• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package runner
6
7import (
8	"crypto"
9	"crypto/aes"
10	"crypto/cipher"
11	"crypto/des"
12	"crypto/hmac"
13	"crypto/md5"
14	"crypto/sha1"
15	"crypto/sha256"
16	"crypto/sha512"
17	"crypto/x509"
18	"hash"
19
20	"golang.org/x/crypto/chacha20poly1305"
21)
22
23// a keyAgreement implements the client and server side of a TLS key agreement
24// protocol by generating and processing key exchange messages.
25type keyAgreement interface {
26	// On the server side, the first two methods are called in order.
27
28	// In the case that the key agreement protocol doesn't use a
29	// ServerKeyExchange message, generateServerKeyExchange can return nil,
30	// nil.
31	generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg, uint16) (*serverKeyExchangeMsg, error)
32	processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
33
34	// On the client side, the next two methods are called in order.
35
36	// This method may not be called if the server doesn't send a
37	// ServerKeyExchange message.
38	processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, crypto.PublicKey, *serverKeyExchangeMsg) error
39	generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
40
41	// peerSignatureAlgorithm returns the signature algorithm used by the
42	// peer, or zero if not applicable.
43	peerSignatureAlgorithm() signatureAlgorithm
44}
45
46const (
47	// suiteECDH indicates that the cipher suite involves elliptic curve
48	// Diffie-Hellman. This means that it should only be selected when the
49	// client indicates that it supports ECC with a curve and point format
50	// that we're happy with.
51	suiteECDHE = 1 << iota
52	// suiteECDSA indicates that the cipher suite involves an ECDSA
53	// signature and therefore may only be selected when the server's
54	// certificate is ECDSA. If this is not set then the cipher suite is
55	// RSA based.
56	suiteECDSA
57	// suiteTLS12 indicates that the cipher suite should only be advertised
58	// and accepted when using TLS 1.2 or greater.
59	suiteTLS12
60	// suiteTLS13 indicates that the cipher suite can be used with TLS 1.3.
61	// Cipher suites lacking this flag may not be used with TLS 1.3.
62	suiteTLS13
63	// suiteSHA384 indicates that the cipher suite uses SHA384 as the
64	// handshake hash.
65	suiteSHA384
66	// suitePSK indicates that the cipher suite authenticates with
67	// a pre-shared key rather than a server private key.
68	suitePSK
69)
70
71type tlsAead struct {
72	cipher.AEAD
73	explicitNonce bool
74}
75
76// A cipherSuite is a specific combination of key agreement, cipher and MAC
77// function. All cipher suites currently assume RSA key agreement.
78type cipherSuite struct {
79	id uint16
80	// the lengths, in bytes, of the key material needed for each component.
81	keyLen int
82	macLen int
83	ivLen  func(version uint16) int
84	ka     func(version uint16) keyAgreement
85	// flags is a bitmask of the suite* values, above.
86	flags  int
87	cipher func(key, iv []byte, isRead bool) interface{}
88	mac    func(version uint16, macKey []byte) macFunction
89	aead   func(version uint16, key, fixedNonce []byte) *tlsAead
90}
91
92func (cs cipherSuite) hash() crypto.Hash {
93	if cs.flags&suiteSHA384 != 0 {
94		return crypto.SHA384
95	}
96	return crypto.SHA256
97}
98
99var cipherSuites = []*cipherSuite{
100	{TLS_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, nil, suiteTLS13, nil, nil, aeadCHACHA20POLY1305},
101	{TLS_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, nil, suiteTLS13, nil, nil, aeadAESGCM},
102	{TLS_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, nil, suiteTLS13 | suiteSHA384, nil, nil, aeadAESGCM},
103	{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
104	{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
105	{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
106	{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
107	{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
108	{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
109	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
110	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil},
111	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
112	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
113	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil},
114	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil},
115	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
116	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
117	{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
118	{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
119	{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
120	{TLS_RSA_WITH_AES_256_CBC_SHA256, 32, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
121	{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil},
122	{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil},
123	{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
124	{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, rsaKA, 0, cipher3DES, macSHA1, nil},
125	{TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdhePSKKA, suiteECDHE | suitePSK | suiteTLS12, nil, nil, aeadCHACHA20POLY1305},
126	{TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil},
127	{TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil},
128	{TLS_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil},
129	{TLS_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil},
130	{TLS_RSA_WITH_NULL_SHA, 0, 20, noIV, rsaKA, 0, cipherNull, macSHA1, nil},
131}
132
133func noIV(vers uint16) int {
134	return 0
135}
136
137func ivLenChaCha20Poly1305(vers uint16) int {
138	return 12
139}
140
141func ivLenAESGCM(vers uint16) int {
142	if vers >= VersionTLS13 {
143		return 12
144	}
145	return 4
146}
147
148func ivLenAES(vers uint16) int {
149	return 16
150}
151
152func ivLen3DES(vers uint16) int {
153	return 8
154}
155
156type nullCipher struct{}
157
158func cipherNull(key, iv []byte, isRead bool) interface{} {
159	return nullCipher{}
160}
161
162func cipher3DES(key, iv []byte, isRead bool) interface{} {
163	block, _ := des.NewTripleDESCipher(key)
164	if isRead {
165		return cipher.NewCBCDecrypter(block, iv)
166	}
167	return cipher.NewCBCEncrypter(block, iv)
168}
169
170func cipherAES(key, iv []byte, isRead bool) interface{} {
171	block, _ := aes.NewCipher(key)
172	if isRead {
173		return cipher.NewCBCDecrypter(block, iv)
174	}
175	return cipher.NewCBCEncrypter(block, iv)
176}
177
178// macSHA1 returns a macFunction for the given protocol version.
179func macSHA1(version uint16, key []byte) macFunction {
180	return tls10MAC{hmac.New(sha1.New, key)}
181}
182
183func macMD5(version uint16, key []byte) macFunction {
184	return tls10MAC{hmac.New(md5.New, key)}
185}
186
187func macSHA256(version uint16, key []byte) macFunction {
188	return tls10MAC{hmac.New(sha256.New, key)}
189}
190
191func macSHA384(version uint16, key []byte) macFunction {
192	return tls10MAC{hmac.New(sha512.New384, key)}
193}
194
195type macFunction interface {
196	Size() int
197	MAC(digestBuf, seq, header, length, data []byte) []byte
198}
199
200// fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
201// each call.
202type fixedNonceAEAD struct {
203	// sealNonce and openNonce are buffers where the larger nonce will be
204	// constructed. Since a seal and open operation may be running
205	// concurrently, there is a separate buffer for each.
206	sealNonce, openNonce []byte
207	aead                 cipher.AEAD
208}
209
210func (f *fixedNonceAEAD) NonceSize() int { return 8 }
211func (f *fixedNonceAEAD) Overhead() int  { return f.aead.Overhead() }
212
213func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
214	copy(f.sealNonce[len(f.sealNonce)-8:], nonce)
215	return f.aead.Seal(out, f.sealNonce, plaintext, additionalData)
216}
217
218func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
219	copy(f.openNonce[len(f.openNonce)-8:], nonce)
220	return f.aead.Open(out, f.openNonce, plaintext, additionalData)
221}
222
223func aeadAESGCM(version uint16, key, fixedNonce []byte) *tlsAead {
224	aes, err := aes.NewCipher(key)
225	if err != nil {
226		panic(err)
227	}
228	aead, err := cipher.NewGCM(aes)
229	if err != nil {
230		panic(err)
231	}
232
233	nonce1, nonce2 := make([]byte, 12), make([]byte, 12)
234	copy(nonce1, fixedNonce)
235	copy(nonce2, fixedNonce)
236
237	if version >= VersionTLS13 {
238		return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false}
239	}
240
241	return &tlsAead{&fixedNonceAEAD{nonce1, nonce2, aead}, true}
242}
243
244func xorSlice(out, in []byte) {
245	for i := range out {
246		out[i] ^= in[i]
247	}
248}
249
250// xorNonceAEAD wraps an AEAD and XORs a fixed portion of the nonce, left-padded
251// if necessary, each call.
252type xorNonceAEAD struct {
253	// sealNonce and openNonce are buffers where the larger nonce will be
254	// constructed. Since a seal and open operation may be running
255	// concurrently, there is a separate buffer for each.
256	sealNonce, openNonce []byte
257	aead                 cipher.AEAD
258}
259
260func (x *xorNonceAEAD) NonceSize() int { return 8 }
261func (x *xorNonceAEAD) Overhead() int  { return x.aead.Overhead() }
262
263func (x *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
264	xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce)
265	ret := x.aead.Seal(out, x.sealNonce, plaintext, additionalData)
266	xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce)
267	return ret
268}
269
270func (x *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
271	xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce)
272	ret, err := x.aead.Open(out, x.openNonce, plaintext, additionalData)
273	xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce)
274	return ret, err
275}
276
277func aeadCHACHA20POLY1305(version uint16, key, fixedNonce []byte) *tlsAead {
278	aead, err := chacha20poly1305.New(key)
279	if err != nil {
280		panic(err)
281	}
282
283	nonce1, nonce2 := make([]byte, len(fixedNonce)), make([]byte, len(fixedNonce))
284	copy(nonce1, fixedNonce)
285	copy(nonce2, fixedNonce)
286
287	return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false}
288}
289
290// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3.
291type tls10MAC struct {
292	h hash.Hash
293}
294
295func (s tls10MAC) Size() int {
296	return s.h.Size()
297}
298
299func (s tls10MAC) MAC(digestBuf, seq, header, length, data []byte) []byte {
300	s.h.Reset()
301	s.h.Write(seq)
302	s.h.Write(header)
303	s.h.Write(length)
304	s.h.Write(data)
305	return s.h.Sum(digestBuf[:0])
306}
307
308func rsaKA(version uint16) keyAgreement {
309	return &rsaKeyAgreement{version: version}
310}
311
312func ecdheECDSAKA(version uint16) keyAgreement {
313	return &ecdheKeyAgreement{
314		auth: &signedKeyAgreement{
315			keyType: keyTypeECDSA,
316			version: version,
317		},
318	}
319}
320
321func ecdheRSAKA(version uint16) keyAgreement {
322	return &ecdheKeyAgreement{
323		auth: &signedKeyAgreement{
324			keyType: keyTypeRSA,
325			version: version,
326		},
327	}
328}
329
330func pskKA(version uint16) keyAgreement {
331	return &pskKeyAgreement{
332		base: &nilKeyAgreement{},
333	}
334}
335
336func ecdhePSKKA(version uint16) keyAgreement {
337	return &pskKeyAgreement{
338		base: &ecdheKeyAgreement{
339			auth: &nilKeyAgreementAuthentication{},
340		},
341	}
342}
343
344// mutualCipherSuite returns a cipherSuite given a list of supported
345// ciphersuites and the id requested by the peer.
346func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
347	for _, id := range have {
348		if id == want {
349			return cipherSuiteFromID(id)
350		}
351	}
352	return nil
353}
354
355func cipherSuiteFromID(id uint16) *cipherSuite {
356	for _, suite := range cipherSuites {
357		if suite.id == id {
358			return suite
359		}
360	}
361	return nil
362}
363
364// A list of the possible cipher suite ids. Taken from
365// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
366const (
367	TLS_RSA_WITH_NULL_SHA                         uint16 = 0x0002
368	TLS_RSA_WITH_3DES_EDE_CBC_SHA                 uint16 = 0x000a
369	TLS_RSA_WITH_AES_128_CBC_SHA                  uint16 = 0x002f
370	TLS_RSA_WITH_AES_256_CBC_SHA                  uint16 = 0x0035
371	TLS_RSA_WITH_AES_128_CBC_SHA256               uint16 = 0x003c
372	TLS_RSA_WITH_AES_256_CBC_SHA256               uint16 = 0x003d
373	TLS_PSK_WITH_AES_128_CBC_SHA                  uint16 = 0x008c
374	TLS_PSK_WITH_AES_256_CBC_SHA                  uint16 = 0x008d
375	TLS_RSA_WITH_AES_128_GCM_SHA256               uint16 = 0x009c
376	TLS_RSA_WITH_AES_256_GCM_SHA384               uint16 = 0x009d
377	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA          uint16 = 0xc009
378	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA          uint16 = 0xc00a
379	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0xc012
380	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA            uint16 = 0xc013
381	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA            uint16 = 0xc014
382	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256       uint16 = 0xc023
383	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384       uint16 = 0xc024
384	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0xc027
385	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384         uint16 = 0xc028
386	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256       uint16 = 0xc02b
387	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384       uint16 = 0xc02c
388	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0xc02f
389	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0xc030
390	TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA            uint16 = 0xc035
391	TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA            uint16 = 0xc036
392	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xcca8
393	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9
394	TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xccac
395	renegotiationSCSV                             uint16 = 0x00ff
396	fallbackSCSV                                  uint16 = 0x5600
397)
398
399// Additional cipher suite IDs, not IANA-assigned.
400const (
401	TLS_AES_128_GCM_SHA256       uint16 = 0x1301
402	TLS_AES_256_GCM_SHA384       uint16 = 0x1302
403	TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
404)
405