#region Copyright notice and license // Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endregion using System; using System.Buffers; using System.IO; using Google.Protobuf.TestProtos; using Proto2 = Google.Protobuf.TestProtos.Proto2; using NUnit.Framework; namespace Google.Protobuf { public class CodedInputStreamTest { /// /// Helper to construct a byte array from a bunch of bytes. The inputs are /// actually ints so that I can use hex notation and not get stupid errors /// about precision. /// private static byte[] Bytes(params int[] bytesAsInts) { byte[] bytes = new byte[bytesAsInts.Length]; for (int i = 0; i < bytesAsInts.Length; i++) { bytes[i] = (byte) bytesAsInts[i]; } return bytes; } /// /// Parses the given bytes using ReadRawVarint32() and ReadRawVarint64() /// private static void AssertReadVarint(byte[] data, ulong value) { CodedInputStream input = new CodedInputStream(data); Assert.AreEqual((uint) value, input.ReadRawVarint32()); Assert.IsTrue(input.IsAtEnd); input = new CodedInputStream(data); Assert.AreEqual(value, input.ReadRawVarint64()); Assert.IsTrue(input.IsAtEnd); AssertReadFromParseContext(new ReadOnlySequence(data), (ref ParseContext ctx) => { Assert.AreEqual((uint) value, ctx.ReadUInt32()); }, true); AssertReadFromParseContext(new ReadOnlySequence(data), (ref ParseContext ctx) => { Assert.AreEqual(value, ctx.ReadUInt64()); }, true); // Try different block sizes. for (int bufferSize = 1; bufferSize <= 16; bufferSize *= 2) { input = new CodedInputStream(new SmallBlockInputStream(data, bufferSize)); Assert.AreEqual((uint) value, input.ReadRawVarint32()); input = new CodedInputStream(new SmallBlockInputStream(data, bufferSize)); Assert.AreEqual(value, input.ReadRawVarint64()); Assert.IsTrue(input.IsAtEnd); AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, bufferSize), (ref ParseContext ctx) => { Assert.AreEqual((uint) value, ctx.ReadUInt32()); }, true); AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, bufferSize), (ref ParseContext ctx) => { Assert.AreEqual(value, ctx.ReadUInt64()); }, true); } // Try reading directly from a MemoryStream. We want to verify that it // doesn't read past the end of the input, so write an extra byte - this // lets us test the position at the end. MemoryStream memoryStream = new MemoryStream(); memoryStream.Write(data, 0, data.Length); memoryStream.WriteByte(0); memoryStream.Position = 0; Assert.AreEqual((uint) value, CodedInputStream.ReadRawVarint32(memoryStream)); Assert.AreEqual(data.Length, memoryStream.Position); } /// /// Parses the given bytes using ReadRawVarint32() and ReadRawVarint64() and /// expects them to fail with an InvalidProtocolBufferException whose /// description matches the given one. /// private static void AssertReadVarintFailure(InvalidProtocolBufferException expected, byte[] data) { CodedInputStream input = new CodedInputStream(data); var exception = Assert.Throws(() => input.ReadRawVarint32()); Assert.AreEqual(expected.Message, exception.Message); input = new CodedInputStream(data); exception = Assert.Throws(() => input.ReadRawVarint64()); Assert.AreEqual(expected.Message, exception.Message); AssertReadFromParseContext(new ReadOnlySequence(data), (ref ParseContext ctx) => { try { ctx.ReadUInt32(); Assert.Fail(); } catch (InvalidProtocolBufferException ex) { Assert.AreEqual(expected.Message, ex.Message); } }, false); AssertReadFromParseContext(new ReadOnlySequence(data), (ref ParseContext ctx) => { try { ctx.ReadUInt64(); Assert.Fail(); } catch (InvalidProtocolBufferException ex) { Assert.AreEqual(expected.Message, ex.Message); } }, false); // Make sure we get the same error when reading directly from a Stream. exception = Assert.Throws(() => CodedInputStream.ReadRawVarint32(new MemoryStream(data))); Assert.AreEqual(expected.Message, exception.Message); } private delegate void ParseContextAssertAction(ref ParseContext ctx); private static void AssertReadFromParseContext(ReadOnlySequence input, ParseContextAssertAction assertAction, bool assertIsAtEnd) { // Check as ReadOnlySequence ParseContext.Initialize(input, out ParseContext parseCtx); assertAction(ref parseCtx); if (assertIsAtEnd) { Assert.IsTrue(SegmentedBufferHelper.IsAtEnd(ref parseCtx.buffer, ref parseCtx.state)); } // Check as ReadOnlySpan ParseContext.Initialize(input.ToArray().AsSpan(), out ParseContext spanParseContext); assertAction(ref spanParseContext); if (assertIsAtEnd) { Assert.IsTrue(SegmentedBufferHelper.IsAtEnd(ref spanParseContext.buffer, ref spanParseContext.state)); } } [Test] public void ReadVarint() { AssertReadVarint(Bytes(0x00), 0); AssertReadVarint(Bytes(0x01), 1); AssertReadVarint(Bytes(0x7f), 127); // 14882 AssertReadVarint(Bytes(0xa2, 0x74), (0x22 << 0) | (0x74 << 7)); // 2961488830 AssertReadVarint(Bytes(0xbe, 0xf7, 0x92, 0x84, 0x0b), (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | (0x0bL << 28)); // 64-bit // 7256456126 AssertReadVarint(Bytes(0xbe, 0xf7, 0x92, 0x84, 0x1b), (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | (0x1bL << 28)); // 41256202580718336 AssertReadVarint(Bytes(0x80, 0xe6, 0xeb, 0x9c, 0xc3, 0xc9, 0xa4, 0x49), (0x00 << 0) | (0x66 << 7) | (0x6b << 14) | (0x1c << 21) | (0x43L << 28) | (0x49L << 35) | (0x24L << 42) | (0x49L << 49)); // 11964378330978735131 AssertReadVarint(Bytes(0x9b, 0xa8, 0xf9, 0xc2, 0xbb, 0xd6, 0x80, 0x85, 0xa6, 0x01), (0x1b << 0) | (0x28 << 7) | (0x79 << 14) | (0x42 << 21) | (0x3bUL << 28) | (0x56UL << 35) | (0x00UL << 42) | (0x05UL << 49) | (0x26UL << 56) | (0x01UL << 63)); // Failures AssertReadVarintFailure( InvalidProtocolBufferException.MalformedVarint(), Bytes(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00)); AssertReadVarintFailure( InvalidProtocolBufferException.TruncatedMessage(), Bytes(0x80)); } /// /// Parses the given bytes using ReadRawLittleEndian32() and checks /// that the result matches the given value. /// private static void AssertReadLittleEndian32(byte[] data, uint value) { CodedInputStream input = new CodedInputStream(data); Assert.AreEqual(value, input.ReadRawLittleEndian32()); Assert.IsTrue(input.IsAtEnd); AssertReadFromParseContext(new ReadOnlySequence(data), (ref ParseContext ctx) => { Assert.AreEqual(value, ctx.ReadFixed32()); }, true); // Try different block sizes. for (int blockSize = 1; blockSize <= 16; blockSize *= 2) { input = new CodedInputStream( new SmallBlockInputStream(data, blockSize)); Assert.AreEqual(value, input.ReadRawLittleEndian32()); Assert.IsTrue(input.IsAtEnd); AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, blockSize), (ref ParseContext ctx) => { Assert.AreEqual(value, ctx.ReadFixed32()); }, true); } } /// /// Parses the given bytes using ReadRawLittleEndian64() and checks /// that the result matches the given value. /// private static void AssertReadLittleEndian64(byte[] data, ulong value) { CodedInputStream input = new CodedInputStream(data); Assert.AreEqual(value, input.ReadRawLittleEndian64()); Assert.IsTrue(input.IsAtEnd); AssertReadFromParseContext(new ReadOnlySequence(data), (ref ParseContext ctx) => { Assert.AreEqual(value, ctx.ReadFixed64()); }, true); // Try different block sizes. for (int blockSize = 1; blockSize <= 16; blockSize *= 2) { input = new CodedInputStream( new SmallBlockInputStream(data, blockSize)); Assert.AreEqual(value, input.ReadRawLittleEndian64()); Assert.IsTrue(input.IsAtEnd); AssertReadFromParseContext(ReadOnlySequenceFactory.CreateWithContent(data, blockSize), (ref ParseContext ctx) => { Assert.AreEqual(value, ctx.ReadFixed64()); }, true); } } [Test] public void ReadLittleEndian() { AssertReadLittleEndian32(Bytes(0x78, 0x56, 0x34, 0x12), 0x12345678); AssertReadLittleEndian32(Bytes(0xf0, 0xde, 0xbc, 0x9a), 0x9abcdef0); AssertReadLittleEndian64(Bytes(0xf0, 0xde, 0xbc, 0x9a, 0x78, 0x56, 0x34, 0x12), 0x123456789abcdef0L); AssertReadLittleEndian64( Bytes(0x78, 0x56, 0x34, 0x12, 0xf0, 0xde, 0xbc, 0x9a), 0x9abcdef012345678UL); } [Test] public void DecodeZigZag32() { Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag32(0)); Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag32(1)); Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag32(2)); Assert.AreEqual(-2, ParsingPrimitives.DecodeZigZag32(3)); Assert.AreEqual(0x3FFFFFFF, ParsingPrimitives.DecodeZigZag32(0x7FFFFFFE)); Assert.AreEqual(unchecked((int) 0xC0000000), ParsingPrimitives.DecodeZigZag32(0x7FFFFFFF)); Assert.AreEqual(0x7FFFFFFF, ParsingPrimitives.DecodeZigZag32(0xFFFFFFFE)); Assert.AreEqual(unchecked((int) 0x80000000), ParsingPrimitives.DecodeZigZag32(0xFFFFFFFF)); } [Test] public void DecodeZigZag64() { Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag64(0)); Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag64(1)); Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag64(2)); Assert.AreEqual(-2, ParsingPrimitives.DecodeZigZag64(3)); Assert.AreEqual(0x000000003FFFFFFFL, ParsingPrimitives.DecodeZigZag64(0x000000007FFFFFFEL)); Assert.AreEqual(unchecked((long) 0xFFFFFFFFC0000000L), ParsingPrimitives.DecodeZigZag64(0x000000007FFFFFFFL)); Assert.AreEqual(0x000000007FFFFFFFL, ParsingPrimitives.DecodeZigZag64(0x00000000FFFFFFFEL)); Assert.AreEqual(unchecked((long) 0xFFFFFFFF80000000L), ParsingPrimitives.DecodeZigZag64(0x00000000FFFFFFFFL)); Assert.AreEqual(0x7FFFFFFFFFFFFFFFL, ParsingPrimitives.DecodeZigZag64(0xFFFFFFFFFFFFFFFEL)); Assert.AreEqual(unchecked((long) 0x8000000000000000L), ParsingPrimitives.DecodeZigZag64(0xFFFFFFFFFFFFFFFFL)); } [Test] public void ReadWholeMessage_VaryingBlockSizes() { TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); byte[] rawBytes = message.ToByteArray(); Assert.AreEqual(rawBytes.Length, message.CalculateSize()); TestAllTypes message2 = TestAllTypes.Parser.ParseFrom(rawBytes); Assert.AreEqual(message, message2); // Try different block sizes. for (int blockSize = 1; blockSize < 256; blockSize *= 2) { message2 = TestAllTypes.Parser.ParseFrom(new SmallBlockInputStream(rawBytes, blockSize)); Assert.AreEqual(message, message2); } } [Test] public void ReadWholeMessage_VaryingBlockSizes_FromSequence() { TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); byte[] rawBytes = message.ToByteArray(); Assert.AreEqual(rawBytes.Length, message.CalculateSize()); TestAllTypes message2 = TestAllTypes.Parser.ParseFrom(rawBytes); Assert.AreEqual(message, message2); // Try different block sizes. for (int blockSize = 1; blockSize < 256; blockSize *= 2) { message2 = TestAllTypes.Parser.ParseFrom(ReadOnlySequenceFactory.CreateWithContent(rawBytes, blockSize)); Assert.AreEqual(message, message2); } } [Test] public void ReadInt32Wrapper_VariableBlockSizes() { byte[] rawBytes = new byte[] { 202, 1, 11, 8, 254, 255, 255, 255, 255, 255, 255, 255, 255, 1 }; for (int blockSize = 1; blockSize <= rawBytes.Length; blockSize++) { ReadOnlySequence data = ReadOnlySequenceFactory.CreateWithContent(rawBytes, blockSize); AssertReadFromParseContext(data, (ref ParseContext ctx) => { ctx.ReadTag(); var value = ParsingPrimitivesWrappers.ReadInt32Wrapper(ref ctx); Assert.AreEqual(-2, value); }, true); } } [Test] public void ReadHugeBlob() { // Allocate and initialize a 1MB blob. byte[] blob = new byte[1 << 20]; for (int i = 0; i < blob.Length; i++) { blob[i] = (byte) i; } // Make a message containing it. var message = new TestAllTypes { SingleBytes = ByteString.CopyFrom(blob) }; // Serialize and parse it. Make sure to parse from an InputStream, not // directly from a ByteString, so that CodedInputStream uses buffered // reading. TestAllTypes message2 = TestAllTypes.Parser.ParseFrom(message.ToByteString()); Assert.AreEqual(message, message2); } [Test] public void ReadMaliciouslyLargeBlob() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteRawVarint32(0x7FFFFFFF); output.WriteRawBytes(new byte[32]); // Pad with a few random bytes. output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms); Assert.AreEqual(tag, input.ReadTag()); Assert.Throws(() => input.ReadBytes()); } [Test] public void ReadBlobGreaterThanCurrentLimit() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteRawVarint32(4); output.WriteRawBytes(new byte[4]); // Pad with a few random bytes. output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms); Assert.AreEqual(tag, input.ReadTag()); // Specify limit smaller than data length input.PushLimit(3); Assert.Throws(() => input.ReadBytes()); AssertReadFromParseContext(new ReadOnlySequence(ms.ToArray()), (ref ParseContext ctx) => { Assert.AreEqual(tag, ctx.ReadTag()); SegmentedBufferHelper.PushLimit(ref ctx.state, 3); try { ctx.ReadBytes(); Assert.Fail(); } catch (InvalidProtocolBufferException) {} }, true); } [Test] public void ReadStringGreaterThanCurrentLimit() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteRawVarint32(4); output.WriteRawBytes(new byte[4]); // Pad with a few random bytes. output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms.ToArray()); Assert.AreEqual(tag, input.ReadTag()); // Specify limit smaller than data length input.PushLimit(3); Assert.Throws(() => input.ReadString()); AssertReadFromParseContext(new ReadOnlySequence(ms.ToArray()), (ref ParseContext ctx) => { Assert.AreEqual(tag, ctx.ReadTag()); SegmentedBufferHelper.PushLimit(ref ctx.state, 3); try { ctx.ReadString(); Assert.Fail(); } catch (InvalidProtocolBufferException) { } }, true); } // Representations of a tag for field 0 with various wire types [Test] [TestCase(0)] [TestCase(1)] [TestCase(2)] [TestCase(3)] [TestCase(4)] [TestCase(5)] public void ReadTag_ZeroFieldRejected(byte tag) { CodedInputStream cis = new CodedInputStream(new byte[] { tag }); Assert.Throws(() => cis.ReadTag()); } internal static TestRecursiveMessage MakeRecursiveMessage(int depth) { if (depth == 0) { return new TestRecursiveMessage { I = 5 }; } else { return new TestRecursiveMessage { A = MakeRecursiveMessage(depth - 1) }; } } internal static void AssertMessageDepth(TestRecursiveMessage message, int depth) { if (depth == 0) { Assert.IsNull(message.A); Assert.AreEqual(5, message.I); } else { Assert.IsNotNull(message.A); AssertMessageDepth(message.A, depth - 1); } } [Test] public void MaliciousRecursion() { ByteString atRecursiveLimit = MakeRecursiveMessage(CodedInputStream.DefaultRecursionLimit).ToByteString(); ByteString beyondRecursiveLimit = MakeRecursiveMessage(CodedInputStream.DefaultRecursionLimit + 1).ToByteString(); AssertMessageDepth(TestRecursiveMessage.Parser.ParseFrom(atRecursiveLimit), CodedInputStream.DefaultRecursionLimit); Assert.Throws(() => TestRecursiveMessage.Parser.ParseFrom(beyondRecursiveLimit)); CodedInputStream input = CodedInputStream.CreateWithLimits(new MemoryStream(atRecursiveLimit.ToByteArray()), 1000000, CodedInputStream.DefaultRecursionLimit - 1); Assert.Throws(() => TestRecursiveMessage.Parser.ParseFrom(input)); } private static byte[] MakeMaliciousRecursionUnknownFieldsPayload(int recursionDepth) { // generate recursively nested groups that will be parsed as unknown fields int unknownFieldNumber = 14; // an unused field number MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); for (int i = 0; i < recursionDepth; i++) { output.WriteTag(WireFormat.MakeTag(unknownFieldNumber, WireFormat.WireType.StartGroup)); } for (int i = 0; i < recursionDepth; i++) { output.WriteTag(WireFormat.MakeTag(unknownFieldNumber, WireFormat.WireType.EndGroup)); } output.Flush(); return ms.ToArray(); } [Test] public void MaliciousRecursion_UnknownFields() { byte[] payloadAtRecursiveLimit = MakeMaliciousRecursionUnknownFieldsPayload(CodedInputStream.DefaultRecursionLimit); byte[] payloadBeyondRecursiveLimit = MakeMaliciousRecursionUnknownFieldsPayload(CodedInputStream.DefaultRecursionLimit + 1); Assert.DoesNotThrow(() => TestRecursiveMessage.Parser.ParseFrom(payloadAtRecursiveLimit)); Assert.Throws(() => TestRecursiveMessage.Parser.ParseFrom(payloadBeyondRecursiveLimit)); } [Test] public void ReadGroup_WrongEndGroupTag() { int groupFieldNumber = Proto2.TestAllTypes.OptionalGroupFieldNumber; // write Proto2.TestAllTypes with "optional_group" set, but use wrong EndGroup closing tag MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); output.WriteTag(WireFormat.MakeTag(groupFieldNumber, WireFormat.WireType.StartGroup)); output.WriteGroup(new Proto2.TestAllTypes.Types.OptionalGroup { A = 12345 }); // end group with different field number output.WriteTag(WireFormat.MakeTag(groupFieldNumber + 1, WireFormat.WireType.EndGroup)); output.Flush(); var payload = ms.ToArray(); Assert.Throws(() => Proto2.TestAllTypes.Parser.ParseFrom(payload)); } [Test] public void ReadGroup_UnknownFields_WrongEndGroupTag() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); output.WriteTag(WireFormat.MakeTag(14, WireFormat.WireType.StartGroup)); // end group with different field number output.WriteTag(WireFormat.MakeTag(15, WireFormat.WireType.EndGroup)); output.Flush(); var payload = ms.ToArray(); Assert.Throws(() => TestRecursiveMessage.Parser.ParseFrom(payload)); } [Test] public void SizeLimit() { // Have to use a Stream rather than ByteString.CreateCodedInput as SizeLimit doesn't // apply to the latter case. MemoryStream ms = new MemoryStream(SampleMessages.CreateFullTestAllTypes().ToByteArray()); CodedInputStream input = CodedInputStream.CreateWithLimits(ms, 16, 100); Assert.Throws(() => TestAllTypes.Parser.ParseFrom(input)); } /// /// Tests that if we read an string that contains invalid UTF-8, no exception /// is thrown. Instead, the invalid bytes are replaced with the Unicode /// "replacement character" U+FFFD. /// [Test] public void ReadInvalidUtf8() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteRawVarint32(1); output.WriteRawBytes(new byte[] {0x80}); output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms); Assert.AreEqual(tag, input.ReadTag()); string text = input.ReadString(); Assert.AreEqual('\ufffd', text[0]); } [Test] public void ReadNegativeSizedStringThrowsInvalidProtocolBufferException() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteLength(-1); output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms); Assert.AreEqual(tag, input.ReadTag()); Assert.Throws(() => input.ReadString()); } [Test] public void ReadNegativeSizedBytesThrowsInvalidProtocolBufferException() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); uint tag = WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteLength(-1); output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms); Assert.AreEqual(tag, input.ReadTag()); Assert.Throws(() => input.ReadBytes()); } /// /// A stream which limits the number of bytes it reads at a time. /// We use this to make sure that CodedInputStream doesn't screw up when /// reading in small blocks. /// private sealed class SmallBlockInputStream : MemoryStream { private readonly int blockSize; public SmallBlockInputStream(byte[] data, int blockSize) : base(data) { this.blockSize = blockSize; } public override int Read(byte[] buffer, int offset, int count) { return base.Read(buffer, offset, Math.Min(count, blockSize)); } } [Test] public void TestNegativeEnum() { byte[] bytes = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01 }; CodedInputStream input = new CodedInputStream(bytes); Assert.AreEqual((int)SampleEnum.NegativeValue, input.ReadEnum()); Assert.IsTrue(input.IsAtEnd); } //Issue 71: CodedInputStream.ReadBytes go to slow path unnecessarily [Test] public void TestSlowPathAvoidance() { using (var ms = new MemoryStream()) { CodedOutputStream output = new CodedOutputStream(ms); output.WriteTag(1, WireFormat.WireType.LengthDelimited); output.WriteBytes(ByteString.CopyFrom(new byte[100])); output.WriteTag(2, WireFormat.WireType.LengthDelimited); output.WriteBytes(ByteString.CopyFrom(new byte[100])); output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms, new byte[ms.Length / 2], 0, 0, false); uint tag = input.ReadTag(); Assert.AreEqual(1, WireFormat.GetTagFieldNumber(tag)); Assert.AreEqual(100, input.ReadBytes().Length); tag = input.ReadTag(); Assert.AreEqual(2, WireFormat.GetTagFieldNumber(tag)); Assert.AreEqual(100, input.ReadBytes().Length); } } [Test] public void MaximumFieldNumber() { MemoryStream ms = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(ms); int fieldNumber = 0x1FFFFFFF; uint tag = WireFormat.MakeTag(fieldNumber, WireFormat.WireType.LengthDelimited); output.WriteRawVarint32(tag); output.WriteString("field 1"); output.Flush(); ms.Position = 0; CodedInputStream input = new CodedInputStream(ms); Assert.AreEqual(tag, input.ReadTag()); Assert.AreEqual(fieldNumber, WireFormat.GetTagFieldNumber(tag)); } [Test] public void Tag0Throws() { var input = new CodedInputStream(new byte[] { 0 }); Assert.Throws(() => input.ReadTag()); } [Test] public void SkipGroup() { // Create an output stream with a group in: // Field 1: string "field 1" // Field 2: group containing: // Field 1: fixed int32 value 100 // Field 2: string "ignore me" // Field 3: nested group containing // Field 1: fixed int64 value 1000 // Field 3: string "field 3" var stream = new MemoryStream(); var output = new CodedOutputStream(stream); output.WriteTag(1, WireFormat.WireType.LengthDelimited); output.WriteString("field 1"); // The outer group... output.WriteTag(2, WireFormat.WireType.StartGroup); output.WriteTag(1, WireFormat.WireType.Fixed32); output.WriteFixed32(100); output.WriteTag(2, WireFormat.WireType.LengthDelimited); output.WriteString("ignore me"); // The nested group... output.WriteTag(3, WireFormat.WireType.StartGroup); output.WriteTag(1, WireFormat.WireType.Fixed64); output.WriteFixed64(1000); // Note: Not sure the field number is relevant for end group... output.WriteTag(3, WireFormat.WireType.EndGroup); // End the outer group output.WriteTag(2, WireFormat.WireType.EndGroup); output.WriteTag(3, WireFormat.WireType.LengthDelimited); output.WriteString("field 3"); output.Flush(); stream.Position = 0; // Now act like a generated client var input = new CodedInputStream(stream); Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited), input.ReadTag()); Assert.AreEqual("field 1", input.ReadString()); Assert.AreEqual(WireFormat.MakeTag(2, WireFormat.WireType.StartGroup), input.ReadTag()); input.SkipLastField(); // Should consume the whole group, including the nested one. Assert.AreEqual(WireFormat.MakeTag(3, WireFormat.WireType.LengthDelimited), input.ReadTag()); Assert.AreEqual("field 3", input.ReadString()); } [Test] public void SkipGroup_WrongEndGroupTag() { // Create an output stream with: // Field 1: string "field 1" // Start group 2 // Field 3: fixed int32 // End group 4 (should give an error) var stream = new MemoryStream(); var output = new CodedOutputStream(stream); output.WriteTag(1, WireFormat.WireType.LengthDelimited); output.WriteString("field 1"); // The outer group... output.WriteTag(2, WireFormat.WireType.StartGroup); output.WriteTag(3, WireFormat.WireType.Fixed32); output.WriteFixed32(100); output.WriteTag(4, WireFormat.WireType.EndGroup); output.Flush(); stream.Position = 0; // Now act like a generated client var input = new CodedInputStream(stream); Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.LengthDelimited), input.ReadTag()); Assert.AreEqual("field 1", input.ReadString()); Assert.AreEqual(WireFormat.MakeTag(2, WireFormat.WireType.StartGroup), input.ReadTag()); Assert.Throws(input.SkipLastField); } [Test] public void RogueEndGroupTag() { // If we have an end-group tag without a leading start-group tag, generated // code will just call SkipLastField... so that should fail. var stream = new MemoryStream(); var output = new CodedOutputStream(stream); output.WriteTag(1, WireFormat.WireType.EndGroup); output.Flush(); stream.Position = 0; var input = new CodedInputStream(stream); Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.EndGroup), input.ReadTag()); Assert.Throws(input.SkipLastField); } [Test] public void EndOfStreamReachedWhileSkippingGroup() { var stream = new MemoryStream(); var output = new CodedOutputStream(stream); output.WriteTag(1, WireFormat.WireType.StartGroup); output.WriteTag(2, WireFormat.WireType.StartGroup); output.WriteTag(2, WireFormat.WireType.EndGroup); output.Flush(); stream.Position = 0; // Now act like a generated client var input = new CodedInputStream(stream); input.ReadTag(); Assert.Throws(input.SkipLastField); } [Test] public void RecursionLimitAppliedWhileSkippingGroup() { var stream = new MemoryStream(); var output = new CodedOutputStream(stream); for (int i = 0; i < CodedInputStream.DefaultRecursionLimit + 1; i++) { output.WriteTag(1, WireFormat.WireType.StartGroup); } for (int i = 0; i < CodedInputStream.DefaultRecursionLimit + 1; i++) { output.WriteTag(1, WireFormat.WireType.EndGroup); } output.Flush(); stream.Position = 0; // Now act like a generated client var input = new CodedInputStream(stream); Assert.AreEqual(WireFormat.MakeTag(1, WireFormat.WireType.StartGroup), input.ReadTag()); Assert.Throws(input.SkipLastField); } [Test] public void Construction_Invalid() { Assert.Throws(() => new CodedInputStream((byte[]) null)); Assert.Throws(() => new CodedInputStream(null, 0, 0)); Assert.Throws(() => new CodedInputStream((Stream) null)); Assert.Throws(() => new CodedInputStream(new byte[10], 100, 0)); Assert.Throws(() => new CodedInputStream(new byte[10], 5, 10)); } [Test] public void CreateWithLimits_InvalidLimits() { var stream = new MemoryStream(); Assert.Throws(() => CodedInputStream.CreateWithLimits(stream, 0, 1)); Assert.Throws(() => CodedInputStream.CreateWithLimits(stream, 1, 0)); } [Test] public void Dispose_DisposesUnderlyingStream() { var memoryStream = new MemoryStream(); Assert.IsTrue(memoryStream.CanRead); using (var cis = new CodedInputStream(memoryStream)) { } Assert.IsFalse(memoryStream.CanRead); // Disposed } [Test] public void Dispose_WithLeaveOpen() { var memoryStream = new MemoryStream(); Assert.IsTrue(memoryStream.CanRead); using (var cis = new CodedInputStream(memoryStream, true)) { } Assert.IsTrue(memoryStream.CanRead); // We left the stream open } [Test] public void Dispose_FromByteArray() { var stream = new CodedInputStream(new byte[10]); stream.Dispose(); } [Test] public void TestParseMessagesCloseTo2G() { byte[] serializedMessage = GenerateBigSerializedMessage(); // How many of these big messages do we need to take us near our 2GB limit? int count = Int32.MaxValue / serializedMessage.Length; // Now make a MemoryStream that will fake a near-2GB stream of messages by returning // our big serialized message 'count' times. using (RepeatingMemoryStream stream = new RepeatingMemoryStream(serializedMessage, count)) { Assert.DoesNotThrow(()=>TestAllTypes.Parser.ParseFrom(stream)); } } [Test] public void TestParseMessagesOver2G() { byte[] serializedMessage = GenerateBigSerializedMessage(); // How many of these big messages do we need to take us near our 2GB limit? int count = Int32.MaxValue / serializedMessage.Length; // Now add one to take us over the 2GB limit count++; // Now make a MemoryStream that will fake a near-2GB stream of messages by returning // our big serialized message 'count' times. using (RepeatingMemoryStream stream = new RepeatingMemoryStream(serializedMessage, count)) { Assert.Throws(() => TestAllTypes.Parser.ParseFrom(stream), "Protocol message was too large. May be malicious. " + "Use CodedInputStream.SetSizeLimit() to increase the size limit."); } } /// A serialized big message private static byte[] GenerateBigSerializedMessage() { byte[] value = new byte[16 * 1024 * 1024]; TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); message.SingleBytes = ByteString.CopyFrom(value); return message.ToByteArray(); } /// /// A MemoryStream that repeats a byte arrays' content a number of times. /// Simulates really large input without consuming loads of memory. Used above /// to test the parsing behavior when the input size exceeds 2GB or close to it. /// private class RepeatingMemoryStream: MemoryStream { private readonly byte[] bytes; private readonly int maxIterations; private int index = 0; public RepeatingMemoryStream(byte[] bytes, int maxIterations) { this.bytes = bytes; this.maxIterations = maxIterations; } public override int Read(byte[] buffer, int offset, int count) { if (bytes.Length == 0) { return 0; } int numBytesCopiedTotal = 0; while (numBytesCopiedTotal < count && index < maxIterations) { int numBytesToCopy = Math.Min(bytes.Length - (int)Position, count); Array.Copy(bytes, (int)Position, buffer, offset, numBytesToCopy); numBytesCopiedTotal += numBytesToCopy; offset += numBytesToCopy; count -= numBytesCopiedTotal; Position += numBytesToCopy; if (Position >= bytes.Length) { Position = 0; index++; } } return numBytesCopiedTotal; } } } }