1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/utils/SkPolyUtils.h"
9
10 #include <limits>
11
12 #include "include/private/SkNx.h"
13 #include "include/private/SkTArray.h"
14 #include "include/private/SkTemplates.h"
15 #include "src/core/SkPointPriv.h"
16 #include "src/core/SkRectPriv.h"
17 #include "src/core/SkTDPQueue.h"
18 #include "src/core/SkTInternalLList.h"
19
20 //////////////////////////////////////////////////////////////////////////////////
21 // Helper data structures and functions
22
23 struct OffsetSegment {
24 SkPoint fP0;
25 SkVector fV;
26 };
27
28 constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
29
30 // Computes perpDot for point p compared to segment defined by origin p0 and vector v.
31 // A positive value means the point is to the left of the segment,
32 // negative is to the right, 0 is collinear.
compute_side(const SkPoint & p0,const SkVector & v,const SkPoint & p)33 static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
34 SkVector w = p - p0;
35 SkScalar perpDot = v.cross(w);
36 if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
37 return ((perpDot > 0) ? 1 : -1);
38 }
39
40 return 0;
41 }
42
43 // Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
SkGetPolygonWinding(const SkPoint * polygonVerts,int polygonSize)44 int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
45 if (polygonSize < 3) {
46 return 0;
47 }
48
49 // compute area and use sign to determine winding
50 SkScalar quadArea = 0;
51 SkVector v0 = polygonVerts[1] - polygonVerts[0];
52 for (int curr = 2; curr < polygonSize; ++curr) {
53 SkVector v1 = polygonVerts[curr] - polygonVerts[0];
54 quadArea += v0.cross(v1);
55 v0 = v1;
56 }
57 if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
58 return 0;
59 }
60 // 1 == ccw, -1 == cw
61 return (quadArea > 0) ? 1 : -1;
62 }
63
64 // Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
compute_offset_vector(const SkPoint & p0,const SkPoint & p1,SkScalar offset,int side,SkPoint * vector)65 bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
66 SkPoint* vector) {
67 SkASSERT(side == -1 || side == 1);
68 // if distances are equal, can just outset by the perpendicular
69 SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
70 if (!perp.setLength(offset*side)) {
71 return false;
72 }
73 *vector = perp;
74 return true;
75 }
76
77 // check interval to see if intersection is in segment
outside_interval(SkScalar numer,SkScalar denom,bool denomPositive)78 static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
79 return (denomPositive && (numer < 0 || numer > denom)) ||
80 (!denomPositive && (numer > 0 || numer < denom));
81 }
82
83 // special zero-length test when we're using vdotv as a denominator
zero_length(const SkPoint & v,SkScalar vdotv)84 static inline bool zero_length(const SkPoint& v, SkScalar vdotv) {
85 return !(SkScalarsAreFinite(v.fX, v.fY) && vdotv);
86 }
87
88 // Compute the intersection 'p' between segments s0 and s1, if any.
89 // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
90 // Returns false if there is no intersection.
91 // If the length squared of a segment is 0, then we treat the segment as degenerate
92 // and use only the first endpoint for tests.
compute_intersection(const OffsetSegment & s0,const OffsetSegment & s1,SkPoint * p,SkScalar * s,SkScalar * t)93 static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
94 SkPoint* p, SkScalar* s, SkScalar* t) {
95 const SkVector& v0 = s0.fV;
96 const SkVector& v1 = s1.fV;
97 SkVector w = s1.fP0 - s0.fP0;
98 SkScalar denom = v0.cross(v1);
99 bool denomPositive = (denom > 0);
100 SkScalar sNumer, tNumer;
101 if (SkScalarNearlyZero(denom, kCrossTolerance)) {
102 // segments are parallel, but not collinear
103 if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
104 !SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
105 return false;
106 }
107
108 // Check for zero-length segments
109 SkScalar v0dotv0 = v0.dot(v0);
110 if (zero_length(v0, v0dotv0)) {
111 // Both are zero-length
112 SkScalar v1dotv1 = v1.dot(v1);
113 if (zero_length(v1, v1dotv1)) {
114 // Check if they're the same point
115 if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
116 *p = s0.fP0;
117 *s = 0;
118 *t = 0;
119 return true;
120 } else {
121 // Intersection is indeterminate
122 return false;
123 }
124 }
125 // Otherwise project segment0's origin onto segment1
126 tNumer = v1.dot(-w);
127 denom = v1dotv1;
128 if (outside_interval(tNumer, denom, true)) {
129 return false;
130 }
131 sNumer = 0;
132 } else {
133 // Project segment1's endpoints onto segment0
134 sNumer = v0.dot(w);
135 denom = v0dotv0;
136 tNumer = 0;
137 if (outside_interval(sNumer, denom, true)) {
138 // The first endpoint doesn't lie on segment0
139 // If segment1 is degenerate, then there's no collision
140 SkScalar v1dotv1 = v1.dot(v1);
141 if (zero_length(v1, v1dotv1)) {
142 return false;
143 }
144
145 // Otherwise try the other one
146 SkScalar oldSNumer = sNumer;
147 sNumer = v0.dot(w + v1);
148 tNumer = denom;
149 if (outside_interval(sNumer, denom, true)) {
150 // it's possible that segment1's interval surrounds segment0
151 // this is false if params have the same signs, and in that case no collision
152 if (sNumer*oldSNumer > 0) {
153 return false;
154 }
155 // otherwise project segment0's endpoint onto segment1 instead
156 sNumer = 0;
157 tNumer = v1.dot(-w);
158 denom = v1dotv1;
159 }
160 }
161 }
162 } else {
163 sNumer = w.cross(v1);
164 if (outside_interval(sNumer, denom, denomPositive)) {
165 return false;
166 }
167 tNumer = w.cross(v0);
168 if (outside_interval(tNumer, denom, denomPositive)) {
169 return false;
170 }
171 }
172
173 SkScalar localS = sNumer/denom;
174 SkScalar localT = tNumer/denom;
175
176 *p = s0.fP0 + v0*localS;
177 *s = localS;
178 *t = localT;
179
180 return true;
181 }
182
SkIsConvexPolygon(const SkPoint * polygonVerts,int polygonSize)183 bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
184 if (polygonSize < 3) {
185 return false;
186 }
187
188 SkScalar lastPerpDot = 0;
189 int xSignChangeCount = 0;
190 int ySignChangeCount = 0;
191
192 int prevIndex = polygonSize - 1;
193 int currIndex = 0;
194 int nextIndex = 1;
195 SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
196 SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
197 for (int i = 0; i < polygonSize; ++i) {
198 if (!polygonVerts[i].isFinite()) {
199 return false;
200 }
201
202 // Check that winding direction is always the same (otherwise we have a reflex vertex)
203 SkScalar perpDot = v0.cross(v1);
204 if (lastPerpDot*perpDot < 0) {
205 return false;
206 }
207 if (0 != perpDot) {
208 lastPerpDot = perpDot;
209 }
210
211 // Check that the signs of the edge vectors don't change more than twice per coordinate
212 if (v0.fX*v1.fX < 0) {
213 xSignChangeCount++;
214 }
215 if (v0.fY*v1.fY < 0) {
216 ySignChangeCount++;
217 }
218 if (xSignChangeCount > 2 || ySignChangeCount > 2) {
219 return false;
220 }
221 prevIndex = currIndex;
222 currIndex = nextIndex;
223 nextIndex = (currIndex + 1) % polygonSize;
224 v0 = v1;
225 v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
226 }
227
228 return true;
229 }
230
231 struct OffsetEdge {
232 OffsetEdge* fPrev;
233 OffsetEdge* fNext;
234 OffsetSegment fOffset;
235 SkPoint fIntersection;
236 SkScalar fTValue;
237 uint16_t fIndex;
238 uint16_t fEnd;
239
initOffsetEdge240 void init(uint16_t start = 0, uint16_t end = 0) {
241 fIntersection = fOffset.fP0;
242 fTValue = SK_ScalarMin;
243 fIndex = start;
244 fEnd = end;
245 }
246
247 // special intersection check that looks for endpoint intersection
checkIntersectionOffsetEdge248 bool checkIntersection(const OffsetEdge* that,
249 SkPoint* p, SkScalar* s, SkScalar* t) {
250 if (this->fEnd == that->fIndex) {
251 SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
252 if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
253 *p = p1;
254 *s = SK_Scalar1;
255 *t = 0;
256 return true;
257 }
258 }
259
260 return compute_intersection(this->fOffset, that->fOffset, p, s, t);
261 }
262
263 // computes the line intersection and then the "distance" from that to this
264 // this is really a signed squared distance, where negative means that
265 // the intersection lies inside this->fOffset
computeCrossingDistanceOffsetEdge266 SkScalar computeCrossingDistance(const OffsetEdge* that) {
267 const OffsetSegment& s0 = this->fOffset;
268 const OffsetSegment& s1 = that->fOffset;
269 const SkVector& v0 = s0.fV;
270 const SkVector& v1 = s1.fV;
271
272 SkScalar denom = v0.cross(v1);
273 if (SkScalarNearlyZero(denom, kCrossTolerance)) {
274 // segments are parallel
275 return SK_ScalarMax;
276 }
277
278 SkVector w = s1.fP0 - s0.fP0;
279 SkScalar localS = w.cross(v1) / denom;
280 if (localS < 0) {
281 localS = -localS;
282 } else {
283 localS -= SK_Scalar1;
284 }
285
286 localS *= SkScalarAbs(localS);
287 localS *= v0.dot(v0);
288
289 return localS;
290 }
291
292 };
293
remove_node(const OffsetEdge * node,OffsetEdge ** head)294 static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
295 // remove from linked list
296 node->fPrev->fNext = node->fNext;
297 node->fNext->fPrev = node->fPrev;
298 if (node == *head) {
299 *head = (node->fNext == node) ? nullptr : node->fNext;
300 }
301 }
302
303 //////////////////////////////////////////////////////////////////////////////////
304
305 // The objective here is to inset all of the edges by the given distance, and then
306 // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
307 // we should only be making left-hand turns (for cw polygons, we use the winding
308 // parameter to reverse this). We detect this by checking whether the second intersection
309 // on an edge is closer to its tail than the first one.
310 //
311 // We might also have the case that there is no intersection between two neighboring inset edges.
312 // In this case, one edge will lie to the right of the other and should be discarded along with
313 // its previous intersection (if any).
314 //
315 // Note: the assumption is that inputPolygon is convex and has no coincident points.
316 //
SkInsetConvexPolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,SkScalar inset,SkTDArray<SkPoint> * insetPolygon)317 bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
318 SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
319 if (inputPolygonSize < 3) {
320 return false;
321 }
322
323 // restrict this to match other routines
324 // practically we don't want anything bigger than this anyway
325 if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
326 return false;
327 }
328
329 // can't inset by a negative or non-finite amount
330 if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) {
331 return false;
332 }
333
334 // insetting close to zero just returns the original poly
335 if (inset <= SK_ScalarNearlyZero) {
336 for (int i = 0; i < inputPolygonSize; ++i) {
337 *insetPolygon->push() = inputPolygonVerts[i];
338 }
339 return true;
340 }
341
342 // get winding direction
343 int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
344 if (0 == winding) {
345 return false;
346 }
347
348 // set up
349 SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
350 int prev = inputPolygonSize - 1;
351 for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
352 int next = (curr + 1) % inputPolygonSize;
353 if (!inputPolygonVerts[curr].isFinite()) {
354 return false;
355 }
356 // check for convexity just to be sure
357 if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
358 inputPolygonVerts[next])*winding < 0) {
359 return false;
360 }
361 SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
362 SkVector perp = SkVector::Make(-v.fY, v.fX);
363 perp.setLength(inset*winding);
364 edgeData[curr].fPrev = &edgeData[prev];
365 edgeData[curr].fNext = &edgeData[next];
366 edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
367 edgeData[curr].fOffset.fV = v;
368 edgeData[curr].init();
369 }
370
371 OffsetEdge* head = &edgeData[0];
372 OffsetEdge* currEdge = head;
373 OffsetEdge* prevEdge = currEdge->fPrev;
374 int insetVertexCount = inputPolygonSize;
375 unsigned int iterations = 0;
376 unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
377 while (head && prevEdge != currEdge) {
378 ++iterations;
379 // we should check each edge against each other edge at most once
380 if (iterations > maxIterations) {
381 return false;
382 }
383
384 SkScalar s, t;
385 SkPoint intersection;
386 if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
387 &intersection, &s, &t)) {
388 // if new intersection is further back on previous inset from the prior intersection
389 if (s < prevEdge->fTValue) {
390 // no point in considering this one again
391 remove_node(prevEdge, &head);
392 --insetVertexCount;
393 // go back one segment
394 prevEdge = prevEdge->fPrev;
395 // we've already considered this intersection, we're done
396 } else if (currEdge->fTValue > SK_ScalarMin &&
397 SkPointPriv::EqualsWithinTolerance(intersection,
398 currEdge->fIntersection,
399 1.0e-6f)) {
400 break;
401 } else {
402 // add intersection
403 currEdge->fIntersection = intersection;
404 currEdge->fTValue = t;
405
406 // go to next segment
407 prevEdge = currEdge;
408 currEdge = currEdge->fNext;
409 }
410 } else {
411 // if prev to right side of curr
412 int side = winding*compute_side(currEdge->fOffset.fP0,
413 currEdge->fOffset.fV,
414 prevEdge->fOffset.fP0);
415 if (side < 0 &&
416 side == winding*compute_side(currEdge->fOffset.fP0,
417 currEdge->fOffset.fV,
418 prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
419 // no point in considering this one again
420 remove_node(prevEdge, &head);
421 --insetVertexCount;
422 // go back one segment
423 prevEdge = prevEdge->fPrev;
424 } else {
425 // move to next segment
426 remove_node(currEdge, &head);
427 --insetVertexCount;
428 currEdge = currEdge->fNext;
429 }
430 }
431 }
432
433 // store all the valid intersections that aren't nearly coincident
434 // TODO: look at the main algorithm and see if we can detect these better
435 insetPolygon->reset();
436 if (!head) {
437 return false;
438 }
439
440 static constexpr SkScalar kCleanupTolerance = 0.01f;
441 if (insetVertexCount >= 0) {
442 insetPolygon->setReserve(insetVertexCount);
443 }
444 int currIndex = 0;
445 *insetPolygon->push() = head->fIntersection;
446 currEdge = head->fNext;
447 while (currEdge != head) {
448 if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
449 (*insetPolygon)[currIndex],
450 kCleanupTolerance)) {
451 *insetPolygon->push() = currEdge->fIntersection;
452 currIndex++;
453 }
454 currEdge = currEdge->fNext;
455 }
456 // make sure the first and last points aren't coincident
457 if (currIndex >= 1 &&
458 SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
459 kCleanupTolerance)) {
460 insetPolygon->pop();
461 }
462
463 return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count());
464 }
465
466 ///////////////////////////////////////////////////////////////////////////////////////////
467
468 // compute the number of points needed for a circular join when offsetting a reflex vertex
SkComputeRadialSteps(const SkVector & v1,const SkVector & v2,SkScalar offset,SkScalar * rotSin,SkScalar * rotCos,int * n)469 bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
470 SkScalar* rotSin, SkScalar* rotCos, int* n) {
471 const SkScalar kRecipPixelsPerArcSegment = 0.25f;
472
473 SkScalar rCos = v1.dot(v2);
474 if (!SkScalarIsFinite(rCos)) {
475 return false;
476 }
477 SkScalar rSin = v1.cross(v2);
478 if (!SkScalarIsFinite(rSin)) {
479 return false;
480 }
481 SkScalar theta = SkScalarATan2(rSin, rCos);
482
483 SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
484 // limit the number of steps to at most max uint16_t (that's all we can index)
485 // knock one value off the top to account for rounding
486 if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
487 return false;
488 }
489 int steps = SkScalarRoundToInt(floatSteps);
490
491 SkScalar dTheta = steps > 0 ? theta / steps : 0;
492 *rotSin = SkScalarSin(dTheta);
493 *rotCos = SkScalarCos(dTheta);
494 // Our offset may be so large that we end up with a tiny dTheta, in which case we
495 // lose precision when computing rotSin and rotCos.
496 if (steps > 0 && (*rotSin == 0 || *rotCos == 1)) {
497 return false;
498 }
499 *n = steps;
500 return true;
501 }
502
503 ///////////////////////////////////////////////////////////////////////////////////////////
504
505 // a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
left(const SkPoint & p0,const SkPoint & p1)506 static bool left(const SkPoint& p0, const SkPoint& p1) {
507 return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
508 }
509
510 // a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
right(const SkPoint & p0,const SkPoint & p1)511 static bool right(const SkPoint& p0, const SkPoint& p1) {
512 return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
513 }
514
515 struct Vertex {
LeftVertex516 static bool Left(const Vertex& qv0, const Vertex& qv1) {
517 return left(qv0.fPosition, qv1.fPosition);
518 }
519
520 // packed to fit into 16 bytes (one cache line)
521 SkPoint fPosition;
522 uint16_t fIndex; // index in unsorted polygon
523 uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
524 uint16_t fNextIndex;
525 uint16_t fFlags;
526 };
527
528 enum VertexFlags {
529 kPrevLeft_VertexFlag = 0x1,
530 kNextLeft_VertexFlag = 0x2,
531 };
532
533 struct ActiveEdge {
ActiveEdgeActiveEdge534 ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
ActiveEdgeActiveEdge535 ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
536 : fSegment({ p0, v })
537 , fIndex0(index0)
538 , fIndex1(index1)
539 , fAbove(nullptr)
540 , fBelow(nullptr)
541 , fRed(true) {
542 fChild[0] = nullptr;
543 fChild[1] = nullptr;
544 }
545
546 // Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
547 // This is only used to verify the edgelist -- the actual test for insertion/deletion is much
548 // simpler because we can make certain assumptions then.
aboveIfLeftActiveEdge549 bool aboveIfLeft(const ActiveEdge* that) const {
550 const SkPoint& p0 = this->fSegment.fP0;
551 const SkPoint& q0 = that->fSegment.fP0;
552 SkASSERT(p0.fX <= q0.fX);
553 SkVector d = q0 - p0;
554 const SkVector& v = this->fSegment.fV;
555 const SkVector& w = that->fSegment.fV;
556 // The idea here is that if the vector between the origins of the two segments (d)
557 // rotates counterclockwise up to the vector representing the "this" segment (v),
558 // then we know that "this" is above "that". If the result is clockwise we say it's below.
559 if (this->fIndex0 != that->fIndex0) {
560 SkScalar cross = d.cross(v);
561 if (cross > kCrossTolerance) {
562 return true;
563 } else if (cross < -kCrossTolerance) {
564 return false;
565 }
566 } else if (this->fIndex1 == that->fIndex1) {
567 return false;
568 }
569 // At this point either the two origins are nearly equal or the origin of "that"
570 // lies on dv. So then we try the same for the vector from the tail of "this"
571 // to the head of "that". Again, ccw means "this" is above "that".
572 // d = that.P1 - this.P0
573 // = that.fP0 + that.fV - this.fP0
574 // = that.fP0 - this.fP0 + that.fV
575 // = old_d + that.fV
576 d += w;
577 SkScalar cross = d.cross(v);
578 if (cross > kCrossTolerance) {
579 return true;
580 } else if (cross < -kCrossTolerance) {
581 return false;
582 }
583 // If the previous check fails, the two segments are nearly collinear
584 // First check y-coord of first endpoints
585 if (p0.fX < q0.fX) {
586 return (p0.fY >= q0.fY);
587 } else if (p0.fY > q0.fY) {
588 return true;
589 } else if (p0.fY < q0.fY) {
590 return false;
591 }
592 // The first endpoints are the same, so check the other endpoint
593 SkPoint p1 = p0 + v;
594 SkPoint q1 = q0 + w;
595 if (p1.fX < q1.fX) {
596 return (p1.fY >= q1.fY);
597 } else {
598 return (p1.fY > q1.fY);
599 }
600 }
601
602 // same as leftAndAbove(), but generalized
aboveActiveEdge603 bool above(const ActiveEdge* that) const {
604 const SkPoint& p0 = this->fSegment.fP0;
605 const SkPoint& q0 = that->fSegment.fP0;
606 if (right(p0, q0)) {
607 return !that->aboveIfLeft(this);
608 } else {
609 return this->aboveIfLeft(that);
610 }
611 }
612
intersectActiveEdge613 bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
614 // check first to see if these edges are neighbors in the polygon
615 if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
616 this->fIndex0 == index1 || this->fIndex1 == index1) {
617 return false;
618 }
619
620 // We don't need the exact intersection point so we can do a simpler test here.
621 const SkPoint& p0 = this->fSegment.fP0;
622 const SkVector& v = this->fSegment.fV;
623 SkPoint p1 = p0 + v;
624 SkPoint q1 = q0 + w;
625
626 // We assume some x-overlap due to how the edgelist works
627 // This allows us to simplify our test
628 // We need some slop here because storing the vector and recomputing the second endpoint
629 // doesn't necessary give us the original result in floating point.
630 // TODO: Store vector as double? Store endpoint as well?
631 SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
632
633 // if each segment straddles the other (i.e., the endpoints have different sides)
634 // then they intersect
635 bool result;
636 if (p0.fX < q0.fX) {
637 if (q1.fX < p1.fX) {
638 result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
639 } else {
640 result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
641 }
642 } else {
643 if (p1.fX < q1.fX) {
644 result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
645 } else {
646 result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
647 }
648 }
649 return result;
650 }
651
intersectActiveEdge652 bool intersect(const ActiveEdge* edge) {
653 return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
654 }
655
lessThanActiveEdge656 bool lessThan(const ActiveEdge* that) const {
657 SkASSERT(!this->above(this));
658 SkASSERT(!that->above(that));
659 SkASSERT(!(this->above(that) && that->above(this)));
660 return this->above(that);
661 }
662
equalsActiveEdge663 bool equals(uint16_t index0, uint16_t index1) const {
664 return (this->fIndex0 == index0 && this->fIndex1 == index1);
665 }
666
667 OffsetSegment fSegment;
668 uint16_t fIndex0; // indices for previous and next vertex in polygon
669 uint16_t fIndex1;
670 ActiveEdge* fChild[2];
671 ActiveEdge* fAbove;
672 ActiveEdge* fBelow;
673 int32_t fRed;
674 };
675
676 class ActiveEdgeList {
677 public:
ActiveEdgeList(int maxEdges)678 ActiveEdgeList(int maxEdges) {
679 fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
680 fCurrFree = 0;
681 fMaxFree = maxEdges;
682 }
~ActiveEdgeList()683 ~ActiveEdgeList() {
684 fTreeHead.fChild[1] = nullptr;
685 sk_free(fAllocation);
686 }
687
insert(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)688 bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
689 SkVector v = p1 - p0;
690 if (!v.isFinite()) {
691 return false;
692 }
693 // empty tree case -- easy
694 if (!fTreeHead.fChild[1]) {
695 ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
696 SkASSERT(root);
697 if (!root) {
698 return false;
699 }
700 root->fRed = false;
701 return true;
702 }
703
704 // set up helpers
705 ActiveEdge* top = &fTreeHead;
706 ActiveEdge *grandparent = nullptr;
707 ActiveEdge *parent = nullptr;
708 ActiveEdge *curr = top->fChild[1];
709 int dir = 0;
710 int last = 0; // ?
711 // predecessor and successor, for intersection check
712 ActiveEdge* pred = nullptr;
713 ActiveEdge* succ = nullptr;
714
715 // search down the tree
716 while (true) {
717 if (!curr) {
718 // check for intersection with predecessor and successor
719 if ((pred && pred->intersect(p0, v, index0, index1)) ||
720 (succ && succ->intersect(p0, v, index0, index1))) {
721 return false;
722 }
723 // insert new node at bottom
724 parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
725 SkASSERT(curr);
726 if (!curr) {
727 return false;
728 }
729 curr->fAbove = pred;
730 curr->fBelow = succ;
731 if (pred) {
732 pred->fBelow = curr;
733 }
734 if (succ) {
735 succ->fAbove = curr;
736 }
737 if (IsRed(parent)) {
738 int dir2 = (top->fChild[1] == grandparent);
739 if (curr == parent->fChild[last]) {
740 top->fChild[dir2] = SingleRotation(grandparent, !last);
741 } else {
742 top->fChild[dir2] = DoubleRotation(grandparent, !last);
743 }
744 }
745 break;
746 } else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
747 // color flip
748 curr->fRed = true;
749 curr->fChild[0]->fRed = false;
750 curr->fChild[1]->fRed = false;
751 if (IsRed(parent)) {
752 int dir2 = (top->fChild[1] == grandparent);
753 if (curr == parent->fChild[last]) {
754 top->fChild[dir2] = SingleRotation(grandparent, !last);
755 } else {
756 top->fChild[dir2] = DoubleRotation(grandparent, !last);
757 }
758 }
759 }
760
761 last = dir;
762 int side;
763 // check to see if segment is above or below
764 if (curr->fIndex0 == index0) {
765 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
766 } else {
767 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
768 }
769 if (0 == side) {
770 return false;
771 }
772 dir = (side < 0);
773
774 if (0 == dir) {
775 succ = curr;
776 } else {
777 pred = curr;
778 }
779
780 // update helpers
781 if (grandparent) {
782 top = grandparent;
783 }
784 grandparent = parent;
785 parent = curr;
786 curr = curr->fChild[dir];
787 }
788
789 // update root and make it black
790 fTreeHead.fChild[1]->fRed = false;
791
792 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
793
794 return true;
795 }
796
797 // replaces edge p0p1 with p1p2
replace(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t index0,uint16_t index1,uint16_t index2)798 bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
799 uint16_t index0, uint16_t index1, uint16_t index2) {
800 if (!fTreeHead.fChild[1]) {
801 return false;
802 }
803
804 SkVector v = p2 - p1;
805 ActiveEdge* curr = &fTreeHead;
806 ActiveEdge* found = nullptr;
807 int dir = 1;
808
809 // search
810 while (curr->fChild[dir] != nullptr) {
811 // update helpers
812 curr = curr->fChild[dir];
813 // save found node
814 if (curr->equals(index0, index1)) {
815 found = curr;
816 break;
817 } else {
818 // check to see if segment is above or below
819 int side;
820 if (curr->fIndex1 == index1) {
821 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
822 } else {
823 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
824 }
825 if (0 == side) {
826 return false;
827 }
828 dir = (side < 0);
829 }
830 }
831
832 if (!found) {
833 return false;
834 }
835
836 // replace if found
837 ActiveEdge* pred = found->fAbove;
838 ActiveEdge* succ = found->fBelow;
839 // check deletion and insert intersection cases
840 if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
841 return false;
842 }
843 if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
844 return false;
845 }
846 found->fSegment.fP0 = p1;
847 found->fSegment.fV = v;
848 found->fIndex0 = index1;
849 found->fIndex1 = index2;
850 // above and below should stay the same
851
852 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
853
854 return true;
855 }
856
remove(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)857 bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
858 if (!fTreeHead.fChild[1]) {
859 return false;
860 }
861
862 ActiveEdge* curr = &fTreeHead;
863 ActiveEdge* parent = nullptr;
864 ActiveEdge* grandparent = nullptr;
865 ActiveEdge* found = nullptr;
866 int dir = 1;
867
868 // search and push a red node down
869 while (curr->fChild[dir] != nullptr) {
870 int last = dir;
871
872 // update helpers
873 grandparent = parent;
874 parent = curr;
875 curr = curr->fChild[dir];
876 // save found node
877 if (curr->equals(index0, index1)) {
878 found = curr;
879 dir = 0;
880 } else {
881 // check to see if segment is above or below
882 int side;
883 if (curr->fIndex1 == index1) {
884 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
885 } else {
886 side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
887 }
888 if (0 == side) {
889 return false;
890 }
891 dir = (side < 0);
892 }
893
894 // push the red node down
895 if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
896 if (IsRed(curr->fChild[!dir])) {
897 parent = parent->fChild[last] = SingleRotation(curr, dir);
898 } else {
899 ActiveEdge *s = parent->fChild[!last];
900
901 if (s != nullptr) {
902 if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
903 // color flip
904 parent->fRed = false;
905 s->fRed = true;
906 curr->fRed = true;
907 } else {
908 int dir2 = (grandparent->fChild[1] == parent);
909
910 if (IsRed(s->fChild[last])) {
911 grandparent->fChild[dir2] = DoubleRotation(parent, last);
912 } else if (IsRed(s->fChild[!last])) {
913 grandparent->fChild[dir2] = SingleRotation(parent, last);
914 }
915
916 // ensure correct coloring
917 curr->fRed = grandparent->fChild[dir2]->fRed = true;
918 grandparent->fChild[dir2]->fChild[0]->fRed = false;
919 grandparent->fChild[dir2]->fChild[1]->fRed = false;
920 }
921 }
922 }
923 }
924 }
925
926 // replace and remove if found
927 if (found) {
928 ActiveEdge* pred = found->fAbove;
929 ActiveEdge* succ = found->fBelow;
930 if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
931 return false;
932 }
933 if (found != curr) {
934 found->fSegment = curr->fSegment;
935 found->fIndex0 = curr->fIndex0;
936 found->fIndex1 = curr->fIndex1;
937 found->fAbove = curr->fAbove;
938 pred = found->fAbove;
939 // we don't need to set found->fBelow here
940 } else {
941 if (succ) {
942 succ->fAbove = pred;
943 }
944 }
945 if (pred) {
946 pred->fBelow = curr->fBelow;
947 }
948 parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
949
950 // no need to delete
951 curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
952 curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
953 if (fTreeHead.fChild[1]) {
954 fTreeHead.fChild[1]->fRed = false;
955 }
956 }
957
958 // update root and make it black
959 if (fTreeHead.fChild[1]) {
960 fTreeHead.fChild[1]->fRed = false;
961 }
962
963 SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
964
965 return true;
966 }
967
968 private:
969 // allocator
allocate(const SkPoint & p0,const SkPoint & p1,uint16_t index0,uint16_t index1)970 ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
971 if (fCurrFree >= fMaxFree) {
972 return nullptr;
973 }
974 char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
975 ++fCurrFree;
976 return new(bytes) ActiveEdge(p0, p1, index0, index1);
977 }
978
979 ///////////////////////////////////////////////////////////////////////////////////
980 // Red-black tree methods
981 ///////////////////////////////////////////////////////////////////////////////////
IsRed(const ActiveEdge * node)982 static bool IsRed(const ActiveEdge* node) {
983 return node && node->fRed;
984 }
985
SingleRotation(ActiveEdge * node,int dir)986 static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
987 ActiveEdge* tmp = node->fChild[!dir];
988
989 node->fChild[!dir] = tmp->fChild[dir];
990 tmp->fChild[dir] = node;
991
992 node->fRed = true;
993 tmp->fRed = false;
994
995 return tmp;
996 }
997
DoubleRotation(ActiveEdge * node,int dir)998 static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
999 node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
1000
1001 return SingleRotation(node, dir);
1002 }
1003
1004 // returns black link count
VerifyTree(const ActiveEdge * tree)1005 static int VerifyTree(const ActiveEdge* tree) {
1006 if (!tree) {
1007 return 1;
1008 }
1009
1010 const ActiveEdge* left = tree->fChild[0];
1011 const ActiveEdge* right = tree->fChild[1];
1012
1013 // no consecutive red links
1014 if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
1015 SkASSERT(false);
1016 return 0;
1017 }
1018
1019 // check secondary links
1020 if (tree->fAbove) {
1021 SkASSERT(tree->fAbove->fBelow == tree);
1022 SkASSERT(tree->fAbove->lessThan(tree));
1023 }
1024 if (tree->fBelow) {
1025 SkASSERT(tree->fBelow->fAbove == tree);
1026 SkASSERT(tree->lessThan(tree->fBelow));
1027 }
1028
1029 // violates binary tree order
1030 if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
1031 SkASSERT(false);
1032 return 0;
1033 }
1034
1035 int leftCount = VerifyTree(left);
1036 int rightCount = VerifyTree(right);
1037
1038 // return black link count
1039 if (leftCount != 0 && rightCount != 0) {
1040 // black height mismatch
1041 if (leftCount != rightCount) {
1042 SkASSERT(false);
1043 return 0;
1044 }
1045 return IsRed(tree) ? leftCount : leftCount + 1;
1046 } else {
1047 return 0;
1048 }
1049 }
1050
1051 ActiveEdge fTreeHead;
1052 char* fAllocation;
1053 int fCurrFree;
1054 int fMaxFree;
1055 };
1056
1057 // Here we implement a sweep line algorithm to determine whether the provided points
1058 // represent a simple polygon, i.e., the polygon is non-self-intersecting.
1059 // We first insert the vertices into a priority queue sorting horizontally from left to right.
1060 // Then as we pop the vertices from the queue we generate events which indicate that an edge
1061 // should be added or removed from an edge list. If any intersections are detected in the edge
1062 // list, then we know the polygon is self-intersecting and hence not simple.
SkIsSimplePolygon(const SkPoint * polygon,int polygonSize)1063 bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
1064 if (polygonSize < 3) {
1065 return false;
1066 }
1067
1068 // If it's convex, it's simple
1069 if (SkIsConvexPolygon(polygon, polygonSize)) {
1070 return true;
1071 }
1072
1073 // practically speaking, it takes too long to process large polygons
1074 if (polygonSize > 2048) {
1075 return false;
1076 }
1077
1078 SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
1079 for (int i = 0; i < polygonSize; ++i) {
1080 Vertex newVertex;
1081 if (!polygon[i].isFinite()) {
1082 return false;
1083 }
1084 newVertex.fPosition = polygon[i];
1085 newVertex.fIndex = i;
1086 newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
1087 newVertex.fNextIndex = (i + 1) % polygonSize;
1088 newVertex.fFlags = 0;
1089 // The two edges adjacent to this vertex are the same, so polygon is not simple
1090 if (polygon[newVertex.fPrevIndex] == polygon[newVertex.fNextIndex]) {
1091 return false;
1092 }
1093 if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
1094 newVertex.fFlags |= kPrevLeft_VertexFlag;
1095 }
1096 if (left(polygon[newVertex.fNextIndex], polygon[i])) {
1097 newVertex.fFlags |= kNextLeft_VertexFlag;
1098 }
1099 vertexQueue.insert(newVertex);
1100 }
1101
1102 // pop each vertex from the queue and generate events depending on
1103 // where it lies relative to its neighboring edges
1104 ActiveEdgeList sweepLine(polygonSize);
1105 while (vertexQueue.count() > 0) {
1106 const Vertex& v = vertexQueue.peek();
1107
1108 // both to the right -- insert both
1109 if (v.fFlags == 0) {
1110 if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
1111 break;
1112 }
1113 if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
1114 break;
1115 }
1116 // both to the left -- remove both
1117 } else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
1118 if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
1119 break;
1120 }
1121 if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
1122 break;
1123 }
1124 // one to left and right -- replace one with another
1125 } else {
1126 if (v.fFlags & kPrevLeft_VertexFlag) {
1127 if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
1128 v.fPrevIndex, v.fIndex, v.fNextIndex)) {
1129 break;
1130 }
1131 } else {
1132 SkASSERT(v.fFlags & kNextLeft_VertexFlag);
1133 if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
1134 v.fNextIndex, v.fIndex, v.fPrevIndex)) {
1135 break;
1136 }
1137 }
1138 }
1139
1140 vertexQueue.pop();
1141 }
1142
1143 return (vertexQueue.count() == 0);
1144 }
1145
1146 ///////////////////////////////////////////////////////////////////////////////////////////
1147
1148 // helper function for SkOffsetSimplePolygon
setup_offset_edge(OffsetEdge * currEdge,const SkPoint & endpoint0,const SkPoint & endpoint1,uint16_t startIndex,uint16_t endIndex)1149 static void setup_offset_edge(OffsetEdge* currEdge,
1150 const SkPoint& endpoint0, const SkPoint& endpoint1,
1151 uint16_t startIndex, uint16_t endIndex) {
1152 currEdge->fOffset.fP0 = endpoint0;
1153 currEdge->fOffset.fV = endpoint1 - endpoint0;
1154 currEdge->init(startIndex, endIndex);
1155 }
1156
is_reflex_vertex(const SkPoint * inputPolygonVerts,int winding,SkScalar offset,uint16_t prevIndex,uint16_t currIndex,uint16_t nextIndex)1157 static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
1158 uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
1159 int side = compute_side(inputPolygonVerts[prevIndex],
1160 inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
1161 inputPolygonVerts[nextIndex]);
1162 // if reflex point, we need to add extra edges
1163 return (side*winding*offset < 0);
1164 }
1165
SkOffsetSimplePolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,const SkRect & bounds,SkScalar offset,SkTDArray<SkPoint> * offsetPolygon,SkTDArray<int> * polygonIndices)1166 bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
1167 const SkRect& bounds, SkScalar offset,
1168 SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
1169 if (inputPolygonSize < 3) {
1170 return false;
1171 }
1172
1173 // need to be able to represent all the vertices in the 16-bit indices
1174 if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
1175 return false;
1176 }
1177
1178 if (!SkScalarIsFinite(offset)) {
1179 return false;
1180 }
1181
1182 // can't inset more than the half bounds of the polygon
1183 if (offset > std::min(SkTAbs(SkRectPriv::HalfWidth(bounds)),
1184 SkTAbs(SkRectPriv::HalfHeight(bounds)))) {
1185 return false;
1186 }
1187
1188 // offsetting close to zero just returns the original poly
1189 if (SkScalarNearlyZero(offset)) {
1190 for (int i = 0; i < inputPolygonSize; ++i) {
1191 *offsetPolygon->push() = inputPolygonVerts[i];
1192 if (polygonIndices) {
1193 *polygonIndices->push() = i;
1194 }
1195 }
1196 return true;
1197 }
1198
1199 // get winding direction
1200 int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
1201 if (0 == winding) {
1202 return false;
1203 }
1204
1205 // build normals
1206 SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize);
1207 unsigned int numEdges = 0;
1208 for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1209 currIndex < inputPolygonSize;
1210 prevIndex = currIndex, ++currIndex) {
1211 if (!inputPolygonVerts[currIndex].isFinite()) {
1212 return false;
1213 }
1214 int nextIndex = (currIndex + 1) % inputPolygonSize;
1215 if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
1216 offset, winding, &normals[currIndex])) {
1217 return false;
1218 }
1219 if (currIndex > 0) {
1220 // if reflex point, we need to add extra edges
1221 if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1222 prevIndex, currIndex, nextIndex)) {
1223 SkScalar rotSin, rotCos;
1224 int numSteps;
1225 if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
1226 &rotSin, &rotCos, &numSteps)) {
1227 return false;
1228 }
1229 numEdges += std::max(numSteps, 1);
1230 }
1231 }
1232 numEdges++;
1233 }
1234 // finish up the edge counting
1235 if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
1236 SkScalar rotSin, rotCos;
1237 int numSteps;
1238 if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
1239 &rotSin, &rotCos, &numSteps)) {
1240 return false;
1241 }
1242 numEdges += std::max(numSteps, 1);
1243 }
1244
1245 // Make sure we don't overflow the max array count.
1246 // We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
1247 // and we have a max of 2^16-1 original vertices.
1248 if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
1249 return false;
1250 }
1251
1252 // build initial offset edge list
1253 SkSTArray<64, OffsetEdge> edgeData(numEdges);
1254 OffsetEdge* prevEdge = nullptr;
1255 for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
1256 currIndex < inputPolygonSize;
1257 prevIndex = currIndex, ++currIndex) {
1258 int nextIndex = (currIndex + 1) % inputPolygonSize;
1259 // if reflex point, fill in curve
1260 if (is_reflex_vertex(inputPolygonVerts, winding, offset,
1261 prevIndex, currIndex, nextIndex)) {
1262 SkScalar rotSin, rotCos;
1263 int numSteps;
1264 SkVector prevNormal = normals[prevIndex];
1265 if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
1266 &rotSin, &rotCos, &numSteps)) {
1267 return false;
1268 }
1269 auto currEdge = edgeData.push_back_n(std::max(numSteps, 1));
1270 for (int i = 0; i < numSteps - 1; ++i) {
1271 SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
1272 prevNormal.fY*rotCos + prevNormal.fX*rotSin);
1273 setup_offset_edge(currEdge,
1274 inputPolygonVerts[currIndex] + prevNormal,
1275 inputPolygonVerts[currIndex] + currNormal,
1276 currIndex, currIndex);
1277 prevNormal = currNormal;
1278 currEdge->fPrev = prevEdge;
1279 if (prevEdge) {
1280 prevEdge->fNext = currEdge;
1281 }
1282 prevEdge = currEdge;
1283 ++currEdge;
1284 }
1285 setup_offset_edge(currEdge,
1286 inputPolygonVerts[currIndex] + prevNormal,
1287 inputPolygonVerts[currIndex] + normals[currIndex],
1288 currIndex, currIndex);
1289 currEdge->fPrev = prevEdge;
1290 if (prevEdge) {
1291 prevEdge->fNext = currEdge;
1292 }
1293 prevEdge = currEdge;
1294 }
1295
1296 // Add the edge
1297 auto currEdge = edgeData.push_back_n(1);
1298 setup_offset_edge(currEdge,
1299 inputPolygonVerts[currIndex] + normals[currIndex],
1300 inputPolygonVerts[nextIndex] + normals[currIndex],
1301 currIndex, nextIndex);
1302 currEdge->fPrev = prevEdge;
1303 if (prevEdge) {
1304 prevEdge->fNext = currEdge;
1305 }
1306 prevEdge = currEdge;
1307 }
1308 // close up the linked list
1309 SkASSERT(prevEdge);
1310 prevEdge->fNext = &edgeData[0];
1311 edgeData[0].fPrev = prevEdge;
1312
1313 // now clip edges
1314 SkASSERT(edgeData.count() == (int)numEdges);
1315 auto head = &edgeData[0];
1316 auto currEdge = head;
1317 unsigned int offsetVertexCount = numEdges;
1318 unsigned long long iterations = 0;
1319 unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
1320 while (head && prevEdge != currEdge && offsetVertexCount > 0) {
1321 ++iterations;
1322 // we should check each edge against each other edge at most once
1323 if (iterations > maxIterations) {
1324 return false;
1325 }
1326
1327 SkScalar s, t;
1328 SkPoint intersection;
1329 if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
1330 // if new intersection is further back on previous inset from the prior intersection
1331 if (s < prevEdge->fTValue) {
1332 // no point in considering this one again
1333 remove_node(prevEdge, &head);
1334 --offsetVertexCount;
1335 // go back one segment
1336 prevEdge = prevEdge->fPrev;
1337 // we've already considered this intersection, we're done
1338 } else if (currEdge->fTValue > SK_ScalarMin &&
1339 SkPointPriv::EqualsWithinTolerance(intersection,
1340 currEdge->fIntersection,
1341 1.0e-6f)) {
1342 break;
1343 } else {
1344 // add intersection
1345 currEdge->fIntersection = intersection;
1346 currEdge->fTValue = t;
1347 currEdge->fIndex = prevEdge->fEnd;
1348
1349 // go to next segment
1350 prevEdge = currEdge;
1351 currEdge = currEdge->fNext;
1352 }
1353 } else {
1354 // If there is no intersection, we want to minimize the distance between
1355 // the point where the segment lines cross and the segments themselves.
1356 OffsetEdge* prevPrevEdge = prevEdge->fPrev;
1357 OffsetEdge* currNextEdge = currEdge->fNext;
1358 SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
1359 SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
1360 // if both lead to direct collision
1361 if (dist0 < 0 && dist1 < 0) {
1362 // check first to see if either represent parts of one contour
1363 SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
1364 bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1365 prevEdge->fOffset.fP0);
1366 p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
1367 bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
1368 currNextEdge->fOffset.fP0);
1369
1370 // want to step along contour to find intersections rather than jump to new one
1371 if (currSameContour && !prevSameContour) {
1372 remove_node(currEdge, &head);
1373 currEdge = currNextEdge;
1374 --offsetVertexCount;
1375 continue;
1376 } else if (prevSameContour && !currSameContour) {
1377 remove_node(prevEdge, &head);
1378 prevEdge = prevPrevEdge;
1379 --offsetVertexCount;
1380 continue;
1381 }
1382 }
1383
1384 // otherwise minimize collision distance along segment
1385 if (dist0 < dist1) {
1386 remove_node(prevEdge, &head);
1387 prevEdge = prevPrevEdge;
1388 } else {
1389 remove_node(currEdge, &head);
1390 currEdge = currNextEdge;
1391 }
1392 --offsetVertexCount;
1393 }
1394 }
1395
1396 // store all the valid intersections that aren't nearly coincident
1397 // TODO: look at the main algorithm and see if we can detect these better
1398 offsetPolygon->reset();
1399 if (!head || offsetVertexCount == 0 ||
1400 offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
1401 return false;
1402 }
1403
1404 static constexpr SkScalar kCleanupTolerance = 0.01f;
1405 offsetPolygon->setReserve(offsetVertexCount);
1406 int currIndex = 0;
1407 *offsetPolygon->push() = head->fIntersection;
1408 if (polygonIndices) {
1409 *polygonIndices->push() = head->fIndex;
1410 }
1411 currEdge = head->fNext;
1412 while (currEdge != head) {
1413 if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
1414 (*offsetPolygon)[currIndex],
1415 kCleanupTolerance)) {
1416 *offsetPolygon->push() = currEdge->fIntersection;
1417 if (polygonIndices) {
1418 *polygonIndices->push() = currEdge->fIndex;
1419 }
1420 currIndex++;
1421 }
1422 currEdge = currEdge->fNext;
1423 }
1424 // make sure the first and last points aren't coincident
1425 if (currIndex >= 1 &&
1426 SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
1427 kCleanupTolerance)) {
1428 offsetPolygon->pop();
1429 if (polygonIndices) {
1430 polygonIndices->pop();
1431 }
1432 }
1433
1434 // check winding of offset polygon (it should be same as the original polygon)
1435 SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->count());
1436
1437 return (winding*offsetWinding > 0 &&
1438 SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->count()));
1439 }
1440
1441 //////////////////////////////////////////////////////////////////////////////////////////
1442
1443 struct TriangulationVertex {
1444 SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
1445
1446 enum class VertexType { kConvex, kReflex };
1447
1448 SkPoint fPosition;
1449 VertexType fVertexType;
1450 uint16_t fIndex;
1451 uint16_t fPrevIndex;
1452 uint16_t fNextIndex;
1453 };
1454
compute_triangle_bounds(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkRect * bounds)1455 static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1456 SkRect* bounds) {
1457 Sk4s min, max;
1458 min = max = Sk4s(p0.fX, p0.fY, p0.fX, p0.fY);
1459 Sk4s xy(p1.fX, p1.fY, p2.fX, p2.fY);
1460 min = Sk4s::Min(min, xy);
1461 max = Sk4s::Max(max, xy);
1462 bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
1463 std::max(max[0], max[2]), std::max(max[1], max[3]));
1464 }
1465
1466 // test to see if point p is in triangle p0p1p2.
1467 // for now assuming strictly inside -- if on the edge it's outside
point_in_triangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p)1468 static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1469 const SkPoint& p) {
1470 SkVector v0 = p1 - p0;
1471 SkVector v1 = p2 - p1;
1472 SkScalar n = v0.cross(v1);
1473
1474 SkVector w0 = p - p0;
1475 if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
1476 return false;
1477 }
1478
1479 SkVector w1 = p - p1;
1480 if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
1481 return false;
1482 }
1483
1484 SkVector v2 = p0 - p2;
1485 SkVector w2 = p - p2;
1486 if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
1487 return false;
1488 }
1489
1490 return true;
1491 }
1492
1493 // Data structure to track reflex vertices and check whether any are inside a given triangle
1494 class ReflexHash {
1495 public:
init(const SkRect & bounds,int vertexCount)1496 bool init(const SkRect& bounds, int vertexCount) {
1497 fBounds = bounds;
1498 fNumVerts = 0;
1499 SkScalar width = bounds.width();
1500 SkScalar height = bounds.height();
1501 if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) {
1502 return false;
1503 }
1504
1505 // We want vertexCount grid cells, roughly distributed to match the bounds ratio
1506 SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
1507 if (!SkScalarIsFinite(hCount)) {
1508 return false;
1509 }
1510 fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1);
1511 fVCount = vertexCount/fHCount;
1512 fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
1513 sk_ieee_float_divide(fVCount - 0.001f, height));
1514 if (!fGridConversion.isFinite()) {
1515 return false;
1516 }
1517
1518 fGrid.setCount(fHCount*fVCount);
1519 for (int i = 0; i < fGrid.count(); ++i) {
1520 fGrid[i].reset();
1521 }
1522
1523 return true;
1524 }
1525
add(TriangulationVertex * v)1526 void add(TriangulationVertex* v) {
1527 int index = hash(v);
1528 fGrid[index].addToTail(v);
1529 ++fNumVerts;
1530 }
1531
remove(TriangulationVertex * v)1532 void remove(TriangulationVertex* v) {
1533 int index = hash(v);
1534 fGrid[index].remove(v);
1535 --fNumVerts;
1536 }
1537
checkTriangle(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,uint16_t ignoreIndex0,uint16_t ignoreIndex1) const1538 bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
1539 uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
1540 if (!fNumVerts) {
1541 return false;
1542 }
1543
1544 SkRect triBounds;
1545 compute_triangle_bounds(p0, p1, p2, &triBounds);
1546 int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
1547 int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
1548 int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
1549 int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
1550
1551 for (int v = v0; v <= v1; ++v) {
1552 for (int h = h0; h <= h1; ++h) {
1553 int i = v * fHCount + h;
1554 for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
1555 reflexIter != fGrid[i].end(); ++reflexIter) {
1556 TriangulationVertex* reflexVertex = *reflexIter;
1557 if (reflexVertex->fIndex != ignoreIndex0 &&
1558 reflexVertex->fIndex != ignoreIndex1 &&
1559 point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
1560 return true;
1561 }
1562 }
1563
1564 }
1565 }
1566
1567 return false;
1568 }
1569
1570 private:
hash(TriangulationVertex * vert) const1571 int hash(TriangulationVertex* vert) const {
1572 int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
1573 int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
1574 SkASSERT(v*fHCount + h >= 0);
1575 return v*fHCount + h;
1576 }
1577
1578 SkRect fBounds;
1579 int fHCount;
1580 int fVCount;
1581 int fNumVerts;
1582 // converts distance from the origin to a grid location (when cast to int)
1583 SkVector fGridConversion;
1584 SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
1585 };
1586
1587 // Check to see if a reflex vertex has become a convex vertex after clipping an ear
reclassify_vertex(TriangulationVertex * p,const SkPoint * polygonVerts,int winding,ReflexHash * reflexHash,SkTInternalLList<TriangulationVertex> * convexList)1588 static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
1589 int winding, ReflexHash* reflexHash,
1590 SkTInternalLList<TriangulationVertex>* convexList) {
1591 if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
1592 SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
1593 SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
1594 if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1595 p->fVertexType = TriangulationVertex::VertexType::kConvex;
1596 reflexHash->remove(p);
1597 p->fPrev = p->fNext = nullptr;
1598 convexList->addToTail(p);
1599 }
1600 }
1601 }
1602
SkTriangulateSimplePolygon(const SkPoint * polygonVerts,uint16_t * indexMap,int polygonSize,SkTDArray<uint16_t> * triangleIndices)1603 bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
1604 SkTDArray<uint16_t>* triangleIndices) {
1605 if (polygonSize < 3) {
1606 return false;
1607 }
1608 // need to be able to represent all the vertices in the 16-bit indices
1609 if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
1610 return false;
1611 }
1612
1613 // get bounds
1614 SkRect bounds;
1615 if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
1616 return false;
1617 }
1618 // get winding direction
1619 // TODO: we do this for all the polygon routines -- might be better to have the client
1620 // compute it and pass it in
1621 int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
1622 if (0 == winding) {
1623 return false;
1624 }
1625
1626 // Set up vertices
1627 SkAutoSTArray<64, TriangulationVertex> triangulationVertices(polygonSize);
1628 int prevIndex = polygonSize - 1;
1629 SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
1630 for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
1631 int nextIndex = (currIndex + 1) % polygonSize;
1632
1633 triangulationVertices[currIndex] = TriangulationVertex{};
1634 triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
1635 triangulationVertices[currIndex].fIndex = currIndex;
1636 triangulationVertices[currIndex].fPrevIndex = prevIndex;
1637 triangulationVertices[currIndex].fNextIndex = nextIndex;
1638 SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
1639 if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1640 triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
1641 } else {
1642 triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
1643 }
1644
1645 prevIndex = currIndex;
1646 v0 = v1;
1647 }
1648
1649 // Classify initial vertices into a list of convex vertices and a hash of reflex vertices
1650 // TODO: possibly sort the convexList in some way to get better triangles
1651 SkTInternalLList<TriangulationVertex> convexList;
1652 ReflexHash reflexHash;
1653 if (!reflexHash.init(bounds, polygonSize)) {
1654 return false;
1655 }
1656 prevIndex = polygonSize - 1;
1657 for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
1658 TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
1659 if (TriangulationVertex::VertexType::kConvex == currType) {
1660 int nextIndex = (currIndex + 1) % polygonSize;
1661 TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
1662 TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
1663 // We prioritize clipping vertices with neighboring reflex vertices.
1664 // The intent here is that it will cull reflex vertices more quickly.
1665 if (TriangulationVertex::VertexType::kReflex == prevType ||
1666 TriangulationVertex::VertexType::kReflex == nextType) {
1667 convexList.addToHead(&triangulationVertices[currIndex]);
1668 } else {
1669 convexList.addToTail(&triangulationVertices[currIndex]);
1670 }
1671 } else {
1672 // We treat near collinear vertices as reflex
1673 reflexHash.add(&triangulationVertices[currIndex]);
1674 }
1675 }
1676
1677 // The general concept: We are trying to find three neighboring vertices where
1678 // no other vertex lies inside the triangle (an "ear"). If we find one, we clip
1679 // that ear off, and then repeat on the new polygon. Once we get down to three vertices
1680 // we have triangulated the entire polygon.
1681 // In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
1682 // noting that only convex vertices can be potential ears, and we only need to check whether
1683 // any reflex vertices lie inside the ear.
1684 triangleIndices->setReserve(triangleIndices->count() + 3 * (polygonSize - 2));
1685 int vertexCount = polygonSize;
1686 while (vertexCount > 3) {
1687 bool success = false;
1688 TriangulationVertex* earVertex = nullptr;
1689 TriangulationVertex* p0 = nullptr;
1690 TriangulationVertex* p2 = nullptr;
1691 // find a convex vertex to clip
1692 for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
1693 convexIter != convexList.end(); ++convexIter) {
1694 earVertex = *convexIter;
1695 SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
1696
1697 p0 = &triangulationVertices[earVertex->fPrevIndex];
1698 p2 = &triangulationVertices[earVertex->fNextIndex];
1699
1700 // see if any reflex vertices are inside the ear
1701 bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
1702 p2->fPosition, p0->fIndex, p2->fIndex);
1703 if (failed) {
1704 continue;
1705 }
1706
1707 // found one we can clip
1708 success = true;
1709 break;
1710 }
1711 // If we can't find any ears to clip, this probably isn't a simple polygon
1712 if (!success) {
1713 return false;
1714 }
1715
1716 // add indices
1717 auto indices = triangleIndices->append(3);
1718 indices[0] = indexMap[p0->fIndex];
1719 indices[1] = indexMap[earVertex->fIndex];
1720 indices[2] = indexMap[p2->fIndex];
1721
1722 // clip the ear
1723 convexList.remove(earVertex);
1724 --vertexCount;
1725
1726 // reclassify reflex verts
1727 p0->fNextIndex = earVertex->fNextIndex;
1728 reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
1729
1730 p2->fPrevIndex = earVertex->fPrevIndex;
1731 reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
1732 }
1733
1734 // output indices
1735 for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
1736 vertexIter != convexList.end(); ++vertexIter) {
1737 TriangulationVertex* vertex = *vertexIter;
1738 *triangleIndices->push() = indexMap[vertex->fIndex];
1739 }
1740
1741 return true;
1742 }
1743
1744 ///////////
1745
crs(SkVector a,SkVector b)1746 static double crs(SkVector a, SkVector b) {
1747 return a.fX * b.fY - a.fY * b.fX;
1748 }
1749
sign(SkScalar v)1750 static int sign(SkScalar v) {
1751 return v < 0 ? -1 : (v > 0);
1752 }
1753
1754 struct SignTracker {
1755 int fSign;
1756 int fSignChanges;
1757
resetSignTracker1758 void reset() {
1759 fSign = 0;
1760 fSignChanges = 0;
1761 }
1762
initSignTracker1763 void init(int s) {
1764 SkASSERT(fSignChanges == 0);
1765 SkASSERT(s == 1 || s == -1 || s == 0);
1766 fSign = s;
1767 fSignChanges = 1;
1768 }
1769
updateSignTracker1770 void update(int s) {
1771 if (s) {
1772 if (fSign != s) {
1773 fSignChanges += 1;
1774 fSign = s;
1775 }
1776 }
1777 }
1778 };
1779
1780 struct ConvexTracker {
1781 SkVector fFirst, fPrev;
1782 SignTracker fDSign, fCSign;
1783 int fVecCounter;
1784 bool fIsConcave;
1785
ConvexTrackerConvexTracker1786 ConvexTracker() { this->reset(); }
1787
resetConvexTracker1788 void reset() {
1789 fPrev = {0, 0};
1790 fDSign.reset();
1791 fCSign.reset();
1792 fVecCounter = 0;
1793 fIsConcave = false;
1794 }
1795
addVecConvexTracker1796 void addVec(SkPoint p1, SkPoint p0) {
1797 this->addVec(p1 - p0);
1798 }
addVecConvexTracker1799 void addVec(SkVector v) {
1800 if (v.fX == 0 && v.fY == 0) {
1801 return;
1802 }
1803
1804 fVecCounter += 1;
1805 if (fVecCounter == 1) {
1806 fFirst = fPrev = v;
1807 fDSign.update(sign(v.fX));
1808 return;
1809 }
1810
1811 SkScalar d = v.fX;
1812 SkScalar c = crs(fPrev, v);
1813 int sign_c;
1814 if (c) {
1815 sign_c = sign(c);
1816 } else {
1817 if (d >= 0) {
1818 sign_c = fCSign.fSign;
1819 } else {
1820 sign_c = -fCSign.fSign;
1821 }
1822 }
1823
1824 fDSign.update(sign(d));
1825 fCSign.update(sign_c);
1826 fPrev = v;
1827
1828 if (fDSign.fSignChanges > 3 || fCSign.fSignChanges > 1) {
1829 fIsConcave = true;
1830 }
1831 }
1832
finalCrossConvexTracker1833 void finalCross() {
1834 this->addVec(fFirst);
1835 }
1836 };
1837
SkIsPolyConvex_experimental(const SkPoint pts[],int count)1838 bool SkIsPolyConvex_experimental(const SkPoint pts[], int count) {
1839 if (count <= 3) {
1840 return true;
1841 }
1842
1843 ConvexTracker tracker;
1844
1845 for (int i = 0; i < count - 1; ++i) {
1846 tracker.addVec(pts[i + 1], pts[i]);
1847 if (tracker.fIsConcave) {
1848 return false;
1849 }
1850 }
1851 tracker.addVec(pts[0], pts[count - 1]);
1852 tracker.finalCross();
1853 return !tracker.fIsConcave;
1854 }
1855
1856