• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonStridedSliceWorkload.hpp"
7 
8 #include "NeonWorkloadUtils.hpp"
9 #include <neon/NeonTensorHandle.hpp>
10 #include <aclCommon/ArmComputeUtils.hpp>
11 #include <aclCommon/ArmComputeTensorUtils.hpp>
12 #include <armnn/utility/NumericCast.hpp>
13 #include <armnn/utility/PolymorphicDowncast.hpp>
14 #include <backendsCommon/WorkloadUtils.hpp>
15 
16 namespace armnn
17 {
18 
NeonStridedSliceWorkloadValidate(const TensorInfo & input,const TensorInfo & output,const StridedSliceDescriptor & descriptor)19 arm_compute::Status NeonStridedSliceWorkloadValidate(const TensorInfo& input,
20                                                      const TensorInfo& output,
21                                                      const StridedSliceDescriptor& descriptor)
22 {
23     const arm_compute::TensorInfo aclInput = armcomputetensorutils::BuildArmComputeTensorInfo(input);
24     const arm_compute::TensorInfo aclOutput = armcomputetensorutils::BuildArmComputeTensorInfo(output);
25 
26     arm_compute::Coordinates starts;
27     arm_compute::Coordinates ends;
28     arm_compute::Coordinates strides;
29 
30     std::tie(starts, ends, strides) = SetNeonStridedSliceData(descriptor.m_Begin,
31                                                               descriptor.m_End,
32                                                               descriptor.m_Stride);
33 
34     auto numDimensions       = armnn::numeric_cast<int>(input.GetNumDimensions());
35     int32_t begin_mask       = ConvertMaskToACLFormat(descriptor.m_BeginMask, numDimensions);
36     int32_t end_mask         = ConvertMaskToACLFormat(descriptor.m_EndMask, numDimensions);
37     int32_t shrink_axis_mask = ConvertMaskToACLFormat(descriptor.m_ShrinkAxisMask, numDimensions);
38 
39     return arm_compute::NEStridedSlice::validate(&aclInput,
40                                                  &aclOutput,
41                                                  starts,
42                                                  ends,
43                                                  strides,
44                                                  begin_mask,
45                                                  end_mask,
46                                                  shrink_axis_mask);
47 }
48 
NeonStridedSliceWorkload(const StridedSliceQueueDescriptor & descriptor,const WorkloadInfo & info)49 NeonStridedSliceWorkload::NeonStridedSliceWorkload(const StridedSliceQueueDescriptor& descriptor,
50                                                    const WorkloadInfo& info)
51         : BaseWorkload<StridedSliceQueueDescriptor>(descriptor, info)
52 {
53     m_Data.ValidateInputsOutputs("NeonStridedSliceWorkload", 1, 1);
54 
55     arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
56     arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
57 
58     arm_compute::Coordinates starts;
59     arm_compute::Coordinates ends;
60     arm_compute::Coordinates strides;
61 
62     std::tie(starts, ends, strides) = SetNeonStridedSliceData(m_Data.m_Parameters.m_Begin,
63                                                               m_Data.m_Parameters.m_End,
64                                                               m_Data.m_Parameters.m_Stride);
65 
66     auto numDimensions       = armnn::numeric_cast<int>(info.m_InputTensorInfos[0].GetNumDimensions());
67     int32_t begin_mask       = ConvertMaskToACLFormat(m_Data.m_Parameters.m_BeginMask, numDimensions);
68     int32_t end_mask         = ConvertMaskToACLFormat(m_Data.m_Parameters.m_EndMask, numDimensions);
69     int32_t shrink_axis_mask = ConvertMaskToACLFormat(m_Data.m_Parameters.m_ShrinkAxisMask, numDimensions);
70 
71     arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
72     input.info()->set_data_layout(aclDataLayout);
73     output.info()->set_data_layout(aclDataLayout);
74 
75     auto layer = std::make_unique<arm_compute::NEStridedSlice>();
76 
77     layer->configure(&input,
78                      &output,
79                      starts,
80                      ends,
81                      strides,
82                      begin_mask,
83                      end_mask,
84                      shrink_axis_mask);
85     m_Layer.reset(layer.release());
86 }
87 
Execute() const88 void NeonStridedSliceWorkload::Execute() const
89 {
90     ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonStridedSliceWorkload_Execute");
91     m_Layer->run();
92 }
93 
94 } //namespace armnn