// Copyright (c) 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef INCLUDE_SPIRV_TOOLS_LIBSPIRV_HPP_ #define INCLUDE_SPIRV_TOOLS_LIBSPIRV_HPP_ #include #include #include #include #include "spirv-tools/libspirv.h" namespace spvtools { // Message consumer. The C strings for source and message are only alive for the // specific invocation. using MessageConsumer = std::function; // C++ RAII wrapper around the C context object spv_context. class Context { public: // Constructs a context targeting the given environment |env|. // // See specific API calls for how the target environment is interpreted // (particularly assembly and validation). // // The constructed instance will have an empty message consumer, which just // ignores all messages from the library. Use SetMessageConsumer() to supply // one if messages are of concern. explicit Context(spv_target_env env); // Enables move constructor/assignment operations. Context(Context&& other); Context& operator=(Context&& other); // Disables copy constructor/assignment operations. Context(const Context&) = delete; Context& operator=(const Context&) = delete; // Destructs this instance. ~Context(); // Sets the message consumer to the given |consumer|. The |consumer| will be // invoked once for each message communicated from the library. void SetMessageConsumer(MessageConsumer consumer); // Returns the underlying spv_context. spv_context& CContext(); const spv_context& CContext() const; private: spv_context context_; }; // A RAII wrapper around a validator options object. class ValidatorOptions { public: ValidatorOptions() : options_(spvValidatorOptionsCreate()) {} ~ValidatorOptions() { spvValidatorOptionsDestroy(options_); } // Allow implicit conversion to the underlying object. operator spv_validator_options() const { return options_; } // Sets a limit. void SetUniversalLimit(spv_validator_limit limit_type, uint32_t limit) { spvValidatorOptionsSetUniversalLimit(options_, limit_type, limit); } void SetRelaxStructStore(bool val) { spvValidatorOptionsSetRelaxStoreStruct(options_, val); } // Enables VK_KHR_relaxed_block_layout when validating standard // uniform/storage buffer/push-constant layout. If true, disables // scalar block layout rules. void SetRelaxBlockLayout(bool val) { spvValidatorOptionsSetRelaxBlockLayout(options_, val); } // Enables VK_KHR_uniform_buffer_standard_layout when validating standard // uniform layout. If true, disables scalar block layout rules. void SetUniformBufferStandardLayout(bool val) { spvValidatorOptionsSetUniformBufferStandardLayout(options_, val); } // Enables VK_EXT_scalar_block_layout when validating standard // uniform/storage buffer/push-constant layout. If true, disables // relaxed block layout rules. void SetScalarBlockLayout(bool val) { spvValidatorOptionsSetScalarBlockLayout(options_, val); } // Enables scalar layout when validating Workgroup blocks. See // VK_KHR_workgroup_memory_explicit_layout. void SetWorkgroupScalarBlockLayout(bool val) { spvValidatorOptionsSetWorkgroupScalarBlockLayout(options_, val); } // Skips validating standard uniform/storage buffer/push-constant layout. void SetSkipBlockLayout(bool val) { spvValidatorOptionsSetSkipBlockLayout(options_, val); } // Enables LocalSizeId decorations where the environment would not otherwise // allow them. void SetAllowLocalSizeId(bool val) { spvValidatorOptionsSetAllowLocalSizeId(options_, val); } // Records whether or not the validator should relax the rules on pointer // usage in logical addressing mode. // // When relaxed, it will allow the following usage cases of pointers: // 1) OpVariable allocating an object whose type is a pointer type // 2) OpReturnValue returning a pointer value void SetRelaxLogicalPointer(bool val) { spvValidatorOptionsSetRelaxLogicalPointer(options_, val); } // Records whether or not the validator should relax the rules because it is // expected that the optimizations will make the code legal. // // When relaxed, it will allow the following: // 1) It will allow relaxed logical pointers. Setting this option will also // set that option. // 2) Pointers that are pass as parameters to function calls do not have to // match the storage class of the formal parameter. // 3) Pointers that are actual parameters on function calls do not have to // point to the same type pointed as the formal parameter. The types just // need to logically match. // 4) GLSLstd450 Interpolate* instructions can have a load of an interpolant // for a first argument. void SetBeforeHlslLegalization(bool val) { spvValidatorOptionsSetBeforeHlslLegalization(options_, val); } private: spv_validator_options options_; }; // A C++ wrapper around an optimization options object. class OptimizerOptions { public: OptimizerOptions() : options_(spvOptimizerOptionsCreate()) {} ~OptimizerOptions() { spvOptimizerOptionsDestroy(options_); } // Allow implicit conversion to the underlying object. operator spv_optimizer_options() const { return options_; } // Records whether or not the optimizer should run the validator before // optimizing. If |run| is true, the validator will be run. void set_run_validator(bool run) { spvOptimizerOptionsSetRunValidator(options_, run); } // Records the validator options that should be passed to the validator if it // is run. void set_validator_options(const ValidatorOptions& val_options) { spvOptimizerOptionsSetValidatorOptions(options_, val_options); } // Records the maximum possible value for the id bound. void set_max_id_bound(uint32_t new_bound) { spvOptimizerOptionsSetMaxIdBound(options_, new_bound); } // Records whether all bindings within the module should be preserved. void set_preserve_bindings(bool preserve_bindings) { spvOptimizerOptionsSetPreserveBindings(options_, preserve_bindings); } // Records whether all specialization constants within the module // should be preserved. void set_preserve_spec_constants(bool preserve_spec_constants) { spvOptimizerOptionsSetPreserveSpecConstants(options_, preserve_spec_constants); } private: spv_optimizer_options options_; }; // A C++ wrapper around a reducer options object. class ReducerOptions { public: ReducerOptions() : options_(spvReducerOptionsCreate()) {} ~ReducerOptions() { spvReducerOptionsDestroy(options_); } // Allow implicit conversion to the underlying object. operator spv_reducer_options() const { // NOLINT(google-explicit-constructor) return options_; } // See spvReducerOptionsSetStepLimit. void set_step_limit(uint32_t step_limit) { spvReducerOptionsSetStepLimit(options_, step_limit); } // See spvReducerOptionsSetFailOnValidationError. void set_fail_on_validation_error(bool fail_on_validation_error) { spvReducerOptionsSetFailOnValidationError(options_, fail_on_validation_error); } // See spvReducerOptionsSetTargetFunction. void set_target_function(uint32_t target_function) { spvReducerOptionsSetTargetFunction(options_, target_function); } private: spv_reducer_options options_; }; // A C++ wrapper around a fuzzer options object. class FuzzerOptions { public: FuzzerOptions() : options_(spvFuzzerOptionsCreate()) {} ~FuzzerOptions() { spvFuzzerOptionsDestroy(options_); } // Allow implicit conversion to the underlying object. operator spv_fuzzer_options() const { // NOLINT(google-explicit-constructor) return options_; } // See spvFuzzerOptionsEnableReplayValidation. void enable_replay_validation() { spvFuzzerOptionsEnableReplayValidation(options_); } // See spvFuzzerOptionsSetRandomSeed. void set_random_seed(uint32_t seed) { spvFuzzerOptionsSetRandomSeed(options_, seed); } // See spvFuzzerOptionsSetReplayRange. void set_replay_range(int32_t replay_range) { spvFuzzerOptionsSetReplayRange(options_, replay_range); } // See spvFuzzerOptionsSetShrinkerStepLimit. void set_shrinker_step_limit(uint32_t shrinker_step_limit) { spvFuzzerOptionsSetShrinkerStepLimit(options_, shrinker_step_limit); } // See spvFuzzerOptionsEnableFuzzerPassValidation. void enable_fuzzer_pass_validation() { spvFuzzerOptionsEnableFuzzerPassValidation(options_); } // See spvFuzzerOptionsEnableAllPasses. void enable_all_passes() { spvFuzzerOptionsEnableAllPasses(options_); } private: spv_fuzzer_options options_; }; // C++ interface for SPIRV-Tools functionalities. It wraps the context // (including target environment and the corresponding SPIR-V grammar) and // provides methods for assembling, disassembling, and validating. // // Instances of this class provide basic thread-safety guarantee. class SpirvTools { public: enum { // Default assembling option used by assemble(): kDefaultAssembleOption = SPV_TEXT_TO_BINARY_OPTION_NONE, // Default disassembling option used by Disassemble(): // * Avoid prefix comments from decoding the SPIR-V module header, and // * Use friendly names for variables. kDefaultDisassembleOption = SPV_BINARY_TO_TEXT_OPTION_NO_HEADER | SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES }; // Constructs an instance targeting the given environment |env|. // // The constructed instance will have an empty message consumer, which just // ignores all messages from the library. Use SetMessageConsumer() to supply // one if messages are of concern. explicit SpirvTools(spv_target_env env); // Disables copy/move constructor/assignment operations. SpirvTools(const SpirvTools&) = delete; SpirvTools(SpirvTools&&) = delete; SpirvTools& operator=(const SpirvTools&) = delete; SpirvTools& operator=(SpirvTools&&) = delete; // Destructs this instance. ~SpirvTools(); // Sets the message consumer to the given |consumer|. The |consumer| will be // invoked once for each message communicated from the library. void SetMessageConsumer(MessageConsumer consumer); // Assembles the given assembly |text| and writes the result to |binary|. // Returns true on successful assembling. |binary| will be kept untouched if // assembling is unsuccessful. // The SPIR-V binary version is set to the highest version of SPIR-V supported // by the target environment with which this SpirvTools object was created. bool Assemble(const std::string& text, std::vector* binary, uint32_t options = kDefaultAssembleOption) const; // |text_size| specifies the number of bytes in |text|. A terminating null // character is not required to present in |text| as long as |text| is valid. // The SPIR-V binary version is set to the highest version of SPIR-V supported // by the target environment with which this SpirvTools object was created. bool Assemble(const char* text, size_t text_size, std::vector* binary, uint32_t options = kDefaultAssembleOption) const; // Disassembles the given SPIR-V |binary| with the given |options| and writes // the assembly to |text|. Returns true on successful disassembling. |text| // will be kept untouched if diassembling is unsuccessful. bool Disassemble(const std::vector& binary, std::string* text, uint32_t options = kDefaultDisassembleOption) const; // |binary_size| specifies the number of words in |binary|. bool Disassemble(const uint32_t* binary, size_t binary_size, std::string* text, uint32_t options = kDefaultDisassembleOption) const; // Validates the given SPIR-V |binary|. Returns true if no issues are found. // Otherwise, returns false and communicates issues via the message consumer // registered. // Validates for SPIR-V spec rules for the SPIR-V version named in the // binary's header (at word offset 1). Additionally, if the target // environment is a client API (such as Vulkan 1.1), then validate for that // client API version, to the extent that it is verifiable from data in the // binary itself. bool Validate(const std::vector& binary) const; // Like the previous overload, but provides the binary as a pointer and size: // |binary_size| specifies the number of words in |binary|. // Validates for SPIR-V spec rules for the SPIR-V version named in the // binary's header (at word offset 1). Additionally, if the target // environment is a client API (such as Vulkan 1.1), then validate for that // client API version, to the extent that it is verifiable from data in the // binary itself. bool Validate(const uint32_t* binary, size_t binary_size) const; // Like the previous overload, but takes an options object. // Validates for SPIR-V spec rules for the SPIR-V version named in the // binary's header (at word offset 1). Additionally, if the target // environment is a client API (such as Vulkan 1.1), then validate for that // client API version, to the extent that it is verifiable from data in the // binary itself, or in the validator options. bool Validate(const uint32_t* binary, size_t binary_size, spv_validator_options options) const; // Was this object successfully constructed. bool IsValid() const; private: struct Impl; // Opaque struct for holding the data fields used by this class. std::unique_ptr impl_; // Unique pointer to implementation data. }; } // namespace spvtools #endif // INCLUDE_SPIRV_TOOLS_LIBSPIRV_HPP_