# Copyright 2023 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies that autoframing can adjust fov to include all faces with different skin tones.""" import logging import os.path from mobly import test_runner import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils import opencv_processing_utils _CV2_FACE_SCALE_FACTOR = 1.05 # 5% step for resizing image to find face _CV2_FACE_MIN_NEIGHBORS = 4 # recommended 3-6: higher for less faces _NUM_TEST_FRAMES = 20 _NUM_FACES = 3 _W, _H = 640, 480 class AutoframingTest(its_base_test.ItsBaseTest): """Test autoframing for faces with different skin tones. """ def test_autoframing(self): """Test if fov gets adjusted to accommodate all the faces in the frame. Do a large zoom on scene2_a using do_3a so that none of that faces are visible initially, trigger autoframing, wait for the state to converge and make sure all the faces are found. """ with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance, log_path=self.log_path) # Check SKIP conditions # Don't run autoframing if face detection or autoframing is not supported camera_properties_utils.skip_unless( camera_properties_utils.face_detect(props) and camera_properties_utils.autoframing(props)) # Do max-ish zoom with the help of do_3a, keeping all the 'A's off. This # zooms into the scene so that none of the faces are in the view # initially - which gives room for autoframing to take place. max_zoom_ratio = camera_properties_utils.get_max_digital_zoom(props) cam.do_3a(do_af=False, zoom_ratio=max_zoom_ratio) cam.do_autoframing(zoom_ratio=max_zoom_ratio) req = capture_request_utils.auto_capture_request( do_autoframing=True, zoom_ratio=max_zoom_ratio) req['android.statistics.faceDetectMode'] = 1 # Simple fmt = {'format': 'yuv', 'width': _W, 'height': _H} caps = cam.do_capture([req]*_NUM_TEST_FRAMES, fmt) for i, cap in enumerate(caps): faces = cap['metadata']['android.statistics.faces'] # Face detection and autoframing could take several frames to warm up, # but should detect the correct number of faces in last frame if i == _NUM_TEST_FRAMES - 1: num_faces_found = len(faces) if num_faces_found != _NUM_FACES: raise AssertionError('Wrong num of faces found! Found: ' f'{num_faces_found}, expected: {_NUM_FACES}') # Also check the faces with open cv to make sure the scene is not # distored or anything. img = image_processing_utils.convert_capture_to_rgb_image( cap, props=props) opencv_faces = opencv_processing_utils.find_opencv_faces( img, _CV2_FACE_SCALE_FACTOR, _CV2_FACE_MIN_NEIGHBORS) num_opencv_faces = len(opencv_faces) if num_opencv_faces != _NUM_FACES: raise AssertionError('Wrong num of faces found with OpenCV! Found: ' f'{num_opencv_faces}, expected: {_NUM_FACES}') if not faces: continue logging.debug('Frame %d face metadata:', i) logging.debug('Faces: %s', str(faces)) if __name__ == '__main__': test_runner.main()