DCHECK(false) << invoke->GetType();
5414           break;
5415       }
5416       if (out_frame_size != 0u) {
5417         DecreaseFrame(out_frame_size);
5418       }
5419       break;
5420     }
5421     case CodePtrLocation::kCallArtMethod:
5422       // (callee_method + offset_of_quick_compiled_code)()
5423       __ call(Address(callee_method.AsRegister<Register>(),
5424                       ArtMethod::EntryPointFromQuickCompiledCodeOffset(
5425                           kX86PointerSize).Int32Value()));
5426       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5427       break;
5428   }
5429 
5430   DCHECK(!IsLeafMethod());
5431 }
5432 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)5433 void CodeGeneratorX86::GenerateVirtualCall(
5434     HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
5435   Register temp = temp_in.AsRegister<Register>();
5436   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
5437       invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
5438 
5439   // Use the calling convention instead of the location of the receiver, as
5440   // intrinsics may have put the receiver in a different register. In the intrinsics
5441   // slow path, the arguments have been moved to the right place, so here we are
5442   // guaranteed that the receiver is the first register of the calling convention.
5443   InvokeDexCallingConvention calling_convention;
5444   Register receiver = calling_convention.GetRegisterAt(0);
5445   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5446   // /* HeapReference<Class> */ temp = receiver->klass_
5447   __ movl(temp, Address(receiver, class_offset));
5448   MaybeRecordImplicitNullCheck(invoke);
5449   // Instead of simply (possibly) unpoisoning `temp` here, we should
5450   // emit a read barrier for the previous class reference load.
5451   // However this is not required in practice, as this is an
5452   // intermediate/temporary reference and because the current
5453   // concurrent copying collector keeps the from-space memory
5454   // intact/accessible until the end of the marking phase (the
5455   // concurrent copying collector may not in the future).
5456   __ MaybeUnpoisonHeapReference(temp);
5457 
5458   MaybeGenerateInlineCacheCheck(invoke, temp);
5459 
5460   // temp = temp->GetMethodAt(method_offset);
5461   __ movl(temp, Address(temp, method_offset));
5462   // call temp->GetEntryPoint();
5463   __ call(Address(
5464       temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value()));
5465   RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5466 }
5467 
RecordBootImageIntrinsicPatch(HX86ComputeBaseMethodAddress * method_address,uint32_t intrinsic_data)5468 void CodeGeneratorX86::RecordBootImageIntrinsicPatch(HX86ComputeBaseMethodAddress* method_address,
5469                                                      uint32_t intrinsic_data) {
5470   boot_image_other_patches_.emplace_back(
5471       method_address, /* target_dex_file= */ nullptr, intrinsic_data);
5472   __ Bind(&boot_image_other_patches_.back().label);
5473 }
5474 
RecordBootImageRelRoPatch(HX86ComputeBaseMethodAddress * method_address,uint32_t boot_image_offset)5475 void CodeGeneratorX86::RecordBootImageRelRoPatch(HX86ComputeBaseMethodAddress* method_address,
5476                                                  uint32_t boot_image_offset) {
5477   boot_image_other_patches_.emplace_back(
5478       method_address, /* target_dex_file= */ nullptr, boot_image_offset);
5479   __ Bind(&boot_image_other_patches_.back().label);
5480 }
5481 
RecordBootImageMethodPatch(HInvoke * invoke)5482 void CodeGeneratorX86::RecordBootImageMethodPatch(HInvoke* invoke) {
5483   size_t index = invoke->IsInvokeInterface()
5484       ? invoke->AsInvokeInterface()->GetSpecialInputIndex()
5485       : invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex();
5486   HX86ComputeBaseMethodAddress* method_address =
5487       invoke->InputAt(index)->AsX86ComputeBaseMethodAddress();
5488   boot_image_method_patches_.emplace_back(
5489       method_address,
5490       invoke->GetResolvedMethodReference().dex_file,
5491       invoke->GetResolvedMethodReference().index);
5492   __ Bind(&boot_image_method_patches_.back().label);
5493 }
5494 
RecordMethodBssEntryPatch(HInvoke * invoke)5495 void CodeGeneratorX86::RecordMethodBssEntryPatch(HInvoke* invoke) {
5496   size_t index = invoke->IsInvokeInterface()
5497       ? invoke->AsInvokeInterface()->GetSpecialInputIndex()
5498       : invoke->AsInvokeStaticOrDirect()->GetSpecialInputIndex();
5499   DCHECK(IsSameDexFile(GetGraph()->GetDexFile(), *invoke->GetMethodReference().dex_file) ||
5500          GetCompilerOptions().WithinOatFile(invoke->GetMethodReference().dex_file) ||
5501          ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
5502                          invoke->GetMethodReference().dex_file));
5503   HX86ComputeBaseMethodAddress* method_address =
5504       invoke->InputAt(index)->AsX86ComputeBaseMethodAddress();
5505   // Add the patch entry and bind its label at the end of the instruction.
5506   method_bss_entry_patches_.emplace_back(
5507       method_address,
5508       invoke->GetMethodReference().dex_file,
5509       invoke->GetMethodReference().index);
5510   __ Bind(&method_bss_entry_patches_.back().label);
5511 }
5512 
RecordBootImageTypePatch(HLoadClass * load_class)5513 void CodeGeneratorX86::RecordBootImageTypePatch(HLoadClass* load_class) {
5514   HX86ComputeBaseMethodAddress* method_address =
5515       load_class->InputAt(0)->AsX86ComputeBaseMethodAddress();
5516   boot_image_type_patches_.emplace_back(
5517       method_address, &load_class->GetDexFile(), load_class->GetTypeIndex().index_);
5518   __ Bind(&boot_image_type_patches_.back().label);
5519 }
5520 
NewTypeBssEntryPatch(HLoadClass * load_class)5521 Label* CodeGeneratorX86::NewTypeBssEntryPatch(HLoadClass* load_class) {
5522   HX86ComputeBaseMethodAddress* method_address =
5523       load_class->InputAt(0)->AsX86ComputeBaseMethodAddress();
5524   ArenaDeque<X86PcRelativePatchInfo>* patches = nullptr;
5525   switch (load_class->GetLoadKind()) {
5526     case HLoadClass::LoadKind::kBssEntry:
5527       patches = &type_bss_entry_patches_;
5528       break;
5529     case HLoadClass::LoadKind::kBssEntryPublic:
5530       patches = &public_type_bss_entry_patches_;
5531       break;
5532     case HLoadClass::LoadKind::kBssEntryPackage:
5533       patches = &package_type_bss_entry_patches_;
5534       break;
5535     default:
5536       LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
5537       UNREACHABLE();
5538   }
5539   patches->emplace_back(
5540       method_address, &load_class->GetDexFile(), load_class->GetTypeIndex().index_);
5541   return &patches->back().label;
5542 }
5543 
RecordBootImageStringPatch(HLoadString * load_string)5544 void CodeGeneratorX86::RecordBootImageStringPatch(HLoadString* load_string) {
5545   HX86ComputeBaseMethodAddress* method_address =
5546       load_string->InputAt(0)->AsX86ComputeBaseMethodAddress();
5547   boot_image_string_patches_.emplace_back(
5548       method_address, &load_string->GetDexFile(), load_string->GetStringIndex().index_);
5549   __ Bind(&boot_image_string_patches_.back().label);
5550 }
5551 
NewStringBssEntryPatch(HLoadString * load_string)5552 Label* CodeGeneratorX86::NewStringBssEntryPatch(HLoadString* load_string) {
5553   HX86ComputeBaseMethodAddress* method_address =
5554       load_string->InputAt(0)->AsX86ComputeBaseMethodAddress();
5555   string_bss_entry_patches_.emplace_back(
5556       method_address, &load_string->GetDexFile(), load_string->GetStringIndex().index_);
5557   return &string_bss_entry_patches_.back().label;
5558 }
5559 
RecordBootImageJniEntrypointPatch(HInvokeStaticOrDirect * invoke)5560 void CodeGeneratorX86::RecordBootImageJniEntrypointPatch(HInvokeStaticOrDirect* invoke) {
5561   HX86ComputeBaseMethodAddress* method_address =
5562       invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress();
5563   boot_image_jni_entrypoint_patches_.emplace_back(
5564       method_address,
5565       invoke->GetResolvedMethodReference().dex_file,
5566       invoke->GetResolvedMethodReference().index);
5567   __ Bind(&boot_image_jni_entrypoint_patches_.back().label);
5568 }
5569 
LoadBootImageAddress(Register reg,uint32_t boot_image_reference,HInvokeStaticOrDirect * invoke)5570 void CodeGeneratorX86::LoadBootImageAddress(Register reg,
5571                                             uint32_t boot_image_reference,
5572                                             HInvokeStaticOrDirect* invoke) {
5573   if (GetCompilerOptions().IsBootImage()) {
5574     HX86ComputeBaseMethodAddress* method_address =
5575         invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress();
5576     DCHECK(method_address != nullptr);
5577     Register method_address_reg =
5578         invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).AsRegister<Register>();
5579     __ leal(reg, Address(method_address_reg, CodeGeneratorX86::kPlaceholder32BitOffset));
5580     RecordBootImageIntrinsicPatch(method_address, boot_image_reference);
5581   } else if (GetCompilerOptions().GetCompilePic()) {
5582     HX86ComputeBaseMethodAddress* method_address =
5583         invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress();
5584     DCHECK(method_address != nullptr);
5585     Register method_address_reg =
5586         invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).AsRegister<Register>();
5587     __ movl(reg, Address(method_address_reg, CodeGeneratorX86::kPlaceholder32BitOffset));
5588     RecordBootImageRelRoPatch(method_address, boot_image_reference);
5589   } else {
5590     DCHECK(GetCompilerOptions().IsJitCompiler());
5591     gc::Heap* heap = Runtime::Current()->GetHeap();
5592     DCHECK(!heap->GetBootImageSpaces().empty());
5593     const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
5594     __ movl(reg, Immediate(dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(address))));
5595   }
5596 }
5597 
LoadIntrinsicDeclaringClass(Register reg,HInvokeStaticOrDirect * invoke)5598 void CodeGeneratorX86::LoadIntrinsicDeclaringClass(Register reg, HInvokeStaticOrDirect* invoke) {
5599   DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
5600   if (GetCompilerOptions().IsBootImage()) {
5601     // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
5602     HX86ComputeBaseMethodAddress* method_address =
5603         invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress();
5604     DCHECK(method_address != nullptr);
5605     Register method_address_reg =
5606         invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()).AsRegister<Register>();
5607     __ leal(reg, Address(method_address_reg, CodeGeneratorX86::kPlaceholder32BitOffset));
5608     MethodReference target_method = invoke->GetResolvedMethodReference();
5609     dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
5610     boot_image_type_patches_.emplace_back(method_address, target_method.dex_file, type_idx.index_);
5611     __ Bind(&boot_image_type_patches_.back().label);
5612   } else {
5613     uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
5614     LoadBootImageAddress(reg, boot_image_offset, invoke);
5615   }
5616 }
5617 
5618 // The label points to the end of the "movl" or another instruction but the literal offset
5619 // for method patch needs to point to the embedded constant which occupies the last 4 bytes.
5620 constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
5621 
5622 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<X86PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)5623 inline void CodeGeneratorX86::EmitPcRelativeLinkerPatches(
5624     const ArenaDeque<X86PcRelativePatchInfo>& infos,
5625     ArenaVector<linker::LinkerPatch>* linker_patches) {
5626   for (const X86PcRelativePatchInfo& info : infos) {
5627     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
5628     linker_patches->push_back(Factory(literal_offset,
5629                                       info.target_dex_file,
5630                                       GetMethodAddressOffset(info.method_address),
5631                                       info.offset_or_index));
5632   }
5633 }
5634 
5635 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)5636 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
5637                                      const DexFile* target_dex_file,
5638                                      uint32_t pc_insn_offset,
5639                                      uint32_t boot_image_offset) {
5640   DCHECK(target_dex_file == nullptr);  // Unused for these patches, should be null.
5641   return Factory(literal_offset, pc_insn_offset, boot_image_offset);
5642 }
5643 
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)5644 void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
5645   DCHECK(linker_patches->empty());
5646   size_t size =
5647       boot_image_method_patches_.size() +
5648       method_bss_entry_patches_.size() +
5649       boot_image_type_patches_.size() +
5650       type_bss_entry_patches_.size() +
5651       public_type_bss_entry_patches_.size() +
5652       package_type_bss_entry_patches_.size() +
5653       boot_image_string_patches_.size() +
5654       string_bss_entry_patches_.size() +
5655       boot_image_jni_entrypoint_patches_.size() +
5656       boot_image_other_patches_.size();
5657   linker_patches->reserve(size);
5658   if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
5659     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
5660         boot_image_method_patches_, linker_patches);
5661     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
5662         boot_image_type_patches_, linker_patches);
5663     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
5664         boot_image_string_patches_, linker_patches);
5665   } else {
5666     DCHECK(boot_image_method_patches_.empty());
5667     DCHECK(boot_image_type_patches_.empty());
5668     DCHECK(boot_image_string_patches_.empty());
5669   }
5670   if (GetCompilerOptions().IsBootImage()) {
5671     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
5672         boot_image_other_patches_, linker_patches);
5673   } else {
5674     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
5675         boot_image_other_patches_, linker_patches);
5676   }
5677   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
5678       method_bss_entry_patches_, linker_patches);
5679   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
5680       type_bss_entry_patches_, linker_patches);
5681   EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
5682       public_type_bss_entry_patches_, linker_patches);
5683   EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
5684       package_type_bss_entry_patches_, linker_patches);
5685   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
5686       string_bss_entry_patches_, linker_patches);
5687   EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
5688       boot_image_jni_entrypoint_patches_, linker_patches);
5689   DCHECK_EQ(size, linker_patches->size());
5690 }
5691 
MarkGCCard(Register temp,Register card,Register object,Register value,bool value_can_be_null)5692 void CodeGeneratorX86::MarkGCCard(Register temp,
5693                                   Register card,
5694                                   Register object,
5695                                   Register value,
5696                                   bool value_can_be_null) {
5697   NearLabel is_null;
5698   if (value_can_be_null) {
5699     __ testl(value, value);
5700     __ j(kEqual, &is_null);
5701   }
5702   // Load the address of the card table into `card`.
5703   __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86PointerSize>().Int32Value()));
5704   // Calculate the offset (in the card table) of the card corresponding to
5705   // `object`.
5706   __ movl(temp, object);
5707   __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
5708   // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
5709   // `object`'s card.
5710   //
5711   // Register `card` contains the address of the card table. Note that the card
5712   // table's base is biased during its creation so that it always starts at an
5713   // address whose least-significant byte is equal to `kCardDirty` (see
5714   // art::gc::accounting::CardTable::Create). Therefore the MOVB instruction
5715   // below writes the `kCardDirty` (byte) value into the `object`'s card
5716   // (located at `card + object >> kCardShift`).
5717   //
5718   // This dual use of the value in register `card` (1. to calculate the location
5719   // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
5720   // (no need to explicitly load `kCardDirty` as an immediate value).
5721   __ movb(Address(temp, card, TIMES_1, 0),
5722           X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
5723   if (value_can_be_null) {
5724     __ Bind(&is_null);
5725   }
5726 }
5727 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5728 void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
5729   DCHECK(instruction->IsInstanceFieldGet() ||
5730          instruction->IsStaticFieldGet() ||
5731          instruction->IsPredicatedInstanceFieldGet());
5732 
5733   bool object_field_get_with_read_barrier =
5734       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
5735   bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
5736   LocationSummary* locations =
5737       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
5738                                                        kEmitCompilerReadBarrier
5739                                                            ? LocationSummary::kCallOnSlowPath
5740                                                            : LocationSummary::kNoCall);
5741   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5742     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5743   }
5744   // receiver_input
5745   locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister());
5746   if (is_predicated) {
5747     if (DataType::IsFloatingPointType(instruction->GetType())) {
5748       locations->SetInAt(0, Location::RequiresFpuRegister());
5749     } else {
5750       locations->SetInAt(0, Location::RequiresRegister());
5751     }
5752   }
5753   if (DataType::IsFloatingPointType(instruction->GetType())) {
5754     locations->SetOut(is_predicated ? Location::SameAsFirstInput()
5755                                     : Location::RequiresFpuRegister());
5756   } else {
5757     // The output overlaps in case of long: we don't want the low move
5758     // to overwrite the object's location.  Likewise, in the case of
5759     // an object field get with read barriers enabled, we do not want
5760     // the move to overwrite the object's location, as we need it to emit
5761     // the read barrier.
5762     locations->SetOut(is_predicated ? Location::SameAsFirstInput() : Location::RequiresRegister(),
5763                       (object_field_get_with_read_barrier ||
5764                        instruction->GetType() == DataType::Type::kInt64 ||
5765                        is_predicated)
5766                           ? Location::kOutputOverlap
5767                           : Location::kNoOutputOverlap);
5768   }
5769 
5770   if (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) {
5771     // Long values can be loaded atomically into an XMM using movsd.
5772     // So we use an XMM register as a temp to achieve atomicity (first
5773     // load the temp into the XMM and then copy the XMM into the
5774     // output, 32 bits at a time).
5775     locations->AddTemp(Location::RequiresFpuRegister());
5776   }
5777 }
5778 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5779 void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
5780                                                  const FieldInfo& field_info) {
5781   DCHECK(instruction->IsInstanceFieldGet() ||
5782          instruction->IsStaticFieldGet() ||
5783          instruction->IsPredicatedInstanceFieldGet());
5784 
5785   LocationSummary* locations = instruction->GetLocations();
5786   Location base_loc = locations->InAt(instruction->IsPredicatedInstanceFieldGet() ? 1 : 0);
5787   Register base = base_loc.AsRegister<Register>();
5788   Location out = locations->Out();
5789   bool is_volatile = field_info.IsVolatile();
5790   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
5791   DataType::Type load_type = instruction->GetType();
5792   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5793 
5794   if (load_type == DataType::Type::kReference) {
5795     // /* HeapReference<Object> */ out = *(base + offset)
5796     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5797       // Note that a potential implicit null check is handled in this
5798       // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
5799       codegen_->GenerateFieldLoadWithBakerReadBarrier(
5800           instruction, out, base, offset, /* needs_null_check= */ true);
5801       if (is_volatile) {
5802         codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5803       }
5804     } else {
5805       __ movl(out.AsRegister<Register>(), Address(base, offset));
5806       codegen_->MaybeRecordImplicitNullCheck(instruction);
5807       if (is_volatile) {
5808         codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5809       }
5810       // If read barriers are enabled, emit read barriers other than
5811       // Baker's using a slow path (and also unpoison the loaded
5812       // reference, if heap poisoning is enabled).
5813       codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
5814     }
5815   } else {
5816     Address src(base, offset);
5817     XmmRegister temp = (load_type == DataType::Type::kInt64 && is_volatile)
5818         ? locations->GetTemp(0).AsFpuRegister<XmmRegister>()
5819         : kNoXmmRegister;
5820     codegen_->LoadFromMemoryNoBarrier(load_type, out, src, instruction, temp, is_volatile);
5821     if (is_volatile) {
5822       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5823     }
5824   }
5825 }
5826 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)5827 void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
5828   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5829 
5830   LocationSummary* locations =
5831       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5832   locations->SetInAt(0, Location::RequiresRegister());
5833   bool is_volatile = field_info.IsVolatile();
5834   DataType::Type field_type = field_info.GetFieldType();
5835   bool is_byte_type = DataType::Size(field_type) == 1u;
5836 
5837   // The register allocator does not support multiple
5838   // inputs that die at entry with one in a specific register.
5839   if (is_byte_type) {
5840     // Ensure the value is in a byte register.
5841     locations->SetInAt(1, Location::RegisterLocation(EAX));
5842   } else if (DataType::IsFloatingPointType(field_type)) {
5843     if (is_volatile && field_type == DataType::Type::kFloat64) {
5844       // In order to satisfy the semantics of volatile, this must be a single instruction store.
5845       locations->SetInAt(1, Location::RequiresFpuRegister());
5846     } else {
5847       locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
5848     }
5849   } else if (is_volatile && field_type == DataType::Type::kInt64) {
5850     // In order to satisfy the semantics of volatile, this must be a single instruction store.
5851     locations->SetInAt(1, Location::RequiresRegister());
5852 
5853     // 64bits value can be atomically written to an address with movsd and an XMM register.
5854     // We need two XMM registers because there's no easier way to (bit) copy a register pair
5855     // into a single XMM register (we copy each pair part into the XMMs and then interleave them).
5856     // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
5857     // isolated cases when we need this it isn't worth adding the extra complexity.
5858     locations->AddTemp(Location::RequiresFpuRegister());
5859     locations->AddTemp(Location::RequiresFpuRegister());
5860   } else {
5861     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5862 
5863     if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
5864       // Temporary registers for the write barrier.
5865       locations->AddTemp(Location::RequiresRegister());  // May be used for reference poisoning too.
5866       // Ensure the card is in a byte register.
5867       locations->AddTemp(Location::RegisterLocation(ECX));
5868     }
5869   }
5870 }
5871 
HandleFieldSet(HInstruction * instruction,uint32_t value_index,DataType::Type field_type,Address field_addr,Register base,bool is_volatile,bool value_can_be_null)5872 void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
5873                                                  uint32_t value_index,
5874                                                  DataType::Type field_type,
5875                                                  Address field_addr,
5876                                                  Register base,
5877                                                  bool is_volatile,
5878                                                  bool value_can_be_null) {
5879   LocationSummary* locations = instruction->GetLocations();
5880   Location value = locations->InAt(value_index);
5881   bool needs_write_barrier =
5882       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(value_index));
5883 
5884   if (is_volatile) {
5885     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
5886   }
5887 
5888   bool maybe_record_implicit_null_check_done = false;
5889 
5890   switch (field_type) {
5891     case DataType::Type::kBool:
5892     case DataType::Type::kUint8:
5893     case DataType::Type::kInt8: {
5894       if (value.IsConstant()) {
5895         __ movb(field_addr, Immediate(CodeGenerator::GetInt8ValueOf(value.GetConstant())));
5896       } else {
5897         __ movb(field_addr, value.AsRegister<ByteRegister>());
5898       }
5899       break;
5900     }
5901 
5902     case DataType::Type::kUint16:
5903     case DataType::Type::kInt16: {
5904       if (value.IsConstant()) {
5905         __ movw(field_addr, Immediate(CodeGenerator::GetInt16ValueOf(value.GetConstant())));
5906       } else {
5907         __ movw(field_addr, value.AsRegister<Register>());
5908       }
5909       break;
5910     }
5911 
5912     case DataType::Type::kInt32:
5913     case DataType::Type::kReference: {
5914       if (kPoisonHeapReferences && needs_write_barrier) {
5915         // Note that in the case where `value` is a null reference,
5916         // we do not enter this block, as the reference does not
5917         // need poisoning.
5918         DCHECK_EQ(field_type, DataType::Type::kReference);
5919         Register temp = locations->GetTemp(0).AsRegister<Register>();
5920         __ movl(temp, value.AsRegister<Register>());
5921         __ PoisonHeapReference(temp);
5922         __ movl(field_addr, temp);
5923       } else if (value.IsConstant()) {
5924         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5925         __ movl(field_addr, Immediate(v));
5926       } else {
5927         DCHECK(value.IsRegister()) << value;
5928         __ movl(field_addr, value.AsRegister<Register>());
5929       }
5930       break;
5931     }
5932 
5933     case DataType::Type::kInt64: {
5934       if (is_volatile) {
5935         XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
5936         XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
5937         __ movd(temp1, value.AsRegisterPairLow<Register>());
5938         __ movd(temp2, value.AsRegisterPairHigh<Register>());
5939         __ punpckldq(temp1, temp2);
5940         __ movsd(field_addr, temp1);
5941         codegen_->MaybeRecordImplicitNullCheck(instruction);
5942       } else if (value.IsConstant()) {
5943         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
5944         __ movl(field_addr, Immediate(Low32Bits(v)));
5945         codegen_->MaybeRecordImplicitNullCheck(instruction);
5946         __ movl(Address::displace(field_addr, kX86WordSize), Immediate(High32Bits(v)));
5947       } else {
5948         __ movl(field_addr, value.AsRegisterPairLow<Register>());
5949         codegen_->MaybeRecordImplicitNullCheck(instruction);
5950         __ movl(Address::displace(field_addr, kX86WordSize), value.AsRegisterPairHigh<Register>());
5951       }
5952       maybe_record_implicit_null_check_done = true;
5953       break;
5954     }
5955 
5956     case DataType::Type::kFloat32: {
5957       if (value.IsConstant()) {
5958         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5959         __ movl(field_addr, Immediate(v));
5960       } else {
5961         __ movss(field_addr, value.AsFpuRegister<XmmRegister>());
5962       }
5963       break;
5964     }
5965 
5966     case DataType::Type::kFloat64: {
5967       if (value.IsConstant()) {
5968         DCHECK(!is_volatile);
5969         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
5970         __ movl(field_addr, Immediate(Low32Bits(v)));
5971         codegen_->MaybeRecordImplicitNullCheck(instruction);
5972         __ movl(Address::displace(field_addr, kX86WordSize), Immediate(High32Bits(v)));
5973         maybe_record_implicit_null_check_done = true;
5974       } else {
5975         __ movsd(field_addr, value.AsFpuRegister<XmmRegister>());
5976       }
5977       break;
5978     }
5979 
5980     case DataType::Type::kUint32:
5981     case DataType::Type::kUint64:
5982     case DataType::Type::kVoid:
5983       LOG(FATAL) << "Unreachable type " << field_type;
5984       UNREACHABLE();
5985   }
5986 
5987   if (!maybe_record_implicit_null_check_done) {
5988     codegen_->MaybeRecordImplicitNullCheck(instruction);
5989   }
5990 
5991   if (needs_write_barrier) {
5992     Register temp = locations->GetTemp(0).AsRegister<Register>();
5993     Register card = locations->GetTemp(1).AsRegister<Register>();
5994     codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
5995   }
5996 
5997   if (is_volatile) {
5998     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
5999   }
6000 }
6001 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)6002 void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
6003                                                  const FieldInfo& field_info,
6004                                                  bool value_can_be_null) {
6005   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
6006 
6007   LocationSummary* locations = instruction->GetLocations();
6008   Register base = locations->InAt(0).AsRegister<Register>();
6009   bool is_volatile = field_info.IsVolatile();
6010   DataType::Type field_type = field_info.GetFieldType();
6011   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
6012   bool is_predicated =
6013       instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet();
6014 
6015   Address field_addr(base, offset);
6016 
6017   NearLabel pred_is_null;
6018   if (is_predicated) {
6019     __ testl(base, base);
6020     __ j(kEqual, &pred_is_null);
6021   }
6022 
6023   HandleFieldSet(instruction,
6024                  /* value_index= */ 1,
6025                  field_type,
6026                  field_addr,
6027                  base,
6028                  is_volatile,
6029                  value_can_be_null);
6030 
6031   if (is_predicated) {
6032     __ Bind(&pred_is_null);
6033   }
6034 }
6035 
VisitStaticFieldGet(HStaticFieldGet * instruction)6036 void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6037   HandleFieldGet(instruction, instruction->GetFieldInfo());
6038 }
6039 
VisitStaticFieldGet(HStaticFieldGet * instruction)6040 void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6041   HandleFieldGet(instruction, instruction->GetFieldInfo());
6042 }
6043 
VisitStaticFieldSet(HStaticFieldSet * instruction)6044 void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6045   HandleFieldSet(instruction, instruction->GetFieldInfo());
6046 }
6047 
VisitStaticFieldSet(HStaticFieldSet * instruction)6048 void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6049   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6050 }
6051 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6052 void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6053   HandleFieldSet(instruction, instruction->GetFieldInfo());
6054 }
6055 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6056 void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6057   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6058 }
6059 
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6060 void LocationsBuilderX86::VisitPredicatedInstanceFieldGet(
6061     HPredicatedInstanceFieldGet* instruction) {
6062   HandleFieldGet(instruction, instruction->GetFieldInfo());
6063 }
6064 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6065 void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6066   HandleFieldGet(instruction, instruction->GetFieldInfo());
6067 }
6068 
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6069 void InstructionCodeGeneratorX86::VisitPredicatedInstanceFieldGet(
6070     HPredicatedInstanceFieldGet* instruction) {
6071   NearLabel finish;
6072   LocationSummary* locations = instruction->GetLocations();
6073   Register recv = locations->InAt(1).AsRegister<Register>();
6074   __ testl(recv, recv);
6075   __ j(kZero, &finish);
6076   HandleFieldGet(instruction, instruction->GetFieldInfo());
6077   __ Bind(&finish);
6078 }
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6079 void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6080   HandleFieldGet(instruction, instruction->GetFieldInfo());
6081 }
6082 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6083 void LocationsBuilderX86::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6084   codegen_->CreateStringBuilderAppendLocations(instruction, Location::RegisterLocation(EAX));
6085 }
6086 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6087 void InstructionCodeGeneratorX86::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6088   __ movl(EAX, Immediate(instruction->GetFormat()->GetValue()));
6089   codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6090 }
6091 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6092 void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
6093     HUnresolvedInstanceFieldGet* instruction) {
6094   FieldAccessCallingConventionX86 calling_convention;
6095   codegen_->CreateUnresolvedFieldLocationSummary(
6096       instruction, instruction->GetFieldType(), calling_convention);
6097 }
6098 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6099 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
6100     HUnresolvedInstanceFieldGet* instruction) {
6101   FieldAccessCallingConventionX86 calling_convention;
6102   codegen_->GenerateUnresolvedFieldAccess(instruction,
6103                                           instruction->GetFieldType(),
6104                                           instruction->GetFieldIndex(),
6105                                           instruction->GetDexPc(),
6106                                           calling_convention);
6107 }
6108 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6109 void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
6110     HUnresolvedInstanceFieldSet* instruction) {
6111   FieldAccessCallingConventionX86 calling_convention;
6112   codegen_->CreateUnresolvedFieldLocationSummary(
6113       instruction, instruction->GetFieldType(), calling_convention);
6114 }
6115 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6116 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
6117     HUnresolvedInstanceFieldSet* instruction) {
6118   FieldAccessCallingConventionX86 calling_convention;
6119   codegen_->GenerateUnresolvedFieldAccess(instruction,
6120                                           instruction->GetFieldType(),
6121                                           instruction->GetFieldIndex(),
6122                                           instruction->GetDexPc(),
6123                                           calling_convention);
6124 }
6125 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6126 void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
6127     HUnresolvedStaticFieldGet* instruction) {
6128   FieldAccessCallingConventionX86 calling_convention;
6129   codegen_->CreateUnresolvedFieldLocationSummary(
6130       instruction, instruction->GetFieldType(), calling_convention);
6131 }
6132 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6133 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
6134     HUnresolvedStaticFieldGet* instruction) {
6135   FieldAccessCallingConventionX86 calling_convention;
6136   codegen_->GenerateUnresolvedFieldAccess(instruction,
6137                                           instruction->GetFieldType(),
6138                                           instruction->GetFieldIndex(),
6139                                           instruction->GetDexPc(),
6140                                           calling_convention);
6141 }
6142 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6143 void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
6144     HUnresolvedStaticFieldSet* instruction) {
6145   FieldAccessCallingConventionX86 calling_convention;
6146   codegen_->CreateUnresolvedFieldLocationSummary(
6147       instruction, instruction->GetFieldType(), calling_convention);
6148 }
6149 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6150 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
6151     HUnresolvedStaticFieldSet* instruction) {
6152   FieldAccessCallingConventionX86 calling_convention;
6153   codegen_->GenerateUnresolvedFieldAccess(instruction,
6154                                           instruction->GetFieldType(),
6155                                           instruction->GetFieldIndex(),
6156                                           instruction->GetDexPc(),
6157                                           calling_convention);
6158 }
6159 
VisitNullCheck(HNullCheck * instruction)6160 void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
6161   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
6162   Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks()
6163       ? Location::RequiresRegister()
6164       : Location::Any();
6165   locations->SetInAt(0, loc);
6166 }
6167 
GenerateImplicitNullCheck(HNullCheck * instruction)6168 void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
6169   if (CanMoveNullCheckToUser(instruction)) {
6170     return;
6171   }
6172   LocationSummary* locations = instruction->GetLocations();
6173   Location obj = locations->InAt(0);
6174 
6175   __ testl(EAX, Address(obj.AsRegister<Register>(), 0));
6176   RecordPcInfo(instruction, instruction->GetDexPc());
6177 }
6178 
GenerateExplicitNullCheck(HNullCheck * instruction)6179 void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
6180   SlowPathCode* slow_path = new (GetScopedAllocator()) NullCheckSlowPathX86(instruction);
6181   AddSlowPath(slow_path);
6182 
6183   LocationSummary* locations = instruction->GetLocations();
6184   Location obj = locations->InAt(0);
6185 
6186   if (obj.IsRegister()) {
6187     __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
6188   } else if (obj.IsStackSlot()) {
6189     __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
6190   } else {
6191     DCHECK(obj.IsConstant()) << obj;
6192     DCHECK(obj.GetConstant()->IsNullConstant());
6193     __ jmp(slow_path->GetEntryLabel());
6194     return;
6195   }
6196   __ j(kEqual, slow_path->GetEntryLabel());
6197 }
6198 
VisitNullCheck(HNullCheck * instruction)6199 void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
6200   codegen_->GenerateNullCheck(instruction);
6201 }
6202 
VisitArrayGet(HArrayGet * instruction)6203 void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
6204   bool object_array_get_with_read_barrier =
6205       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
6206   LocationSummary* locations =
6207       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
6208                                                        object_array_get_with_read_barrier
6209                                                            ? LocationSummary::kCallOnSlowPath
6210                                                            : LocationSummary::kNoCall);
6211   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6212     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6213   }
6214   locations->SetInAt(0, Location::RequiresRegister());
6215   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6216   if (DataType::IsFloatingPointType(instruction->GetType())) {
6217     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6218   } else {
6219     // The output overlaps in case of long: we don't want the low move
6220     // to overwrite the array's location.  Likewise, in the case of an
6221     // object array get with read barriers enabled, we do not want the
6222     // move to overwrite the array's location, as we need it to emit
6223     // the read barrier.
6224     locations->SetOut(
6225         Location::RequiresRegister(),
6226         (instruction->GetType() == DataType::Type::kInt64 || object_array_get_with_read_barrier)
6227             ? Location::kOutputOverlap
6228             : Location::kNoOutputOverlap);
6229   }
6230 }
6231 
VisitArrayGet(HArrayGet * instruction)6232 void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
6233   LocationSummary* locations = instruction->GetLocations();
6234   Location obj_loc = locations->InAt(0);
6235   Register obj = obj_loc.AsRegister<Register>();
6236   Location index = locations->InAt(1);
6237   Location out_loc = locations->Out();
6238   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
6239 
6240   DataType::Type type = instruction->GetType();
6241   if (type == DataType::Type::kReference) {
6242     static_assert(
6243         sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6244         "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6245     // /* HeapReference<Object> */ out =
6246     //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6247     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6248       // Note that a potential implicit null check is handled in this
6249       // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
6250       codegen_->GenerateArrayLoadWithBakerReadBarrier(
6251           instruction, out_loc, obj, data_offset, index, /* needs_null_check= */ true);
6252     } else {
6253       Register out = out_loc.AsRegister<Register>();
6254       __ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
6255       codegen_->MaybeRecordImplicitNullCheck(instruction);
6256       // If read barriers are enabled, emit read barriers other than
6257       // Baker's using a slow path (and also unpoison the loaded
6258       // reference, if heap poisoning is enabled).
6259       if (index.IsConstant()) {
6260         uint32_t offset =
6261             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
6262         codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
6263       } else {
6264         codegen_->MaybeGenerateReadBarrierSlow(
6265             instruction, out_loc, out_loc, obj_loc, data_offset, index);
6266       }
6267     }
6268   } else if (type == DataType::Type::kUint16
6269       && mirror::kUseStringCompression
6270       && instruction->IsStringCharAt()) {
6271     // Branch cases into compressed and uncompressed for each index's type.
6272     Register out = out_loc.AsRegister<Register>();
6273     uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
6274     NearLabel done, not_compressed;
6275     __ testb(Address(obj, count_offset), Immediate(1));
6276     codegen_->MaybeRecordImplicitNullCheck(instruction);
6277     static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6278                   "Expecting 0=compressed, 1=uncompressed");
6279     __ j(kNotZero, &not_compressed);
6280     __ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
6281     __ jmp(&done);
6282     __ Bind(&not_compressed);
6283     __ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
6284     __ Bind(&done);
6285   } else {
6286     ScaleFactor scale = CodeGenerator::ScaleFactorForType(type);
6287     Address src = CodeGeneratorX86::ArrayAddress(obj, index, scale, data_offset);
6288     codegen_->LoadFromMemoryNoBarrier(type, out_loc, src, instruction);
6289   }
6290 }
6291 
VisitArraySet(HArraySet * instruction)6292 void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
6293   DataType::Type value_type = instruction->GetComponentType();
6294 
6295   bool needs_write_barrier =
6296       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6297   bool needs_type_check = instruction->NeedsTypeCheck();
6298 
6299   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6300       instruction,
6301       needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
6302 
6303   bool is_byte_type = DataType::Size(value_type) == 1u;
6304   // We need the inputs to be different than the output in case of long operation.
6305   // In case of a byte operation, the register allocator does not support multiple
6306   // inputs that die at entry with one in a specific register.
6307   locations->SetInAt(0, Location::RequiresRegister());
6308   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6309   if (is_byte_type) {
6310     // Ensure the value is in a byte register.
6311     locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
6312   } else if (DataType::IsFloatingPointType(value_type)) {
6313     locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
6314   } else {
6315     locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
6316   }
6317   if (needs_write_barrier) {
6318     // Temporary registers for the write barrier.
6319     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
6320     // Ensure the card is in a byte register.
6321     locations->AddTemp(Location::RegisterLocation(ECX));
6322   }
6323 }
6324 
VisitArraySet(HArraySet * instruction)6325 void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
6326   LocationSummary* locations = instruction->GetLocations();
6327   Location array_loc = locations->InAt(0);
6328   Register array = array_loc.AsRegister<Register>();
6329   Location index = locations->InAt(1);
6330   Location value = locations->InAt(2);
6331   DataType::Type value_type = instruction->GetComponentType();
6332   bool needs_type_check = instruction->NeedsTypeCheck();
6333   bool needs_write_barrier =
6334       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6335 
6336   switch (value_type) {
6337     case DataType::Type::kBool:
6338     case DataType::Type::kUint8:
6339     case DataType::Type::kInt8: {
6340       uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
6341       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_1, offset);
6342       if (value.IsRegister()) {
6343         __ movb(address, value.AsRegister<ByteRegister>());
6344       } else {
6345         __ movb(address, Immediate(CodeGenerator::GetInt8ValueOf(value.GetConstant())));
6346       }
6347       codegen_->MaybeRecordImplicitNullCheck(instruction);
6348       break;
6349     }
6350 
6351     case DataType::Type::kUint16:
6352     case DataType::Type::kInt16: {
6353       uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
6354       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_2, offset);
6355       if (value.IsRegister()) {
6356         __ movw(address, value.AsRegister<Register>());
6357       } else {
6358         __ movw(address, Immediate(CodeGenerator::GetInt16ValueOf(value.GetConstant())));
6359       }
6360       codegen_->MaybeRecordImplicitNullCheck(instruction);
6361       break;
6362     }
6363 
6364     case DataType::Type::kReference: {
6365       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
6366       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
6367 
6368       if (!value.IsRegister()) {
6369         // Just setting null.
6370         DCHECK(instruction->InputAt(2)->IsNullConstant());
6371         DCHECK(value.IsConstant()) << value;
6372         __ movl(address, Immediate(0));
6373         codegen_->MaybeRecordImplicitNullCheck(instruction);
6374         DCHECK(!needs_write_barrier);
6375         DCHECK(!needs_type_check);
6376         break;
6377       }
6378 
6379       DCHECK(needs_write_barrier);
6380       Register register_value = value.AsRegister<Register>();
6381       Location temp_loc = locations->GetTemp(0);
6382       Register temp = temp_loc.AsRegister<Register>();
6383 
6384       bool can_value_be_null = instruction->GetValueCanBeNull();
6385       NearLabel do_store;
6386       if (can_value_be_null) {
6387         __ testl(register_value, register_value);
6388         __ j(kEqual, &do_store);
6389       }
6390 
6391       SlowPathCode* slow_path = nullptr;
6392       if (needs_type_check) {
6393         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathX86(instruction);
6394         codegen_->AddSlowPath(slow_path);
6395 
6396         const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6397         const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6398         const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6399 
6400         // Note that when Baker read barriers are enabled, the type
6401         // checks are performed without read barriers.  This is fine,
6402         // even in the case where a class object is in the from-space
6403         // after the flip, as a comparison involving such a type would
6404         // not produce a false positive; it may of course produce a
6405         // false negative, in which case we would take the ArraySet
6406         // slow path.
6407 
6408         // /* HeapReference<Class> */ temp = array->klass_
6409         __ movl(temp, Address(array, class_offset));
6410         codegen_->MaybeRecordImplicitNullCheck(instruction);
6411         __ MaybeUnpoisonHeapReference(temp);
6412 
6413         // /* HeapReference<Class> */ temp = temp->component_type_
6414         __ movl(temp, Address(temp, component_offset));
6415         // If heap poisoning is enabled, no need to unpoison `temp`
6416         // nor the object reference in `register_value->klass`, as
6417         // we are comparing two poisoned references.
6418         __ cmpl(temp, Address(register_value, class_offset));
6419 
6420         if (instruction->StaticTypeOfArrayIsObjectArray()) {
6421           NearLabel do_put;
6422           __ j(kEqual, &do_put);
6423           // If heap poisoning is enabled, the `temp` reference has
6424           // not been unpoisoned yet; unpoison it now.
6425           __ MaybeUnpoisonHeapReference(temp);
6426 
6427           // If heap poisoning is enabled, no need to unpoison the
6428           // heap reference loaded below, as it is only used for a
6429           // comparison with null.
6430           __ cmpl(Address(temp, super_offset), Immediate(0));
6431           __ j(kNotEqual, slow_path->GetEntryLabel());
6432           __ Bind(&do_put);
6433         } else {
6434           __ j(kNotEqual, slow_path->GetEntryLabel());
6435         }
6436       }
6437 
6438       Register card = locations->GetTemp(1).AsRegister<Register>();
6439       codegen_->MarkGCCard(
6440           temp, card, array, value.AsRegister<Register>(), /* value_can_be_null= */ false);
6441 
6442       if (can_value_be_null) {
6443         DCHECK(do_store.IsLinked());
6444         __ Bind(&do_store);
6445       }
6446 
6447       Register source = register_value;
6448       if (kPoisonHeapReferences) {
6449         __ movl(temp, register_value);
6450         __ PoisonHeapReference(temp);
6451         source = temp;
6452       }
6453 
6454       __ movl(address, source);
6455 
6456       if (can_value_be_null || !needs_type_check) {
6457         codegen_->MaybeRecordImplicitNullCheck(instruction);
6458       }
6459 
6460       if (slow_path != nullptr) {
6461         __ Bind(slow_path->GetExitLabel());
6462       }
6463 
6464       break;
6465     }
6466 
6467     case DataType::Type::kInt32: {
6468       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
6469       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
6470       if (value.IsRegister()) {
6471         __ movl(address, value.AsRegister<Register>());
6472       } else {
6473         DCHECK(value.IsConstant()) << value;
6474         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
6475         __ movl(address, Immediate(v));
6476       }
6477       codegen_->MaybeRecordImplicitNullCheck(instruction);
6478       break;
6479     }
6480 
6481     case DataType::Type::kInt64: {
6482       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
6483       if (value.IsRegisterPair()) {
6484         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset),
6485                 value.AsRegisterPairLow<Register>());
6486         codegen_->MaybeRecordImplicitNullCheck(instruction);
6487         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize),
6488                 value.AsRegisterPairHigh<Register>());
6489       } else {
6490         DCHECK(value.IsConstant());
6491         int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
6492         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset),
6493                 Immediate(Low32Bits(val)));
6494         codegen_->MaybeRecordImplicitNullCheck(instruction);
6495         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize),
6496                 Immediate(High32Bits(val)));
6497       }
6498       break;
6499     }
6500 
6501     case DataType::Type::kFloat32: {
6502       uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
6503       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
6504       if (value.IsFpuRegister()) {
6505         __ movss(address, value.AsFpuRegister<XmmRegister>());
6506       } else {
6507         DCHECK(value.IsConstant());
6508         int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
6509         __ movl(address, Immediate(v));
6510       }
6511       codegen_->MaybeRecordImplicitNullCheck(instruction);
6512       break;
6513     }
6514 
6515     case DataType::Type::kFloat64: {
6516       uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
6517       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset);
6518       if (value.IsFpuRegister()) {
6519         __ movsd(address, value.AsFpuRegister<XmmRegister>());
6520       } else {
6521         DCHECK(value.IsConstant());
6522         Address address_hi =
6523             CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset + kX86WordSize);
6524         int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
6525         __ movl(address, Immediate(Low32Bits(v)));
6526         codegen_->MaybeRecordImplicitNullCheck(instruction);
6527         __ movl(address_hi, Immediate(High32Bits(v)));
6528       }
6529       break;
6530     }
6531 
6532     case DataType::Type::kUint32:
6533     case DataType::Type::kUint64:
6534     case DataType::Type::kVoid:
6535       LOG(FATAL) << "Unreachable type " << instruction->GetType();
6536       UNREACHABLE();
6537   }
6538 }
6539 
VisitArrayLength(HArrayLength * instruction)6540 void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
6541   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6542   locations->SetInAt(0, Location::RequiresRegister());
6543   if (!instruction->IsEmittedAtUseSite()) {
6544     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6545   }
6546 }
6547 
VisitArrayLength(HArrayLength * instruction)6548 void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
6549   if (instruction->IsEmittedAtUseSite()) {
6550     return;
6551   }
6552 
6553   LocationSummary* locations = instruction->GetLocations();
6554   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
6555   Register obj = locations->InAt(0).AsRegister<Register>();
6556   Register out = locations->Out().AsRegister<Register>();
6557   __ movl(out, Address(obj, offset));
6558   codegen_->MaybeRecordImplicitNullCheck(instruction);
6559   // Mask out most significant bit in case the array is String's array of char.
6560   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
6561     __ shrl(out, Immediate(1));
6562   }
6563 }
6564 
VisitBoundsCheck(HBoundsCheck * instruction)6565 void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
6566   RegisterSet caller_saves = RegisterSet::Empty();
6567   InvokeRuntimeCallingConvention calling_convention;
6568   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6569   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
6570   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
6571   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
6572   HInstruction* length = instruction->InputAt(1);
6573   if (!length->IsEmittedAtUseSite()) {
6574     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6575   }
6576   // Need register to see array's length.
6577   if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
6578     locations->AddTemp(Location::RequiresRegister());
6579   }
6580 }
6581 
VisitBoundsCheck(HBoundsCheck * instruction)6582 void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
6583   const bool is_string_compressed_char_at =
6584       mirror::kUseStringCompression && instruction->IsStringCharAt();
6585   LocationSummary* locations = instruction->GetLocations();
6586   Location index_loc = locations->InAt(0);
6587   Location length_loc = locations->InAt(1);
6588   SlowPathCode* slow_path =
6589     new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathX86(instruction);
6590 
6591   if (length_loc.IsConstant()) {
6592     int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
6593     if (index_loc.IsConstant()) {
6594       // BCE will remove the bounds check if we are guarenteed to pass.
6595       int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
6596       if (index < 0 || index >= length) {
6597         codegen_->AddSlowPath(slow_path);
6598         __ jmp(slow_path->GetEntryLabel());
6599       } else {
6600         // Some optimization after BCE may have generated this, and we should not
6601         // generate a bounds check if it is a valid range.
6602       }
6603       return;
6604     }
6605 
6606     // We have to reverse the jump condition because the length is the constant.
6607     Register index_reg = index_loc.AsRegister<Register>();
6608     __ cmpl(index_reg, Immediate(length));
6609     codegen_->AddSlowPath(slow_path);
6610     __ j(kAboveEqual, slow_path->GetEntryLabel());
6611   } else {
6612     HInstruction* array_length = instruction->InputAt(1);
6613     if (array_length->IsEmittedAtUseSite()) {
6614       // Address the length field in the array.
6615       DCHECK(array_length->IsArrayLength());
6616       uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength());
6617       Location array_loc = array_length->GetLocations()->InAt(0);
6618       Address array_len(array_loc.AsRegister<Register>(), len_offset);
6619       if (is_string_compressed_char_at) {
6620         // TODO: if index_loc.IsConstant(), compare twice the index (to compensate for
6621         // the string compression flag) with the in-memory length and avoid the temporary.
6622         Register length_reg = locations->GetTemp(0).AsRegister<Register>();
6623         __ movl(length_reg, array_len);
6624         codegen_->MaybeRecordImplicitNullCheck(array_length);
6625         __ shrl(length_reg, Immediate(1));
6626         codegen_->GenerateIntCompare(length_reg, index_loc);
6627       } else {
6628         // Checking bounds for general case:
6629         // Array of char or string's array with feature compression off.
6630         if (index_loc.IsConstant()) {
6631           int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
6632           __ cmpl(array_len, Immediate(value));
6633         } else {
6634           __ cmpl(array_len, index_loc.AsRegister<Register>());
6635         }
6636         codegen_->MaybeRecordImplicitNullCheck(array_length);
6637       }
6638     } else {
6639       codegen_->GenerateIntCompare(length_loc, index_loc);
6640     }
6641     codegen_->AddSlowPath(slow_path);
6642     __ j(kBelowEqual, slow_path->GetEntryLabel());
6643   }
6644 }
6645 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)6646 void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
6647   LOG(FATAL) << "Unreachable";
6648 }
6649 
VisitParallelMove(HParallelMove * instruction)6650 void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
6651   if (instruction->GetNext()->IsSuspendCheck() &&
6652       instruction->GetBlock()->GetLoopInformation() != nullptr) {
6653     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
6654     // The back edge will generate the suspend check.
6655     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
6656   }
6657 
6658   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
6659 }
6660 
VisitSuspendCheck(HSuspendCheck * instruction)6661 void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
6662   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6663       instruction, LocationSummary::kCallOnSlowPath);
6664   // In suspend check slow path, usually there are no caller-save registers at all.
6665   // If SIMD instructions are present, however, we force spilling all live SIMD
6666   // registers in full width (since the runtime only saves/restores lower part).
6667   locations->SetCustomSlowPathCallerSaves(
6668       GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
6669 }
6670 
VisitSuspendCheck(HSuspendCheck * instruction)6671 void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
6672   HBasicBlock* block = instruction->GetBlock();
6673   if (block->GetLoopInformation() != nullptr) {
6674     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6675     // The back edge will generate the suspend check.
6676     return;
6677   }
6678   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6679     // The goto will generate the suspend check.
6680     return;
6681   }
6682   GenerateSuspendCheck(instruction, nullptr);
6683 }
6684 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)6685 void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
6686                                                        HBasicBlock* successor) {
6687   SuspendCheckSlowPathX86* slow_path =
6688       down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
6689   if (slow_path == nullptr) {
6690     slow_path =
6691         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathX86(instruction, successor);
6692     instruction->SetSlowPath(slow_path);
6693     codegen_->AddSlowPath(slow_path);
6694     if (successor != nullptr) {
6695       DCHECK(successor->IsLoopHeader());
6696     }
6697   } else {
6698     DCHECK_EQ(slow_path->GetSuccessor(), successor);
6699   }
6700 
6701   __ fs()->testl(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>().Int32Value()),
6702                  Immediate(Thread::SuspendOrCheckpointRequestFlags()));
6703   if (successor == nullptr) {
6704     __ j(kNotZero, slow_path->GetEntryLabel());
6705     __ Bind(slow_path->GetReturnLabel());
6706   } else {
6707     __ j(kZero, codegen_->GetLabelOf(successor));
6708     __ jmp(slow_path->GetEntryLabel());
6709   }
6710 }
6711 
GetAssembler() const6712 X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
6713   return codegen_->GetAssembler();
6714 }
6715 
MoveMemoryToMemory(int dst,int src,int number_of_words)6716 void ParallelMoveResolverX86::MoveMemoryToMemory(int dst, int src, int number_of_words) {
6717   ScratchRegisterScope ensure_scratch(
6718       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
6719   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
6720   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
6721 
6722   // Now that temp register is available (possibly spilled), move blocks of memory.
6723   for (int i = 0; i < number_of_words; i++) {
6724     __ movl(temp_reg, Address(ESP, src + stack_offset));
6725     __ movl(Address(ESP, dst + stack_offset), temp_reg);
6726     stack_offset += kX86WordSize;
6727   }
6728 }
6729 
EmitMove(size_t index)6730 void ParallelMoveResolverX86::EmitMove(size_t index) {
6731   MoveOperands* move = moves_[index];
6732   Location source = move->GetSource();
6733   Location destination = move->GetDestination();
6734 
6735   if (source.IsRegister()) {
6736     if (destination.IsRegister()) {
6737       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
6738     } else if (destination.IsFpuRegister()) {
6739       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
6740     } else {
6741       DCHECK(destination.IsStackSlot());
6742       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
6743     }
6744   } else if (source.IsRegisterPair()) {
6745     if (destination.IsRegisterPair()) {
6746       __ movl(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
6747       DCHECK_NE(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
6748       __ movl(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
6749     } else if (destination.IsFpuRegister()) {
6750       size_t elem_size = DataType::Size(DataType::Type::kInt32);
6751       // Push the 2 source registers to the stack.
6752       __ pushl(source.AsRegisterPairHigh<Register>());
6753       __ cfi().AdjustCFAOffset(elem_size);
6754       __ pushl(source.AsRegisterPairLow<Register>());
6755       __ cfi().AdjustCFAOffset(elem_size);
6756       // Load the destination register.
6757       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
6758       // And remove the temporary stack space we allocated.
6759       codegen_->DecreaseFrame(2 * elem_size);
6760     } else {
6761       DCHECK(destination.IsDoubleStackSlot());
6762       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
6763       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
6764               source.AsRegisterPairHigh<Register>());
6765     }
6766   } else if (source.IsFpuRegister()) {
6767     if (destination.IsRegister()) {
6768       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
6769     } else if (destination.IsFpuRegister()) {
6770       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
6771     } else if (destination.IsRegisterPair()) {
6772       size_t elem_size = DataType::Size(DataType::Type::kInt32);
6773       // Create stack space for 2 elements.
6774       codegen_->IncreaseFrame(2 * elem_size);
6775       // Store the source register.
6776       __ movsd(Address(ESP, 0), source.AsFpuRegister<XmmRegister>());
6777       // And pop the values into destination registers.
6778       __ popl(destination.AsRegisterPairLow<Register>());
6779       __ cfi().AdjustCFAOffset(-elem_size);
6780       __ popl(destination.AsRegisterPairHigh<Register>());
6781       __ cfi().AdjustCFAOffset(-elem_size);
6782     } else if (destination.IsStackSlot()) {
6783       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
6784     } else if (destination.IsDoubleStackSlot()) {
6785       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
6786     } else {
6787       DCHECK(destination.IsSIMDStackSlot());
6788       __ movups(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
6789     }
6790   } else if (source.IsStackSlot()) {
6791     if (destination.IsRegister()) {
6792       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
6793     } else if (destination.IsFpuRegister()) {
6794       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
6795     } else {
6796       DCHECK(destination.IsStackSlot());
6797       MoveMemoryToMemory(destination.GetStackIndex(), source.GetStackIndex(), 1);
6798     }
6799   } else if (source.IsDoubleStackSlot()) {
6800     if (destination.IsRegisterPair()) {
6801       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
6802       __ movl(destination.AsRegisterPairHigh<Register>(),
6803               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
6804     } else if (destination.IsFpuRegister()) {
6805       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
6806     } else {
6807       DCHECK(destination.IsDoubleStackSlot()) << destination;
6808       MoveMemoryToMemory(destination.GetStackIndex(), source.GetStackIndex(), 2);
6809     }
6810   } else if (source.IsSIMDStackSlot()) {
6811     if (destination.IsFpuRegister()) {
6812       __ movups(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
6813     } else {
6814       DCHECK(destination.IsSIMDStackSlot());
6815       MoveMemoryToMemory(destination.GetStackIndex(), source.GetStackIndex(), 4);
6816     }
6817   } else if (source.IsConstant()) {
6818     HConstant* constant = source.GetConstant();
6819     if (constant->IsIntConstant() || constant->IsNullConstant()) {
6820       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
6821       if (destination.IsRegister()) {
6822         if (value == 0) {
6823           __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
6824         } else {
6825           __ movl(destination.AsRegister<Register>(), Immediate(value));
6826         }
6827       } else {
6828         DCHECK(destination.IsStackSlot()) << destination;
6829         __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
6830       }
6831     } else if (constant->IsFloatConstant()) {
6832       float fp_value = constant->AsFloatConstant()->GetValue();
6833       int32_t value = bit_cast<int32_t, float>(fp_value);
6834       Immediate imm(value);
6835       if (destination.IsFpuRegister()) {
6836         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
6837         if (value == 0) {
6838           // Easy handling of 0.0.
6839           __ xorps(dest, dest);
6840         } else {
6841           ScratchRegisterScope ensure_scratch(
6842               this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
6843           Register temp = static_cast<Register>(ensure_scratch.GetRegister());
6844           __ movl(temp, Immediate(value));
6845           __ movd(dest, temp);
6846         }
6847       } else {
6848         DCHECK(destination.IsStackSlot()) << destination;
6849         __ movl(Address(ESP, destination.GetStackIndex()), imm);
6850       }
6851     } else if (constant->IsLongConstant()) {
6852       int64_t value = constant->AsLongConstant()->GetValue();
6853       int32_t low_value = Low32Bits(value);
6854       int32_t high_value = High32Bits(value);
6855       Immediate low(low_value);
6856       Immediate high(high_value);
6857       if (destination.IsDoubleStackSlot()) {
6858         __ movl(Address(ESP, destination.GetStackIndex()), low);
6859         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
6860       } else {
6861         __ movl(destination.AsRegisterPairLow<Register>(), low);
6862         __ movl(destination.AsRegisterPairHigh<Register>(), high);
6863       }
6864     } else {
6865       DCHECK(constant->IsDoubleConstant());
6866       double dbl_value = constant->AsDoubleConstant()->GetValue();
6867       int64_t value = bit_cast<int64_t, double>(dbl_value);
6868       int32_t low_value = Low32Bits(value);
6869       int32_t high_value = High32Bits(value);
6870       Immediate low(low_value);
6871       Immediate high(high_value);
6872       if (destination.IsFpuRegister()) {
6873         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
6874         if (value == 0) {
6875           // Easy handling of 0.0.
6876           __ xorpd(dest, dest);
6877         } else {
6878           __ pushl(high);
6879           __ cfi().AdjustCFAOffset(4);
6880           __ pushl(low);
6881           __ cfi().AdjustCFAOffset(4);
6882           __ movsd(dest, Address(ESP, 0));
6883           codegen_->DecreaseFrame(8);
6884         }
6885       } else {
6886         DCHECK(destination.IsDoubleStackSlot()) << destination;
6887         __ movl(Address(ESP, destination.GetStackIndex()), low);
6888         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
6889       }
6890     }
6891   } else {
6892     LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
6893   }
6894 }
6895 
Exchange(Register reg,int mem)6896 void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
6897   Register suggested_scratch = reg == EAX ? EBX : EAX;
6898   ScratchRegisterScope ensure_scratch(
6899       this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
6900 
6901   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
6902   __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
6903   __ movl(Address(ESP, mem + stack_offset), reg);
6904   __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
6905 }
6906 
Exchange32(XmmRegister reg,int mem)6907 void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
6908   ScratchRegisterScope ensure_scratch(
6909       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
6910 
6911   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
6912   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
6913   __ movl(temp_reg, Address(ESP, mem + stack_offset));
6914   __ movss(Address(ESP, mem + stack_offset), reg);
6915   __ movd(reg, temp_reg);
6916 }
6917 
Exchange128(XmmRegister reg,int mem)6918 void ParallelMoveResolverX86::Exchange128(XmmRegister reg, int mem) {
6919   size_t extra_slot = 4 * kX86WordSize;
6920   codegen_->IncreaseFrame(extra_slot);
6921   __ movups(Address(ESP, 0), XmmRegister(reg));
6922   ExchangeMemory(0, mem + extra_slot, 4);
6923   __ movups(XmmRegister(reg), Address(ESP, 0));
6924   codegen_->DecreaseFrame(extra_slot);
6925 }
6926 
ExchangeMemory(int mem1,int mem2,int number_of_words)6927 void ParallelMoveResolverX86::ExchangeMemory(int mem1, int mem2, int number_of_words) {
6928   ScratchRegisterScope ensure_scratch1(
6929       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
6930 
6931   Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
6932   ScratchRegisterScope ensure_scratch2(
6933       this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
6934 
6935   int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
6936   stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
6937 
6938   // Now that temp registers are available (possibly spilled), exchange blocks of memory.
6939   for (int i = 0; i < number_of_words; i++) {
6940     __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
6941     __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
6942     __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
6943     __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
6944     stack_offset += kX86WordSize;
6945   }
6946 }
6947 
EmitSwap(size_t index)6948 void ParallelMoveResolverX86::EmitSwap(size_t index) {
6949   MoveOperands* move = moves_[index];
6950   Location source = move->GetSource();
6951   Location destination = move->GetDestination();
6952 
6953   if (source.IsRegister() && destination.IsRegister()) {
6954     // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
6955     DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
6956     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
6957     __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
6958     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
6959   } else if (source.IsRegister() && destination.IsStackSlot()) {
6960     Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
6961   } else if (source.IsStackSlot() && destination.IsRegister()) {
6962     Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
6963   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
6964     ExchangeMemory(destination.GetStackIndex(), source.GetStackIndex(), 1);
6965   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
6966     // Use XOR Swap algorithm to avoid a temporary.
6967     DCHECK_NE(source.reg(), destination.reg());
6968     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
6969     __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
6970     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
6971   } else if (source.IsFpuRegister() && destination.IsStackSlot()) {
6972     Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
6973   } else if (destination.IsFpuRegister() && source.IsStackSlot()) {
6974     Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
6975   } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
6976     // Take advantage of the 16 bytes in the XMM register.
6977     XmmRegister reg = source.AsFpuRegister<XmmRegister>();
6978     Address stack(ESP, destination.GetStackIndex());
6979     // Load the double into the high doubleword.
6980     __ movhpd(reg, stack);
6981 
6982     // Store the low double into the destination.
6983     __ movsd(stack, reg);
6984 
6985     // Move the high double to the low double.
6986     __ psrldq(reg, Immediate(8));
6987   } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
6988     // Take advantage of the 16 bytes in the XMM register.
6989     XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
6990     Address stack(ESP, source.GetStackIndex());
6991     // Load the double into the high doubleword.
6992     __ movhpd(reg, stack);
6993 
6994     // Store the low double into the destination.
6995     __ movsd(stack, reg);
6996 
6997     // Move the high double to the low double.
6998     __ psrldq(reg, Immediate(8));
6999   } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
7000     ExchangeMemory(destination.GetStackIndex(), source.GetStackIndex(), 2);
7001   } else if (source.IsSIMDStackSlot() && destination.IsSIMDStackSlot()) {
7002     ExchangeMemory(destination.GetStackIndex(), source.GetStackIndex(), 4);
7003   } else if (source.IsFpuRegister() && destination.IsSIMDStackSlot()) {
7004     Exchange128(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
7005   } else if (destination.IsFpuRegister() && source.IsSIMDStackSlot()) {
7006     Exchange128(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
7007   } else {
7008     LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
7009   }
7010 }
7011 
SpillScratch(int reg)7012 void ParallelMoveResolverX86::SpillScratch(int reg) {
7013   __ pushl(static_cast<Register>(reg));
7014 }
7015 
RestoreScratch(int reg)7016 void ParallelMoveResolverX86::RestoreScratch(int reg) {
7017   __ popl(static_cast<Register>(reg));
7018 }
7019 
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)7020 HLoadClass::LoadKind CodeGeneratorX86::GetSupportedLoadClassKind(
7021     HLoadClass::LoadKind desired_class_load_kind) {
7022   switch (desired_class_load_kind) {
7023     case HLoadClass::LoadKind::kInvalid:
7024       LOG(FATAL) << "UNREACHABLE";
7025       UNREACHABLE();
7026     case HLoadClass::LoadKind::kReferrersClass:
7027       break;
7028     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
7029     case HLoadClass::LoadKind::kBootImageRelRo:
7030     case HLoadClass::LoadKind::kBssEntry:
7031     case HLoadClass::LoadKind::kBssEntryPublic:
7032     case HLoadClass::LoadKind::kBssEntryPackage:
7033       DCHECK(!GetCompilerOptions().IsJitCompiler());
7034       break;
7035     case HLoadClass::LoadKind::kJitBootImageAddress:
7036     case HLoadClass::LoadKind::kJitTableAddress:
7037       DCHECK(GetCompilerOptions().IsJitCompiler());
7038       break;
7039     case HLoadClass::LoadKind::kRuntimeCall:
7040       break;
7041   }
7042   return desired_class_load_kind;
7043 }
7044 
VisitLoadClass(HLoadClass * cls)7045 void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
7046   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7047   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7048     InvokeRuntimeCallingConvention calling_convention;
7049     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
7050         cls,
7051         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
7052         Location::RegisterLocation(EAX));
7053     DCHECK_EQ(calling_convention.GetRegisterAt(0), EAX);
7054     return;
7055   }
7056   DCHECK_EQ(cls->NeedsAccessCheck(),
7057             load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7058                 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7059 
7060   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
7061   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
7062       ? LocationSummary::kCallOnSlowPath
7063       : LocationSummary::kNoCall;
7064   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
7065   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
7066     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
7067   }
7068 
7069   if (load_kind == HLoadClass::LoadKind::kReferrersClass || cls->HasPcRelativeLoadKind()) {
7070     locations->SetInAt(0, Location::RequiresRegister());
7071   }
7072   locations->SetOut(Location::RequiresRegister());
7073   if (call_kind == LocationSummary::kCallOnSlowPath && cls->HasPcRelativeLoadKind()) {
7074     if (!kUseReadBarrier || kUseBakerReadBarrier) {
7075       // Rely on the type resolution and/or initialization to save everything.
7076       locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7077     } else {
7078       // For non-Baker read barrier we have a temp-clobbering call.
7079     }
7080   }
7081 }
7082 
NewJitRootClassPatch(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)7083 Label* CodeGeneratorX86::NewJitRootClassPatch(const DexFile& dex_file,
7084                                               dex::TypeIndex type_index,
7085                                               Handle<mirror::Class> handle) {
7086   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
7087   // Add a patch entry and return the label.
7088   jit_class_patches_.emplace_back(&dex_file, type_index.index_);
7089   PatchInfo<Label>* info = &jit_class_patches_.back();
7090   return &info->label;
7091 }
7092 
7093 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7094 // move.
VisitLoadClass(HLoadClass * cls)7095 void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
7096   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7097   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7098     codegen_->GenerateLoadClassRuntimeCall(cls);
7099     return;
7100   }
7101   DCHECK_EQ(cls->NeedsAccessCheck(),
7102             load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7103                 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7104 
7105   LocationSummary* locations = cls->GetLocations();
7106   Location out_loc = locations->Out();
7107   Register out = out_loc.AsRegister<Register>();
7108 
7109   bool generate_null_check = false;
7110   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
7111       ? kWithoutReadBarrier
7112       : kCompilerReadBarrierOption;
7113   switch (load_kind) {
7114     case HLoadClass::LoadKind::kReferrersClass: {
7115       DCHECK(!cls->CanCallRuntime());
7116       DCHECK(!cls->MustGenerateClinitCheck());
7117       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
7118       Register current_method = locations->InAt(0).AsRegister<Register>();
7119       GenerateGcRootFieldLoad(
7120           cls,
7121           out_loc,
7122           Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()),
7123           /* fixup_label= */ nullptr,
7124           read_barrier_option);
7125       break;
7126     }
7127     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
7128       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7129              codegen_->GetCompilerOptions().IsBootImageExtension());
7130       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7131       Register method_address = locations->InAt(0).AsRegister<Register>();
7132       __ leal(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset));
7133       codegen_->RecordBootImageTypePatch(cls);
7134       break;
7135     }
7136     case HLoadClass::LoadKind::kBootImageRelRo: {
7137       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7138       Register method_address = locations->InAt(0).AsRegister<Register>();
7139       __ movl(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset));
7140       codegen_->RecordBootImageRelRoPatch(cls->InputAt(0)->AsX86ComputeBaseMethodAddress(),
7141                                           CodeGenerator::GetBootImageOffset(cls));
7142       break;
7143     }
7144     case HLoadClass::LoadKind::kBssEntry:
7145     case HLoadClass::LoadKind::kBssEntryPublic:
7146     case HLoadClass::LoadKind::kBssEntryPackage: {
7147       Register method_address = locations->InAt(0).AsRegister<Register>();
7148       Address address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset);
7149       Label* fixup_label = codegen_->NewTypeBssEntryPatch(cls);
7150       GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option);
7151       // No need for memory fence, thanks to the x86 memory model.
7152       generate_null_check = true;
7153       break;
7154     }
7155     case HLoadClass::LoadKind::kJitBootImageAddress: {
7156       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7157       uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
7158       DCHECK_NE(address, 0u);
7159       __ movl(out, Immediate(address));
7160       break;
7161     }
7162     case HLoadClass::LoadKind::kJitTableAddress: {
7163       Address address = Address::Absolute(CodeGeneratorX86::kPlaceholder32BitOffset);
7164       Label* fixup_label = codegen_->NewJitRootClassPatch(
7165           cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass());
7166       // /* GcRoot<mirror::Class> */ out = *address
7167       GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option);
7168       break;
7169     }
7170     case HLoadClass::LoadKind::kRuntimeCall:
7171     case HLoadClass::LoadKind::kInvalid:
7172       LOG(FATAL) << "UNREACHABLE";
7173       UNREACHABLE();
7174   }
7175 
7176   if (generate_null_check || cls->MustGenerateClinitCheck()) {
7177     DCHECK(cls->CanCallRuntime());
7178     SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathX86(cls, cls);
7179     codegen_->AddSlowPath(slow_path);
7180 
7181     if (generate_null_check) {
7182       __ testl(out, out);
7183       __ j(kEqual, slow_path->GetEntryLabel());
7184     }
7185 
7186     if (cls->MustGenerateClinitCheck()) {
7187       GenerateClassInitializationCheck(slow_path, out);
7188     } else {
7189       __ Bind(slow_path->GetExitLabel());
7190     }
7191   }
7192 }
7193 
VisitLoadMethodHandle(HLoadMethodHandle * load)7194 void LocationsBuilderX86::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7195   InvokeRuntimeCallingConvention calling_convention;
7196   Location location = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
7197   CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
7198 }
7199 
VisitLoadMethodHandle(HLoadMethodHandle * load)7200 void InstructionCodeGeneratorX86::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7201   codegen_->GenerateLoadMethodHandleRuntimeCall(load);
7202 }
7203 
VisitLoadMethodType(HLoadMethodType * load)7204 void LocationsBuilderX86::VisitLoadMethodType(HLoadMethodType* load) {
7205   InvokeRuntimeCallingConvention calling_convention;
7206   Location location = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
7207   CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
7208 }
7209 
VisitLoadMethodType(HLoadMethodType * load)7210 void InstructionCodeGeneratorX86::VisitLoadMethodType(HLoadMethodType* load) {
7211   codegen_->GenerateLoadMethodTypeRuntimeCall(load);
7212 }
7213 
VisitClinitCheck(HClinitCheck * check)7214 void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
7215   LocationSummary* locations =
7216       new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
7217   locations->SetInAt(0, Location::RequiresRegister());
7218   if (check->HasUses()) {
7219     locations->SetOut(Location::SameAsFirstInput());
7220   }
7221   // Rely on the type initialization to save everything we need.
7222   locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7223 }
7224 
VisitClinitCheck(HClinitCheck * check)7225 void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
7226   // We assume the class to not be null.
7227   SlowPathCode* slow_path =
7228       new (codegen_->GetScopedAllocator()) LoadClassSlowPathX86(check->GetLoadClass(), check);
7229   codegen_->AddSlowPath(slow_path);
7230   GenerateClassInitializationCheck(slow_path,
7231                                    check->GetLocations()->InAt(0).AsRegister<Register>());
7232 }
7233 
GenerateClassInitializationCheck(SlowPathCode * slow_path,Register class_reg)7234 void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
7235     SlowPathCode* slow_path, Register class_reg) {
7236   constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
7237   const size_t status_byte_offset =
7238       mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
7239   constexpr uint32_t shifted_visibly_initialized_value =
7240       enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte);
7241 
7242   __ cmpb(Address(class_reg,  status_byte_offset), Immediate(shifted_visibly_initialized_value));
7243   __ j(kBelow, slow_path->GetEntryLabel());
7244   __ Bind(slow_path->GetExitLabel());
7245 }
7246 
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,Register temp)7247 void InstructionCodeGeneratorX86::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check,
7248                                                                     Register temp) {
7249   uint32_t path_to_root = check->GetBitstringPathToRoot();
7250   uint32_t mask = check->GetBitstringMask();
7251   DCHECK(IsPowerOfTwo(mask + 1));
7252   size_t mask_bits = WhichPowerOf2(mask + 1);
7253 
7254   if (mask_bits == 16u) {
7255     // Compare the bitstring in memory.
7256     __ cmpw(Address(temp, mirror::Class::StatusOffset()), Immediate(path_to_root));
7257   } else {
7258     // /* uint32_t */ temp = temp->status_
7259     __ movl(temp, Address(temp, mirror::Class::StatusOffset()));
7260     // Compare the bitstring bits using SUB.
7261     __ subl(temp, Immediate(path_to_root));
7262     // Shift out bits that do not contribute to the comparison.
7263     __ shll(temp, Immediate(32u - mask_bits));
7264   }
7265 }
7266 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)7267 HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
7268     HLoadString::LoadKind desired_string_load_kind) {
7269   switch (desired_string_load_kind) {
7270     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
7271     case HLoadString::LoadKind::kBootImageRelRo:
7272     case HLoadString::LoadKind::kBssEntry:
7273       DCHECK(!GetCompilerOptions().IsJitCompiler());
7274       break;
7275     case HLoadString::LoadKind::kJitBootImageAddress:
7276     case HLoadString::LoadKind::kJitTableAddress:
7277       DCHECK(GetCompilerOptions().IsJitCompiler());
7278       break;
7279     case HLoadString::LoadKind::kRuntimeCall:
7280       break;
7281   }
7282   return desired_string_load_kind;
7283 }
7284 
VisitLoadString(HLoadString * load)7285 void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
7286   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
7287   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
7288   HLoadString::LoadKind load_kind = load->GetLoadKind();
7289   if (load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
7290       load_kind == HLoadString::LoadKind::kBootImageRelRo ||
7291       load_kind == HLoadString::LoadKind::kBssEntry) {
7292     locations->SetInAt(0, Location::RequiresRegister());
7293   }
7294   if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
7295     locations->SetOut(Location::RegisterLocation(EAX));
7296   } else {
7297     locations->SetOut(Location::RequiresRegister());
7298     if (load_kind == HLoadString::LoadKind::kBssEntry) {
7299       if (!kUseReadBarrier || kUseBakerReadBarrier) {
7300         // Rely on the pResolveString to save everything.
7301         locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7302       } else {
7303         // For non-Baker read barrier we have a temp-clobbering call.
7304       }
7305     }
7306   }
7307 }
7308 
NewJitRootStringPatch(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)7309 Label* CodeGeneratorX86::NewJitRootStringPatch(const DexFile& dex_file,
7310                                                dex::StringIndex string_index,
7311                                                Handle<mirror::String> handle) {
7312   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
7313   // Add a patch entry and return the label.
7314   jit_string_patches_.emplace_back(&dex_file, string_index.index_);
7315   PatchInfo<Label>* info = &jit_string_patches_.back();
7316   return &info->label;
7317 }
7318 
7319 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7320 // move.
VisitLoadString(HLoadString * load)7321 void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
7322   LocationSummary* locations = load->GetLocations();
7323   Location out_loc = locations->Out();
7324   Register out = out_loc.AsRegister<Register>();
7325 
7326   switch (load->GetLoadKind()) {
7327     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
7328       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7329              codegen_->GetCompilerOptions().IsBootImageExtension());
7330       Register method_address = locations->InAt(0).AsRegister<Register>();
7331       __ leal(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset));
7332       codegen_->RecordBootImageStringPatch(load);
7333       return;
7334     }
7335     case HLoadString::LoadKind::kBootImageRelRo: {
7336       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7337       Register method_address = locations->InAt(0).AsRegister<Register>();
7338       __ movl(out, Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset));
7339       codegen_->RecordBootImageRelRoPatch(load->InputAt(0)->AsX86ComputeBaseMethodAddress(),
7340                                           CodeGenerator::GetBootImageOffset(load));
7341       return;
7342     }
7343     case HLoadString::LoadKind::kBssEntry: {
7344       Register method_address = locations->InAt(0).AsRegister<Register>();
7345       Address address = Address(method_address, CodeGeneratorX86::kPlaceholder32BitOffset);
7346       Label* fixup_label = codegen_->NewStringBssEntryPatch(load);
7347       // /* GcRoot<mirror::String> */ out = *address  /* PC-relative */
7348       GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption);
7349       // No need for memory fence, thanks to the x86 memory model.
7350       SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) LoadStringSlowPathX86(load);
7351       codegen_->AddSlowPath(slow_path);
7352       __ testl(out, out);
7353       __ j(kEqual, slow_path->GetEntryLabel());
7354       __ Bind(slow_path->GetExitLabel());
7355       return;
7356     }
7357     case HLoadString::LoadKind::kJitBootImageAddress: {
7358       uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
7359       DCHECK_NE(address, 0u);
7360       __ movl(out, Immediate(address));
7361       return;
7362     }
7363     case HLoadString::LoadKind::kJitTableAddress: {
7364       Address address = Address::Absolute(CodeGeneratorX86::kPlaceholder32BitOffset);
7365       Label* fixup_label = codegen_->NewJitRootStringPatch(
7366           load->GetDexFile(), load->GetStringIndex(), load->GetString());
7367       // /* GcRoot<mirror::String> */ out = *address
7368       GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption);
7369       return;
7370     }
7371     default:
7372       break;
7373   }
7374 
7375   // TODO: Re-add the compiler code to do string dex cache lookup again.
7376   InvokeRuntimeCallingConvention calling_convention;
7377   DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
7378   __ movl(calling_convention.GetRegisterAt(0), Immediate(load->GetStringIndex().index_));
7379   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
7380   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
7381 }
7382 
GetExceptionTlsAddress()7383 static Address GetExceptionTlsAddress() {
7384   return Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>().Int32Value());
7385 }
7386 
VisitLoadException(HLoadException * load)7387 void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
7388   LocationSummary* locations =
7389       new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
7390   locations->SetOut(Location::RequiresRegister());
7391 }
7392 
VisitLoadException(HLoadException * load)7393 void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
7394   __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
7395 }
7396 
VisitClearException(HClearException * clear)7397 void LocationsBuilderX86::VisitClearException(HClearException* clear) {
7398   new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
7399 }
7400 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)7401 void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
7402   __ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
7403 }
7404 
VisitThrow(HThrow * instruction)7405 void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
7406   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7407       instruction, LocationSummary::kCallOnMainOnly);
7408   InvokeRuntimeCallingConvention calling_convention;
7409   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
7410 }
7411 
VisitThrow(HThrow * instruction)7412 void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
7413   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
7414   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
7415 }
7416 
7417 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)7418 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
7419   if (kEmitCompilerReadBarrier &&
7420       !kUseBakerReadBarrier &&
7421       (type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7422        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7423        type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
7424     return 1;
7425   }
7426   return 0;
7427 }
7428 
7429 // Interface case has 2 temps, one for holding the number of interfaces, one for the current
7430 // interface pointer, the current interface is compared in memory.
7431 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)7432 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
7433   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7434     return 2;
7435   }
7436   return 1 + NumberOfInstanceOfTemps(type_check_kind);
7437 }
7438 
VisitInstanceOf(HInstanceOf * instruction)7439 void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
7440   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7441   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7442   bool baker_read_barrier_slow_path = false;
7443   switch (type_check_kind) {
7444     case TypeCheckKind::kExactCheck:
7445     case TypeCheckKind::kAbstractClassCheck:
7446     case TypeCheckKind::kClassHierarchyCheck:
7447     case TypeCheckKind::kArrayObjectCheck: {
7448       bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
7449       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7450       baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
7451       break;
7452     }
7453     case TypeCheckKind::kArrayCheck:
7454     case TypeCheckKind::kUnresolvedCheck:
7455     case TypeCheckKind::kInterfaceCheck:
7456       call_kind = LocationSummary::kCallOnSlowPath;
7457       break;
7458     case TypeCheckKind::kBitstringCheck:
7459       break;
7460   }
7461 
7462   LocationSummary* locations =
7463       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7464   if (baker_read_barrier_slow_path) {
7465     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
7466   }
7467   locations->SetInAt(0, Location::RequiresRegister());
7468   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7469     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7470     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7471     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7472   } else {
7473     locations->SetInAt(1, Location::Any());
7474   }
7475   // Note that TypeCheckSlowPathX86 uses this "out" register too.
7476   locations->SetOut(Location::RequiresRegister());
7477   // When read barriers are enabled, we need a temporary register for some cases.
7478   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
7479 }
7480 
VisitInstanceOf(HInstanceOf * instruction)7481 void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
7482   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7483   LocationSummary* locations = instruction->GetLocations();
7484   Location obj_loc = locations->InAt(0);
7485   Register obj = obj_loc.AsRegister<Register>();
7486   Location cls = locations->InAt(1);
7487   Location out_loc = locations->Out();
7488   Register out = out_loc.AsRegister<Register>();
7489   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
7490   DCHECK_LE(num_temps, 1u);
7491   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
7492   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7493   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7494   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7495   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7496   SlowPathCode* slow_path = nullptr;
7497   NearLabel done, zero;
7498 
7499   // Return 0 if `obj` is null.
7500   // Avoid null check if we know obj is not null.
7501   if (instruction->MustDoNullCheck()) {
7502     __ testl(obj, obj);
7503     __ j(kEqual, &zero);
7504   }
7505 
7506   switch (type_check_kind) {
7507     case TypeCheckKind::kExactCheck: {
7508       ReadBarrierOption read_barrier_option =
7509           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7510       // /* HeapReference<Class> */ out = obj->klass_
7511       GenerateReferenceLoadTwoRegisters(instruction,
7512                                         out_loc,
7513                                         obj_loc,
7514                                         class_offset,
7515                                         read_barrier_option);
7516       if (cls.IsRegister()) {
7517         __ cmpl(out, cls.AsRegister<Register>());
7518       } else {
7519         DCHECK(cls.IsStackSlot()) << cls;
7520         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
7521       }
7522 
7523       // Classes must be equal for the instanceof to succeed.
7524       __ j(kNotEqual, &zero);
7525       __ movl(out, Immediate(1));
7526       __ jmp(&done);
7527       break;
7528     }
7529 
7530     case TypeCheckKind::kAbstractClassCheck: {
7531       ReadBarrierOption read_barrier_option =
7532           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7533       // /* HeapReference<Class> */ out = obj->klass_
7534       GenerateReferenceLoadTwoRegisters(instruction,
7535                                         out_loc,
7536                                         obj_loc,
7537                                         class_offset,
7538                                         read_barrier_option);
7539       // If the class is abstract, we eagerly fetch the super class of the
7540       // object to avoid doing a comparison we know will fail.
7541       NearLabel loop;
7542       __ Bind(&loop);
7543       // /* HeapReference<Class> */ out = out->super_class_
7544       GenerateReferenceLoadOneRegister(instruction,
7545                                        out_loc,
7546                                        super_offset,
7547                                        maybe_temp_loc,
7548                                        read_barrier_option);
7549       __ testl(out, out);
7550       // If `out` is null, we use it for the result, and jump to `done`.
7551       __ j(kEqual, &done);
7552       if (cls.IsRegister()) {
7553         __ cmpl(out, cls.AsRegister<Register>());
7554       } else {
7555         DCHECK(cls.IsStackSlot()) << cls;
7556         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
7557       }
7558       __ j(kNotEqual, &loop);
7559       __ movl(out, Immediate(1));
7560       if (zero.IsLinked()) {
7561         __ jmp(&done);
7562       }
7563       break;
7564     }
7565 
7566     case TypeCheckKind::kClassHierarchyCheck: {
7567       ReadBarrierOption read_barrier_option =
7568           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7569       // /* HeapReference<Class> */ out = obj->klass_
7570       GenerateReferenceLoadTwoRegisters(instruction,
7571                                         out_loc,
7572                                         obj_loc,
7573                                         class_offset,
7574                                         read_barrier_option);
7575       // Walk over the class hierarchy to find a match.
7576       NearLabel loop, success;
7577       __ Bind(&loop);
7578       if (cls.IsRegister()) {
7579         __ cmpl(out, cls.AsRegister<Register>());
7580       } else {
7581         DCHECK(cls.IsStackSlot()) << cls;
7582         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
7583       }
7584       __ j(kEqual, &success);
7585       // /* HeapReference<Class> */ out = out->super_class_
7586       GenerateReferenceLoadOneRegister(instruction,
7587                                        out_loc,
7588                                        super_offset,
7589                                        maybe_temp_loc,
7590                                        read_barrier_option);
7591       __ testl(out, out);
7592       __ j(kNotEqual, &loop);
7593       // If `out` is null, we use it for the result, and jump to `done`.
7594       __ jmp(&done);
7595       __ Bind(&success);
7596       __ movl(out, Immediate(1));
7597       if (zero.IsLinked()) {
7598         __ jmp(&done);
7599       }
7600       break;
7601     }
7602 
7603     case TypeCheckKind::kArrayObjectCheck: {
7604       ReadBarrierOption read_barrier_option =
7605           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7606       // /* HeapReference<Class> */ out = obj->klass_
7607       GenerateReferenceLoadTwoRegisters(instruction,
7608                                         out_loc,
7609                                         obj_loc,
7610                                         class_offset,
7611                                         read_barrier_option);
7612       // Do an exact check.
7613       NearLabel exact_check;
7614       if (cls.IsRegister()) {
7615         __ cmpl(out, cls.AsRegister<Register>());
7616       } else {
7617         DCHECK(cls.IsStackSlot()) << cls;
7618         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
7619       }
7620       __ j(kEqual, &exact_check);
7621       // Otherwise, we need to check that the object's class is a non-primitive array.
7622       // /* HeapReference<Class> */ out = out->component_type_
7623       GenerateReferenceLoadOneRegister(instruction,
7624                                        out_loc,
7625                                        component_offset,
7626                                        maybe_temp_loc,
7627                                        read_barrier_option);
7628       __ testl(out, out);
7629       // If `out` is null, we use it for the result, and jump to `done`.
7630       __ j(kEqual, &done);
7631       __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
7632       __ j(kNotEqual, &zero);
7633       __ Bind(&exact_check);
7634       __ movl(out, Immediate(1));
7635       __ jmp(&done);
7636       break;
7637     }
7638 
7639     case TypeCheckKind::kArrayCheck: {
7640       // No read barrier since the slow path will retry upon failure.
7641       // /* HeapReference<Class> */ out = obj->klass_
7642       GenerateReferenceLoadTwoRegisters(instruction,
7643                                         out_loc,
7644                                         obj_loc,
7645                                         class_offset,
7646                                         kWithoutReadBarrier);
7647       if (cls.IsRegister()) {
7648         __ cmpl(out, cls.AsRegister<Register>());
7649       } else {
7650         DCHECK(cls.IsStackSlot()) << cls;
7651         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
7652       }
7653       DCHECK(locations->OnlyCallsOnSlowPath());
7654       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathX86(
7655           instruction, /* is_fatal= */ false);
7656       codegen_->AddSlowPath(slow_path);
7657       __ j(kNotEqual, slow_path->GetEntryLabel());
7658       __ movl(out, Immediate(1));
7659       if (zero.IsLinked()) {
7660         __ jmp(&done);
7661       }
7662       break;
7663     }
7664 
7665     case TypeCheckKind::kUnresolvedCheck:
7666     case TypeCheckKind::kInterfaceCheck: {
7667       // Note that we indeed only call on slow path, but we always go
7668       // into the slow path for the unresolved and interface check
7669       // cases.
7670       //
7671       // We cannot directly call the InstanceofNonTrivial runtime
7672       // entry point without resorting to a type checking slow path
7673       // here (i.e. by calling InvokeRuntime directly), as it would
7674       // require to assign fixed registers for the inputs of this
7675       // HInstanceOf instruction (following the runtime calling
7676       // convention), which might be cluttered by the potential first
7677       // read barrier emission at the beginning of this method.
7678       //
7679       // TODO: Introduce a new runtime entry point taking the object
7680       // to test (instead of its class) as argument, and let it deal
7681       // with the read barrier issues. This will let us refactor this
7682       // case of the `switch` code as it was previously (with a direct
7683       // call to the runtime not using a type checking slow path).
7684       // This should also be beneficial for the other cases above.
7685       DCHECK(locations->OnlyCallsOnSlowPath());
7686       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathX86(
7687           instruction, /* is_fatal= */ false);
7688       codegen_->AddSlowPath(slow_path);
7689       __ jmp(slow_path->GetEntryLabel());
7690       if (zero.IsLinked()) {
7691         __ jmp(&done);
7692       }
7693       break;
7694     }
7695 
7696     case TypeCheckKind::kBitstringCheck: {
7697       // /* HeapReference<Class> */ temp = obj->klass_
7698       GenerateReferenceLoadTwoRegisters(instruction,
7699                                         out_loc,
7700                                         obj_loc,
7701                                         class_offset,
7702                                         kWithoutReadBarrier);
7703 
7704       GenerateBitstringTypeCheckCompare(instruction, out);
7705       __ j(kNotEqual, &zero);
7706       __ movl(out, Immediate(1));
7707       __ jmp(&done);
7708       break;
7709     }
7710   }
7711 
7712   if (zero.IsLinked()) {
7713     __ Bind(&zero);
7714     __ xorl(out, out);
7715   }
7716 
7717   if (done.IsLinked()) {
7718     __ Bind(&done);
7719   }
7720 
7721   if (slow_path != nullptr) {
7722     __ Bind(slow_path->GetExitLabel());
7723   }
7724 }
7725 
VisitCheckCast(HCheckCast * instruction)7726 void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
7727   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7728   LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
7729   LocationSummary* locations =
7730       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7731   locations->SetInAt(0, Location::RequiresRegister());
7732   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7733     // Require a register for the interface check since there is a loop that compares the class to
7734     // a memory address.
7735     locations->SetInAt(1, Location::RequiresRegister());
7736   } else if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7737     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7738     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7739     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7740   } else {
7741     locations->SetInAt(1, Location::Any());
7742   }
7743   // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathX86.
7744   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
7745 }
7746 
VisitCheckCast(HCheckCast * instruction)7747 void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
7748   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7749   LocationSummary* locations = instruction->GetLocations();
7750   Location obj_loc = locations->InAt(0);
7751   Register obj = obj_loc.AsRegister<Register>();
7752   Location cls = locations->InAt(1);
7753   Location temp_loc = locations->GetTemp(0);
7754   Register temp = temp_loc.AsRegister<Register>();
7755   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
7756   DCHECK_GE(num_temps, 1u);
7757   DCHECK_LE(num_temps, 2u);
7758   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
7759   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7760   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7761   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7762   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7763   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
7764   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
7765   const uint32_t object_array_data_offset =
7766       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
7767 
7768   bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
7769   SlowPathCode* type_check_slow_path =
7770       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathX86(
7771           instruction, is_type_check_slow_path_fatal);
7772   codegen_->AddSlowPath(type_check_slow_path);
7773 
7774   NearLabel done;
7775   // Avoid null check if we know obj is not null.
7776   if (instruction->MustDoNullCheck()) {
7777     __ testl(obj, obj);
7778     __ j(kEqual, &done);
7779   }
7780 
7781   switch (type_check_kind) {
7782     case TypeCheckKind::kExactCheck:
7783     case TypeCheckKind::kArrayCheck: {
7784       // /* HeapReference<Class> */ temp = obj->klass_
7785       GenerateReferenceLoadTwoRegisters(instruction,
7786                                         temp_loc,
7787                                         obj_loc,
7788                                         class_offset,
7789                                         kWithoutReadBarrier);
7790 
7791       if (cls.IsRegister()) {
7792         __ cmpl(temp, cls.AsRegister<Register>());
7793       } else {
7794         DCHECK(cls.IsStackSlot()) << cls;
7795         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
7796       }
7797       // Jump to slow path for throwing the exception or doing a
7798       // more involved array check.
7799       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
7800       break;
7801     }
7802 
7803     case TypeCheckKind::kAbstractClassCheck: {
7804       // /* HeapReference<Class> */ temp = obj->klass_
7805       GenerateReferenceLoadTwoRegisters(instruction,
7806                                         temp_loc,
7807                                         obj_loc,
7808                                         class_offset,
7809                                         kWithoutReadBarrier);
7810 
7811       // If the class is abstract, we eagerly fetch the super class of the
7812       // object to avoid doing a comparison we know will fail.
7813       NearLabel loop;
7814       __ Bind(&loop);
7815       // /* HeapReference<Class> */ temp = temp->super_class_
7816       GenerateReferenceLoadOneRegister(instruction,
7817                                        temp_loc,
7818                                        super_offset,
7819                                        maybe_temp2_loc,
7820                                        kWithoutReadBarrier);
7821 
7822       // If the class reference currently in `temp` is null, jump to the slow path to throw the
7823       // exception.
7824       __ testl(temp, temp);
7825       __ j(kZero, type_check_slow_path->GetEntryLabel());
7826 
7827       // Otherwise, compare the classes
7828       if (cls.IsRegister()) {
7829         __ cmpl(temp, cls.AsRegister<Register>());
7830       } else {
7831         DCHECK(cls.IsStackSlot()) << cls;
7832         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
7833       }
7834       __ j(kNotEqual, &loop);
7835       break;
7836     }
7837 
7838     case TypeCheckKind::kClassHierarchyCheck: {
7839       // /* HeapReference<Class> */ temp = obj->klass_
7840       GenerateReferenceLoadTwoRegisters(instruction,
7841                                         temp_loc,
7842                                         obj_loc,
7843                                         class_offset,
7844                                         kWithoutReadBarrier);
7845 
7846       // Walk over the class hierarchy to find a match.
7847       NearLabel loop;
7848       __ Bind(&loop);
7849       if (cls.IsRegister()) {
7850         __ cmpl(temp, cls.AsRegister<Register>());
7851       } else {
7852         DCHECK(cls.IsStackSlot()) << cls;
7853         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
7854       }
7855       __ j(kEqual, &done);
7856 
7857       // /* HeapReference<Class> */ temp = temp->super_class_
7858       GenerateReferenceLoadOneRegister(instruction,
7859                                        temp_loc,
7860                                        super_offset,
7861                                        maybe_temp2_loc,
7862                                        kWithoutReadBarrier);
7863 
7864       // If the class reference currently in `temp` is not null, jump
7865       // back at the beginning of the loop.
7866       __ testl(temp, temp);
7867       __ j(kNotZero, &loop);
7868       // Otherwise, jump to the slow path to throw the exception.;
7869       __ jmp(type_check_slow_path->GetEntryLabel());
7870       break;
7871     }
7872 
7873     case TypeCheckKind::kArrayObjectCheck: {
7874       // /* HeapReference<Class> */ temp = obj->klass_
7875       GenerateReferenceLoadTwoRegisters(instruction,
7876                                         temp_loc,
7877                                         obj_loc,
7878                                         class_offset,
7879                                         kWithoutReadBarrier);
7880 
7881       // Do an exact check.
7882       if (cls.IsRegister()) {
7883         __ cmpl(temp, cls.AsRegister<Register>());
7884       } else {
7885         DCHECK(cls.IsStackSlot()) << cls;
7886         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
7887       }
7888       __ j(kEqual, &done);
7889 
7890       // Otherwise, we need to check that the object's class is a non-primitive array.
7891       // /* HeapReference<Class> */ temp = temp->component_type_
7892       GenerateReferenceLoadOneRegister(instruction,
7893                                        temp_loc,
7894                                        component_offset,
7895                                        maybe_temp2_loc,
7896                                        kWithoutReadBarrier);
7897 
7898       // If the component type is null (i.e. the object not an array),  jump to the slow path to
7899       // throw the exception. Otherwise proceed with the check.
7900       __ testl(temp, temp);
7901       __ j(kZero, type_check_slow_path->GetEntryLabel());
7902 
7903       __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
7904       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
7905       break;
7906     }
7907 
7908     case TypeCheckKind::kUnresolvedCheck:
7909       // We always go into the type check slow path for the unresolved check case.
7910       // We cannot directly call the CheckCast runtime entry point
7911       // without resorting to a type checking slow path here (i.e. by
7912       // calling InvokeRuntime directly), as it would require to
7913       // assign fixed registers for the inputs of this HInstanceOf
7914       // instruction (following the runtime calling convention), which
7915       // might be cluttered by the potential first read barrier
7916       // emission at the beginning of this method.
7917       __ jmp(type_check_slow_path->GetEntryLabel());
7918       break;
7919 
7920     case TypeCheckKind::kInterfaceCheck: {
7921       // Fast path for the interface check. Try to avoid read barriers to improve the fast path.
7922       // We can not get false positives by doing this.
7923       // /* HeapReference<Class> */ temp = obj->klass_
7924       GenerateReferenceLoadTwoRegisters(instruction,
7925                                         temp_loc,
7926                                         obj_loc,
7927                                         class_offset,
7928                                         kWithoutReadBarrier);
7929 
7930       // /* HeapReference<Class> */ temp = temp->iftable_
7931       GenerateReferenceLoadTwoRegisters(instruction,
7932                                         temp_loc,
7933                                         temp_loc,
7934                                         iftable_offset,
7935                                         kWithoutReadBarrier);
7936       // Iftable is never null.
7937       __ movl(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset));
7938       // Maybe poison the `cls` for direct comparison with memory.
7939       __ MaybePoisonHeapReference(cls.AsRegister<Register>());
7940       // Loop through the iftable and check if any class matches.
7941       NearLabel start_loop;
7942       __ Bind(&start_loop);
7943       // Need to subtract first to handle the empty array case.
7944       __ subl(maybe_temp2_loc.AsRegister<Register>(), Immediate(2));
7945       __ j(kNegative, type_check_slow_path->GetEntryLabel());
7946       // Go to next interface if the classes do not match.
7947       __ cmpl(cls.AsRegister<Register>(),
7948               CodeGeneratorX86::ArrayAddress(temp,
7949                                              maybe_temp2_loc,
7950                                              TIMES_4,
7951                                              object_array_data_offset));
7952       __ j(kNotEqual, &start_loop);
7953       // If `cls` was poisoned above, unpoison it.
7954       __ MaybeUnpoisonHeapReference(cls.AsRegister<Register>());
7955       break;
7956     }
7957 
7958     case TypeCheckKind::kBitstringCheck: {
7959       // /* HeapReference<Class> */ temp = obj->klass_
7960       GenerateReferenceLoadTwoRegisters(instruction,
7961                                         temp_loc,
7962                                         obj_loc,
7963                                         class_offset,
7964                                         kWithoutReadBarrier);
7965 
7966       GenerateBitstringTypeCheckCompare(instruction, temp);
7967       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
7968       break;
7969     }
7970   }
7971   __ Bind(&done);
7972 
7973   __ Bind(type_check_slow_path->GetExitLabel());
7974 }
7975 
VisitMonitorOperation(HMonitorOperation * instruction)7976 void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
7977   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7978       instruction, LocationSummary::kCallOnMainOnly);
7979   InvokeRuntimeCallingConvention calling_convention;
7980   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
7981 }
7982 
VisitMonitorOperation(HMonitorOperation * instruction)7983 void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
7984   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject
7985                                                  : kQuickUnlockObject,
7986                           instruction,
7987                           instruction->GetDexPc());
7988   if (instruction->IsEnter()) {
7989     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
7990   } else {
7991     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
7992   }
7993 }
7994 
VisitX86AndNot(HX86AndNot * instruction)7995 void LocationsBuilderX86::VisitX86AndNot(HX86AndNot* instruction) {
7996   DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2());
7997   DCHECK(DataType::IsIntOrLongType(instruction->GetType())) << instruction->GetType();
7998   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
7999   locations->SetInAt(0, Location::RequiresRegister());
8000   locations->SetInAt(1, Location::RequiresRegister());
8001   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8002 }
8003 
VisitX86AndNot(HX86AndNot * instruction)8004 void InstructionCodeGeneratorX86::VisitX86AndNot(HX86AndNot* instruction) {
8005   LocationSummary* locations = instruction->GetLocations();
8006   Location first = locations->InAt(0);
8007   Location second = locations->InAt(1);
8008   Location dest = locations->Out();
8009   if (instruction->GetResultType() == DataType::Type::kInt32) {
8010     __ andn(dest.AsRegister<Register>(),
8011             first.AsRegister<Register>(),
8012             second.AsRegister<Register>());
8013   } else {
8014     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8015     __ andn(dest.AsRegisterPairLow<Register>(),
8016             first.AsRegisterPairLow<Register>(),
8017             second.AsRegisterPairLow<Register>());
8018     __ andn(dest.AsRegisterPairHigh<Register>(),
8019             first.AsRegisterPairHigh<Register>(),
8020             second.AsRegisterPairHigh<Register>());
8021   }
8022 }
8023 
VisitX86MaskOrResetLeastSetBit(HX86MaskOrResetLeastSetBit * instruction)8024 void LocationsBuilderX86::VisitX86MaskOrResetLeastSetBit(HX86MaskOrResetLeastSetBit* instruction) {
8025   DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2());
8026   DCHECK(instruction->GetType() == DataType::Type::kInt32) << instruction->GetType();
8027   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
8028   locations->SetInAt(0, Location::RequiresRegister());
8029   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8030 }
8031 
VisitX86MaskOrResetLeastSetBit(HX86MaskOrResetLeastSetBit * instruction)8032 void InstructionCodeGeneratorX86::VisitX86MaskOrResetLeastSetBit(
8033     HX86MaskOrResetLeastSetBit* instruction) {
8034   LocationSummary* locations = instruction->GetLocations();
8035   Location src = locations->InAt(0);
8036   Location dest = locations->Out();
8037   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
8038   switch (instruction->GetOpKind()) {
8039     case HInstruction::kAnd:
8040       __ blsr(dest.AsRegister<Register>(), src.AsRegister<Register>());
8041       break;
8042     case HInstruction::kXor:
8043       __ blsmsk(dest.AsRegister<Register>(), src.AsRegister<Register>());
8044       break;
8045     default:
8046       LOG(FATAL) << "Unreachable";
8047   }
8048 }
8049 
VisitAnd(HAnd * instruction)8050 void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
VisitOr(HOr * instruction)8051 void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
VisitXor(HXor * instruction)8052 void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
8053 
HandleBitwiseOperation(HBinaryOperation * instruction)8054 void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
8055   LocationSummary* locations =
8056       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8057   DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8058          || instruction->GetResultType() == DataType::Type::kInt64);
8059   locations->SetInAt(0, Location::RequiresRegister());
8060   locations->SetInAt(1, Location::Any());
8061   locations->SetOut(Location::SameAsFirstInput());
8062 }
8063 
VisitAnd(HAnd * instruction)8064 void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
8065   HandleBitwiseOperation(instruction);
8066 }
8067 
VisitOr(HOr * instruction)8068 void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
8069   HandleBitwiseOperation(instruction);
8070 }
8071 
VisitXor(HXor * instruction)8072 void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
8073   HandleBitwiseOperation(instruction);
8074 }
8075 
HandleBitwiseOperation(HBinaryOperation * instruction)8076 void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
8077   LocationSummary* locations = instruction->GetLocations();
8078   Location first = locations->InAt(0);
8079   Location second = locations->InAt(1);
8080   DCHECK(first.Equals(locations->Out()));
8081 
8082   if (instruction->GetResultType() == DataType::Type::kInt32) {
8083     if (second.IsRegister()) {
8084       if (instruction->IsAnd()) {
8085         __ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
8086       } else if (instruction->IsOr()) {
8087         __ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
8088       } else {
8089         DCHECK(instruction->IsXor());
8090         __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
8091       }
8092     } else if (second.IsConstant()) {
8093       if (instruction->IsAnd()) {
8094         __ andl(first.AsRegister<Register>(),
8095                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
8096       } else if (instruction->IsOr()) {
8097         __ orl(first.AsRegister<Register>(),
8098                Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
8099       } else {
8100         DCHECK(instruction->IsXor());
8101         __ xorl(first.AsRegister<Register>(),
8102                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
8103       }
8104     } else {
8105       if (instruction->IsAnd()) {
8106         __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
8107       } else if (instruction->IsOr()) {
8108         __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
8109       } else {
8110         DCHECK(instruction->IsXor());
8111         __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
8112       }
8113     }
8114   } else {
8115     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8116     if (second.IsRegisterPair()) {
8117       if (instruction->IsAnd()) {
8118         __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
8119         __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
8120       } else if (instruction->IsOr()) {
8121         __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
8122         __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
8123       } else {
8124         DCHECK(instruction->IsXor());
8125         __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
8126         __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
8127       }
8128     } else if (second.IsDoubleStackSlot()) {
8129       if (instruction->IsAnd()) {
8130         __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
8131         __ andl(first.AsRegisterPairHigh<Register>(),
8132                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
8133       } else if (instruction->IsOr()) {
8134         __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
8135         __ orl(first.AsRegisterPairHigh<Register>(),
8136                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
8137       } else {
8138         DCHECK(instruction->IsXor());
8139         __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
8140         __ xorl(first.AsRegisterPairHigh<Register>(),
8141                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
8142       }
8143     } else {
8144       DCHECK(second.IsConstant()) << second;
8145       int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
8146       int32_t low_value = Low32Bits(value);
8147       int32_t high_value = High32Bits(value);
8148       Immediate low(low_value);
8149       Immediate high(high_value);
8150       Register first_low = first.AsRegisterPairLow<Register>();
8151       Register first_high = first.AsRegisterPairHigh<Register>();
8152       if (instruction->IsAnd()) {
8153         if (low_value == 0) {
8154           __ xorl(first_low, first_low);
8155         } else if (low_value != -1) {
8156           __ andl(first_low, low);
8157         }
8158         if (high_value == 0) {
8159           __ xorl(first_high, first_high);
8160         } else if (high_value != -1) {
8161           __ andl(first_high, high);
8162         }
8163       } else if (instruction->IsOr()) {
8164         if (low_value != 0) {
8165           __ orl(first_low, low);
8166         }
8167         if (high_value != 0) {
8168           __ orl(first_high, high);
8169         }
8170       } else {
8171         DCHECK(instruction->IsXor());
8172         if (low_value != 0) {
8173           __ xorl(first_low, low);
8174         }
8175         if (high_value != 0) {
8176           __ xorl(first_high, high);
8177         }
8178       }
8179     }
8180   }
8181 }
8182 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8183 void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(
8184     HInstruction* instruction,
8185     Location out,
8186     uint32_t offset,
8187     Location maybe_temp,
8188     ReadBarrierOption read_barrier_option) {
8189   Register out_reg = out.AsRegister<Register>();
8190   if (read_barrier_option == kWithReadBarrier) {
8191     CHECK(kEmitCompilerReadBarrier);
8192     if (kUseBakerReadBarrier) {
8193       // Load with fast path based Baker's read barrier.
8194       // /* HeapReference<Object> */ out = *(out + offset)
8195       codegen_->GenerateFieldLoadWithBakerReadBarrier(
8196           instruction, out, out_reg, offset, /* needs_null_check= */ false);
8197     } else {
8198       // Load with slow path based read barrier.
8199       // Save the value of `out` into `maybe_temp` before overwriting it
8200       // in the following move operation, as we will need it for the
8201       // read barrier below.
8202       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8203       __ movl(maybe_temp.AsRegister<Register>(), out_reg);
8204       // /* HeapReference<Object> */ out = *(out + offset)
8205       __ movl(out_reg, Address(out_reg, offset));
8206       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
8207     }
8208   } else {
8209     // Plain load with no read barrier.
8210     // /* HeapReference<Object> */ out = *(out + offset)
8211     __ movl(out_reg, Address(out_reg, offset));
8212     __ MaybeUnpoisonHeapReference(out_reg);
8213   }
8214 }
8215 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,ReadBarrierOption read_barrier_option)8216 void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(
8217     HInstruction* instruction,
8218     Location out,
8219     Location obj,
8220     uint32_t offset,
8221     ReadBarrierOption read_barrier_option) {
8222   Register out_reg = out.AsRegister<Register>();
8223   Register obj_reg = obj.AsRegister<Register>();
8224   if (read_barrier_option == kWithReadBarrier) {
8225     CHECK(kEmitCompilerReadBarrier);
8226     if (kUseBakerReadBarrier) {
8227       // Load with fast path based Baker's read barrier.
8228       // /* HeapReference<Object> */ out = *(obj + offset)
8229       codegen_->GenerateFieldLoadWithBakerReadBarrier(
8230           instruction, out, obj_reg, offset, /* needs_null_check= */ false);
8231     } else {
8232       // Load with slow path based read barrier.
8233       // /* HeapReference<Object> */ out = *(obj + offset)
8234       __ movl(out_reg, Address(obj_reg, offset));
8235       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
8236     }
8237   } else {
8238     // Plain load with no read barrier.
8239     // /* HeapReference<Object> */ out = *(obj + offset)
8240     __ movl(out_reg, Address(obj_reg, offset));
8241     __ MaybeUnpoisonHeapReference(out_reg);
8242   }
8243 }
8244 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,const Address & address,Label * fixup_label,ReadBarrierOption read_barrier_option)8245 void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(
8246     HInstruction* instruction,
8247     Location root,
8248     const Address& address,
8249     Label* fixup_label,
8250     ReadBarrierOption read_barrier_option) {
8251   Register root_reg = root.AsRegister<Register>();
8252   if (read_barrier_option == kWithReadBarrier) {
8253     DCHECK(kEmitCompilerReadBarrier);
8254     if (kUseBakerReadBarrier) {
8255       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
8256       // Baker's read barrier are used:
8257       //
8258       //   root = obj.field;
8259       //   temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
8260       //   if (temp != null) {
8261       //     root = temp(root)
8262       //   }
8263 
8264       // /* GcRoot<mirror::Object> */ root = *address
8265       __ movl(root_reg, address);
8266       if (fixup_label != nullptr) {
8267         __ Bind(fixup_label);
8268       }
8269       static_assert(
8270           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
8271           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
8272           "have different sizes.");
8273       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
8274                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
8275                     "have different sizes.");
8276 
8277       // Slow path marking the GC root `root`.
8278       SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathX86(
8279           instruction, root, /* unpoison_ref_before_marking= */ false);
8280       codegen_->AddSlowPath(slow_path);
8281 
8282       // Test the entrypoint (`Thread::Current()->pReadBarrierMarkReg ## root.reg()`).
8283       const int32_t entry_point_offset =
8284           Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(root.reg());
8285       __ fs()->cmpl(Address::Absolute(entry_point_offset), Immediate(0));
8286       // The entrypoint is null when the GC is not marking.
8287       __ j(kNotEqual, slow_path->GetEntryLabel());
8288       __ Bind(slow_path->GetExitLabel());
8289     } else {
8290       // GC root loaded through a slow path for read barriers other
8291       // than Baker's.
8292       // /* GcRoot<mirror::Object>* */ root = address
8293       __ leal(root_reg, address);
8294       if (fixup_label != nullptr) {
8295         __ Bind(fixup_label);
8296       }
8297       // /* mirror::Object* */ root = root->Read()
8298       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
8299     }
8300   } else {
8301     // Plain GC root load with no read barrier.
8302     // /* GcRoot<mirror::Object> */ root = *address
8303     __ movl(root_reg, address);
8304     if (fixup_label != nullptr) {
8305       __ Bind(fixup_label);
8306     }
8307     // Note that GC roots are not affected by heap poisoning, thus we
8308     // do not have to unpoison `root_reg` here.
8309   }
8310 }
8311 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,bool needs_null_check)8312 void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8313                                                              Location ref,
8314                                                              Register obj,
8315                                                              uint32_t offset,
8316                                                              bool needs_null_check) {
8317   DCHECK(kEmitCompilerReadBarrier);
8318   DCHECK(kUseBakerReadBarrier);
8319 
8320   // /* HeapReference<Object> */ ref = *(obj + offset)
8321   Address src(obj, offset);
8322   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check);
8323 }
8324 
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)8325 void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
8326                                                              Location ref,
8327                                                              Register obj,
8328                                                              uint32_t data_offset,
8329                                                              Location index,
8330                                                              bool needs_null_check) {
8331   DCHECK(kEmitCompilerReadBarrier);
8332   DCHECK(kUseBakerReadBarrier);
8333 
8334   static_assert(
8335       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
8336       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
8337   // /* HeapReference<Object> */ ref =
8338   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
8339   Address src = CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset);
8340   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check);
8341 }
8342 
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,const Address & src,bool needs_null_check,bool always_update_field,Register * temp)8343 void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
8344                                                                  Location ref,
8345                                                                  Register obj,
8346                                                                  const Address& src,
8347                                                                  bool needs_null_check,
8348                                                                  bool always_update_field,
8349                                                                  Register* temp) {
8350   DCHECK(kEmitCompilerReadBarrier);
8351   DCHECK(kUseBakerReadBarrier);
8352 
8353   // In slow path based read barriers, the read barrier call is
8354   // inserted after the original load. However, in fast path based
8355   // Baker's read barriers, we need to perform the load of
8356   // mirror::Object::monitor_ *before* the original reference load.
8357   // This load-load ordering is required by the read barrier.
8358   // The fast path/slow path (for Baker's algorithm) should look like:
8359   //
8360   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
8361   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
8362   //   HeapReference<Object> ref = *src;  // Original reference load.
8363   //   bool is_gray = (rb_state == ReadBarrier::GrayState());
8364   //   if (is_gray) {
8365   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
8366   //   }
8367   //
8368   // Note: the original implementation in ReadBarrier::Barrier is
8369   // slightly more complex as:
8370   // - it implements the load-load fence using a data dependency on
8371   //   the high-bits of rb_state, which are expected to be all zeroes
8372   //   (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
8373   //   which is a no-op thanks to the x86 memory model);
8374   // - it performs additional checks that we do not do here for
8375   //   performance reasons.
8376 
8377   Register ref_reg = ref.AsRegister<Register>();
8378   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
8379 
8380   // Given the numeric representation, it's enough to check the low bit of the rb_state.
8381   static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
8382   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
8383   constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
8384   constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
8385   constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
8386 
8387   // if (rb_state == ReadBarrier::GrayState())
8388   //   ref = ReadBarrier::Mark(ref);
8389   // At this point, just do the "if" and make sure that flags are preserved until the branch.
8390   __ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value));
8391   if (needs_null_check) {
8392     MaybeRecordImplicitNullCheck(instruction);
8393   }
8394 
8395   // Load fence to prevent load-load reordering.
8396   // Note that this is a no-op, thanks to the x86 memory model.
8397   GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
8398 
8399   // The actual reference load.
8400   // /* HeapReference<Object> */ ref = *src
8401   __ movl(ref_reg, src);  // Flags are unaffected.
8402 
8403   // Note: Reference unpoisoning modifies the flags, so we need to delay it after the branch.
8404   // Slow path marking the object `ref` when it is gray.
8405   SlowPathCode* slow_path;
8406   if (always_update_field) {
8407     DCHECK(temp != nullptr);
8408     slow_path = new (GetScopedAllocator()) ReadBarrierMarkAndUpdateFieldSlowPathX86(
8409         instruction, ref, obj, src, /* unpoison_ref_before_marking= */ true, *temp);
8410   } else {
8411     slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathX86(
8412         instruction, ref, /* unpoison_ref_before_marking= */ true);
8413   }
8414   AddSlowPath(slow_path);
8415 
8416   // We have done the "if" of the gray bit check above, now branch based on the flags.
8417   __ j(kNotZero, slow_path->GetEntryLabel());
8418 
8419   // Object* ref = ref_addr->AsMirrorPtr()
8420   __ MaybeUnpoisonHeapReference(ref_reg);
8421 
8422   __ Bind(slow_path->GetExitLabel());
8423 }
8424 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)8425 void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
8426                                                Location out,
8427                                                Location ref,
8428                                                Location obj,
8429                                                uint32_t offset,
8430                                                Location index) {
8431   DCHECK(kEmitCompilerReadBarrier);
8432 
8433   // Insert a slow path based read barrier *after* the reference load.
8434   //
8435   // If heap poisoning is enabled, the unpoisoning of the loaded
8436   // reference will be carried out by the runtime within the slow
8437   // path.
8438   //
8439   // Note that `ref` currently does not get unpoisoned (when heap
8440   // poisoning is enabled), which is alright as the `ref` argument is
8441   // not used by the artReadBarrierSlow entry point.
8442   //
8443   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
8444   SlowPathCode* slow_path = new (GetScopedAllocator())
8445       ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
8446   AddSlowPath(slow_path);
8447 
8448   __ jmp(slow_path->GetEntryLabel());
8449   __ Bind(slow_path->GetExitLabel());
8450 }
8451 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)8452 void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
8453                                                     Location out,
8454                                                     Location ref,
8455                                                     Location obj,
8456                                                     uint32_t offset,
8457                                                     Location index) {
8458   if (kEmitCompilerReadBarrier) {
8459     // Baker's read barriers shall be handled by the fast path
8460     // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
8461     DCHECK(!kUseBakerReadBarrier);
8462     // If heap poisoning is enabled, unpoisoning will be taken care of
8463     // by the runtime within the slow path.
8464     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
8465   } else if (kPoisonHeapReferences) {
8466     __ UnpoisonHeapReference(out.AsRegister<Register>());
8467   }
8468 }
8469 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)8470 void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
8471                                                       Location out,
8472                                                       Location root) {
8473   DCHECK(kEmitCompilerReadBarrier);
8474 
8475   // Insert a slow path based read barrier *after* the GC root load.
8476   //
8477   // Note that GC roots are not affected by heap poisoning, so we do
8478   // not need to do anything special for this here.
8479   SlowPathCode* slow_path =
8480       new (GetScopedAllocator()) ReadBarrierForRootSlowPathX86(instruction, out, root);
8481   AddSlowPath(slow_path);
8482 
8483   __ jmp(slow_path->GetEntryLabel());
8484   __ Bind(slow_path->GetExitLabel());
8485 }
8486 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)8487 void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
8488   // Nothing to do, this should be removed during prepare for register allocator.
8489   LOG(FATAL) << "Unreachable";
8490 }
8491 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)8492 void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
8493   // Nothing to do, this should be removed during prepare for register allocator.
8494   LOG(FATAL) << "Unreachable";
8495 }
8496 
8497 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)8498 void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
8499   LocationSummary* locations =
8500       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
8501   locations->SetInAt(0, Location::RequiresRegister());
8502 }
8503 
GenPackedSwitchWithCompares(Register value_reg,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)8504 void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
8505                                                               int32_t lower_bound,
8506                                                               uint32_t num_entries,
8507                                                               HBasicBlock* switch_block,
8508                                                               HBasicBlock* default_block) {
8509   // Figure out the correct compare values and jump conditions.
8510   // Handle the first compare/branch as a special case because it might
8511   // jump to the default case.
8512   DCHECK_GT(num_entries, 2u);
8513   Condition first_condition;
8514   uint32_t index;
8515   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
8516   if (lower_bound != 0) {
8517     first_condition = kLess;
8518     __ cmpl(value_reg, Immediate(lower_bound));
8519     __ j(first_condition, codegen_->GetLabelOf(default_block));
8520     __ j(kEqual, codegen_->GetLabelOf(successors[0]));
8521 
8522     index = 1;
8523   } else {
8524     // Handle all the compare/jumps below.
8525     first_condition = kBelow;
8526     index = 0;
8527   }
8528 
8529   // Handle the rest of the compare/jumps.
8530   for (; index + 1 < num_entries; index += 2) {
8531     int32_t compare_to_value = lower_bound + index + 1;
8532     __ cmpl(value_reg, Immediate(compare_to_value));
8533     // Jump to successors[index] if value < case_value[index].
8534     __ j(first_condition, codegen_->GetLabelOf(successors[index]));
8535     // Jump to successors[index + 1] if value == case_value[index + 1].
8536     __ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
8537   }
8538 
8539   if (index != num_entries) {
8540     // There are an odd number of entries. Handle the last one.
8541     DCHECK_EQ(index + 1, num_entries);
8542     __ cmpl(value_reg, Immediate(lower_bound + index));
8543     __ j(kEqual, codegen_->GetLabelOf(successors[index]));
8544   }
8545 
8546   // And the default for any other value.
8547   if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
8548     __ jmp(codegen_->GetLabelOf(default_block));
8549   }
8550 }
8551 
VisitPackedSwitch(HPackedSwitch * switch_instr)8552 void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
8553   int32_t lower_bound = switch_instr->GetStartValue();
8554   uint32_t num_entries = switch_instr->GetNumEntries();
8555   LocationSummary* locations = switch_instr->GetLocations();
8556   Register value_reg = locations->InAt(0).AsRegister<Register>();
8557 
8558   GenPackedSwitchWithCompares(value_reg,
8559                               lower_bound,
8560                               num_entries,
8561                               switch_instr->GetBlock(),
8562                               switch_instr->GetDefaultBlock());
8563 }
8564 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)8565 void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
8566   LocationSummary* locations =
8567       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
8568   locations->SetInAt(0, Location::RequiresRegister());
8569 
8570   // Constant area pointer.
8571   locations->SetInAt(1, Location::RequiresRegister());
8572 
8573   // And the temporary we need.
8574   locations->AddTemp(Location::RequiresRegister());
8575 }
8576 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)8577 void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
8578   int32_t lower_bound = switch_instr->GetStartValue();
8579   uint32_t num_entries = switch_instr->GetNumEntries();
8580   LocationSummary* locations = switch_instr->GetLocations();
8581   Register value_reg = locations->InAt(0).AsRegister<Register>();
8582   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
8583 
8584   if (num_entries <= kPackedSwitchJumpTableThreshold) {
8585     GenPackedSwitchWithCompares(value_reg,
8586                                 lower_bound,
8587                                 num_entries,
8588                                 switch_instr->GetBlock(),
8589                                 default_block);
8590     return;
8591   }
8592 
8593   // Optimizing has a jump area.
8594   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
8595   Register constant_area = locations->InAt(1).AsRegister<Register>();
8596 
8597   // Remove the bias, if needed.
8598   if (lower_bound != 0) {
8599     __ leal(temp_reg, Address(value_reg, -lower_bound));
8600     value_reg = temp_reg;
8601   }
8602 
8603   // Is the value in range?
8604   DCHECK_GE(num_entries, 1u);
8605   __ cmpl(value_reg, Immediate(num_entries - 1));
8606   __ j(kAbove, codegen_->GetLabelOf(default_block));
8607 
8608   // We are in the range of the table.
8609   // Load (target-constant_area) from the jump table, indexing by the value.
8610   __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
8611 
8612   // Compute the actual target address by adding in constant_area.
8613   __ addl(temp_reg, constant_area);
8614 
8615   // And jump.
8616   __ jmp(temp_reg);
8617 }
8618 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)8619 void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
8620     HX86ComputeBaseMethodAddress* insn) {
8621   LocationSummary* locations =
8622       new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall);
8623   locations->SetOut(Location::RequiresRegister());
8624 }
8625 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)8626 void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
8627     HX86ComputeBaseMethodAddress* insn) {
8628   LocationSummary* locations = insn->GetLocations();
8629   Register reg = locations->Out().AsRegister<Register>();
8630 
8631   // Generate call to next instruction.
8632   Label next_instruction;
8633   __ call(&next_instruction);
8634   __ Bind(&next_instruction);
8635 
8636   // Remember this offset for later use with constant area.
8637   codegen_->AddMethodAddressOffset(insn, GetAssembler()->CodeSize());
8638 
8639   // Grab the return address off the stack.
8640   __ popl(reg);
8641 }
8642 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)8643 void LocationsBuilderX86::VisitX86LoadFromConstantTable(
8644     HX86LoadFromConstantTable* insn) {
8645   LocationSummary* locations =
8646       new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall);
8647 
8648   locations->SetInAt(0, Location::RequiresRegister());
8649   locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
8650 
8651   // If we don't need to be materialized, we only need the inputs to be set.
8652   if (insn->IsEmittedAtUseSite()) {
8653     return;
8654   }
8655 
8656   switch (insn->GetType()) {
8657     case DataType::Type::kFloat32:
8658     case DataType::Type::kFloat64:
8659       locations->SetOut(Location::RequiresFpuRegister());
8660       break;
8661 
8662     case DataType::Type::kInt32:
8663       locations->SetOut(Location::RequiresRegister());
8664       break;
8665 
8666     default:
8667       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
8668   }
8669 }
8670 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)8671 void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
8672   if (insn->IsEmittedAtUseSite()) {
8673     return;
8674   }
8675 
8676   LocationSummary* locations = insn->GetLocations();
8677   Location out = locations->Out();
8678   Register const_area = locations->InAt(0).AsRegister<Register>();
8679   HConstant *value = insn->GetConstant();
8680 
8681   switch (insn->GetType()) {
8682     case DataType::Type::kFloat32:
8683       __ movss(out.AsFpuRegister<XmmRegister>(),
8684                codegen_->LiteralFloatAddress(
8685                   value->AsFloatConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
8686       break;
8687 
8688     case DataType::Type::kFloat64:
8689       __ movsd(out.AsFpuRegister<XmmRegister>(),
8690                codegen_->LiteralDoubleAddress(
8691                   value->AsDoubleConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
8692       break;
8693 
8694     case DataType::Type::kInt32:
8695       __ movl(out.AsRegister<Register>(),
8696               codegen_->LiteralInt32Address(
8697                   value->AsIntConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
8698       break;
8699 
8700     default:
8701       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
8702   }
8703 }
8704 
8705 /**
8706  * Class to handle late fixup of offsets into constant area.
8707  */
8708 class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
8709  public:
RIPFixup(CodeGeneratorX86 & codegen,HX86ComputeBaseMethodAddress * base_method_address,size_t offset)8710   RIPFixup(CodeGeneratorX86& codegen,
8711            HX86ComputeBaseMethodAddress* base_method_address,
8712            size_t offset)
8713       : codegen_(&codegen),
8714         base_method_address_(base_method_address),
8715         offset_into_constant_area_(offset) {}
8716 
8717  protected:
SetOffset(size_t offset)8718   void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
8719 
8720   CodeGeneratorX86* codegen_;
8721   HX86ComputeBaseMethodAddress* base_method_address_;
8722 
8723  private:
Process(const MemoryRegion & region,int pos)8724   void Process(const MemoryRegion& region, int pos) override {
8725     // Patch the correct offset for the instruction.  The place to patch is the
8726     // last 4 bytes of the instruction.
8727     // The value to patch is the distance from the offset in the constant area
8728     // from the address computed by the HX86ComputeBaseMethodAddress instruction.
8729     int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
8730     int32_t relative_position =
8731         constant_offset - codegen_->GetMethodAddressOffset(base_method_address_);
8732 
8733     // Patch in the right value.
8734     region.StoreUnaligned<int32_t>(pos - 4, relative_position);
8735   }
8736 
8737   // Location in constant area that the fixup refers to.
8738   int32_t offset_into_constant_area_;
8739 };
8740 
8741 /**
8742  * Class to handle late fixup of offsets to a jump table that will be created in the
8743  * constant area.
8744  */
8745 class JumpTableRIPFixup : public RIPFixup {
8746  public:
JumpTableRIPFixup(CodeGeneratorX86 & codegen,HX86PackedSwitch * switch_instr)8747   JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
8748       : RIPFixup(codegen, switch_instr->GetBaseMethodAddress(), static_cast<size_t>(-1)),
8749         switch_instr_(switch_instr) {}
8750 
CreateJumpTable()8751   void CreateJumpTable() {
8752     X86Assembler* assembler = codegen_->GetAssembler();
8753 
8754     // Ensure that the reference to the jump table has the correct offset.
8755     const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
8756     SetOffset(offset_in_constant_table);
8757 
8758     // The label values in the jump table are computed relative to the
8759     // instruction addressing the constant area.
8760     const int32_t relative_offset = codegen_->GetMethodAddressOffset(base_method_address_);
8761 
8762     // Populate the jump table with the correct values for the jump table.
8763     int32_t num_entries = switch_instr_->GetNumEntries();
8764     HBasicBlock* block = switch_instr_->GetBlock();
8765     const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
8766     // The value that we want is the target offset - the position of the table.
8767     for (int32_t i = 0; i < num_entries; i++) {
8768       HBasicBlock* b = successors[i];
8769       Label* l = codegen_->GetLabelOf(b);
8770       DCHECK(l->IsBound());
8771       int32_t offset_to_block = l->Position() - relative_offset;
8772       assembler->AppendInt32(offset_to_block);
8773     }
8774   }
8775 
8776  private:
8777   const HX86PackedSwitch* switch_instr_;
8778 };
8779 
Finalize(CodeAllocator * allocator)8780 void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
8781   // Generate the constant area if needed.
8782   X86Assembler* assembler = GetAssembler();
8783 
8784   if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
8785     // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
8786     // byte values.
8787     assembler->Align(4, 0);
8788     constant_area_start_ = assembler->CodeSize();
8789 
8790     // Populate any jump tables.
8791     for (JumpTableRIPFixup* jump_table : fixups_to_jump_tables_) {
8792       jump_table->CreateJumpTable();
8793     }
8794 
8795     // And now add the constant area to the generated code.
8796     assembler->AddConstantArea();
8797   }
8798 
8799   // And finish up.
8800   CodeGenerator::Finalize(allocator);
8801 }
8802 
LiteralDoubleAddress(double v,HX86ComputeBaseMethodAddress * method_base,Register reg)8803 Address CodeGeneratorX86::LiteralDoubleAddress(double v,
8804                                                HX86ComputeBaseMethodAddress* method_base,
8805                                                Register reg) {
8806   AssemblerFixup* fixup =
8807       new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddDouble(v));
8808   return Address(reg, kPlaceholder32BitOffset, fixup);
8809 }
8810 
LiteralFloatAddress(float v,HX86ComputeBaseMethodAddress * method_base,Register reg)8811 Address CodeGeneratorX86::LiteralFloatAddress(float v,
8812                                               HX86ComputeBaseMethodAddress* method_base,
8813                                               Register reg) {
8814   AssemblerFixup* fixup =
8815       new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddFloat(v));
8816   return Address(reg, kPlaceholder32BitOffset, fixup);
8817 }
8818 
LiteralInt32Address(int32_t v,HX86ComputeBaseMethodAddress * method_base,Register reg)8819 Address CodeGeneratorX86::LiteralInt32Address(int32_t v,
8820                                               HX86ComputeBaseMethodAddress* method_base,
8821                                               Register reg) {
8822   AssemblerFixup* fixup =
8823       new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddInt32(v));
8824   return Address(reg, kPlaceholder32BitOffset, fixup);
8825 }
8826 
LiteralInt64Address(int64_t v,HX86ComputeBaseMethodAddress * method_base,Register reg)8827 Address CodeGeneratorX86::LiteralInt64Address(int64_t v,
8828                                               HX86ComputeBaseMethodAddress* method_base,
8829                                               Register reg) {
8830   AssemblerFixup* fixup =
8831       new (GetGraph()->GetAllocator()) RIPFixup(*this, method_base, __ AddInt64(v));
8832   return Address(reg, kPlaceholder32BitOffset, fixup);
8833 }
8834 
Load32BitValue(Register dest,int32_t value)8835 void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
8836   if (value == 0) {
8837     __ xorl(dest, dest);
8838   } else {
8839     __ movl(dest, Immediate(value));
8840   }
8841 }
8842 
Compare32BitValue(Register dest,int32_t value)8843 void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
8844   if (value == 0) {
8845     __ testl(dest, dest);
8846   } else {
8847     __ cmpl(dest, Immediate(value));
8848   }
8849 }
8850 
GenerateIntCompare(Location lhs,Location rhs)8851 void CodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
8852   Register lhs_reg = lhs.AsRegister<Register>();
8853   GenerateIntCompare(lhs_reg, rhs);
8854 }
8855 
GenerateIntCompare(Register lhs,Location rhs)8856 void CodeGeneratorX86::GenerateIntCompare(Register lhs, Location rhs) {
8857   if (rhs.IsConstant()) {
8858     int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
8859     Compare32BitValue(lhs, value);
8860   } else if (rhs.IsStackSlot()) {
8861     __ cmpl(lhs, Address(ESP, rhs.GetStackIndex()));
8862   } else {
8863     __ cmpl(lhs, rhs.AsRegister<Register>());
8864   }
8865 }
8866 
ArrayAddress(Register obj,Location index,ScaleFactor scale,uint32_t data_offset)8867 Address CodeGeneratorX86::ArrayAddress(Register obj,
8868                                        Location index,
8869                                        ScaleFactor scale,
8870                                        uint32_t data_offset) {
8871   return index.IsConstant() ?
8872       Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << scale) + data_offset) :
8873       Address(obj, index.AsRegister<Register>(), scale, data_offset);
8874 }
8875 
LiteralCaseTable(HX86PackedSwitch * switch_instr,Register reg,Register value)8876 Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
8877                                            Register reg,
8878                                            Register value) {
8879   // Create a fixup to be used to create and address the jump table.
8880   JumpTableRIPFixup* table_fixup =
8881       new (GetGraph()->GetAllocator()) JumpTableRIPFixup(*this, switch_instr);
8882 
8883   // We have to populate the jump tables.
8884   fixups_to_jump_tables_.push_back(table_fixup);
8885 
8886   // We want a scaled address, as we are extracting the correct offset from the table.
8887   return Address(reg, value, TIMES_4, kPlaceholder32BitOffset, table_fixup);
8888 }
8889 
8890 // TODO: target as memory.
MoveFromReturnRegister(Location target,DataType::Type type)8891 void CodeGeneratorX86::MoveFromReturnRegister(Location target, DataType::Type type) {
8892   if (!target.IsValid()) {
8893     DCHECK_EQ(type, DataType::Type::kVoid);
8894     return;
8895   }
8896 
8897   DCHECK_NE(type, DataType::Type::kVoid);
8898 
8899   Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
8900   if (target.Equals(return_loc)) {
8901     return;
8902   }
8903 
8904   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
8905   //       with the else branch.
8906   if (type == DataType::Type::kInt64) {
8907     HParallelMove parallel_move(GetGraph()->GetAllocator());
8908     parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), DataType::Type::kInt32, nullptr);
8909     parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), DataType::Type::kInt32, nullptr);
8910     GetMoveResolver()->EmitNativeCode(&parallel_move);
8911   } else {
8912     // Let the parallel move resolver take care of all of this.
8913     HParallelMove parallel_move(GetGraph()->GetAllocator());
8914     parallel_move.AddMove(return_loc, target, type, nullptr);
8915     GetMoveResolver()->EmitNativeCode(&parallel_move);
8916   }
8917 }
8918 
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,const PatchInfo<Label> & info,uint64_t index_in_table) const8919 void CodeGeneratorX86::PatchJitRootUse(uint8_t* code,
8920                                        const uint8_t* roots_data,
8921                                        const PatchInfo<Label>& info,
8922                                        uint64_t index_in_table) const {
8923   uint32_t code_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
8924   uintptr_t address =
8925       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
8926   using unaligned_uint32_t __attribute__((__aligned__(1))) = uint32_t;
8927   reinterpret_cast<unaligned_uint32_t*>(code + code_offset)[0] =
8928      dchecked_integral_cast<uint32_t>(address);
8929 }
8930 
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)8931 void CodeGeneratorX86::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
8932   for (const PatchInfo<Label>& info : jit_string_patches_) {
8933     StringReference string_reference(info.target_dex_file, dex::StringIndex(info.offset_or_index));
8934     uint64_t index_in_table = GetJitStringRootIndex(string_reference);
8935     PatchJitRootUse(code, roots_data, info, index_in_table);
8936   }
8937 
8938   for (const PatchInfo<Label>& info : jit_class_patches_) {
8939     TypeReference type_reference(info.target_dex_file, dex::TypeIndex(info.offset_or_index));
8940     uint64_t index_in_table = GetJitClassRootIndex(type_reference);
8941     PatchJitRootUse(code, roots_data, info, index_in_table);
8942   }
8943 }
8944 
VisitIntermediateAddress(HIntermediateAddress * instruction ATTRIBUTE_UNUSED)8945 void LocationsBuilderX86::VisitIntermediateAddress(HIntermediateAddress* instruction
8946                                                    ATTRIBUTE_UNUSED) {
8947   LOG(FATAL) << "Unreachable";
8948 }
8949 
VisitIntermediateAddress(HIntermediateAddress * instruction ATTRIBUTE_UNUSED)8950 void InstructionCodeGeneratorX86::VisitIntermediateAddress(HIntermediateAddress* instruction
8951                                                            ATTRIBUTE_UNUSED) {
8952   LOG(FATAL) << "Unreachable";
8953 }
8954 
CpuHasAvxFeatureFlag()8955 bool LocationsBuilderX86::CpuHasAvxFeatureFlag() {
8956   return codegen_->GetInstructionSetFeatures().HasAVX();
8957 }
CpuHasAvx2FeatureFlag()8958 bool LocationsBuilderX86::CpuHasAvx2FeatureFlag() {
8959   return codegen_->GetInstructionSetFeatures().HasAVX2();
8960 }
CpuHasAvxFeatureFlag()8961 bool InstructionCodeGeneratorX86::CpuHasAvxFeatureFlag() {
8962   return codegen_->GetInstructionSetFeatures().HasAVX();
8963 }
CpuHasAvx2FeatureFlag()8964 bool InstructionCodeGeneratorX86::CpuHasAvx2FeatureFlag() {
8965   return codegen_->GetInstructionSetFeatures().HasAVX2();
8966 }
8967 
8968 #undef __
8969 
8970 }  // namespace x86
8971 }  // namespace art
8972