// polynomial for approximating log10f(1+x) // // Copyright (c) 2019-2023, Arm Limited. // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception // Computation of log10f(1+x) will be carried out in double precision deg = 4; // poly degree // [OFF; 2*OFF] is divided in 2^4 intervals with OFF~0.7 a = -0.04375; b = 0.04375; // find log(1+x)/x polynomial with minimal relative error // (minimal relative error polynomial for log(1+x) is the same * x) deg = deg-1; // because of /x // f = log(1+x)/x; using taylor series f = 0; for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| approx = proc(poly,d) { return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = 1; for i from 1 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do double(coeff(poly,i));