#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import copy import unittest import command import config import copy import ipv6 import thread_cert from pktverify.consts import WIRESHARK_OVERRIDE_PREFS, ADDR_QRY_URI, ADDR_NTF_URI, NL_ML_EID_TLV, NL_RLOC16_TLV, NL_TARGET_EID_TLV from pktverify.packet_verifier import PacketVerifier from pktverify.bytes import Bytes from pktverify.addrs import Ipv6Addr LEADER = 1 BR = 2 ROUTER1 = 3 DUT_ROUTER2 = 4 MED1 = 5 PREFIX_1 = '2003::/64' GUA_1_START = '2003' PREFIX_2 = '2004::/64' # Test Purpose and Description: # ----------------------------- # The purpose of this test case is to validate that the DUT is able to generate # Address Query and Address Notification messages # The Border Router is configured as a SLAAC server for prefixes 2003:: & 2004:: # # Test Topology: # ------------- # BorderRouter - Leader # / \ # Router_1 - Router_2(DUT) # | # MED # # DUT Types: # ---------- # Router class Cert_5_3_10_AddressQuery(thread_cert.TestCase): USE_MESSAGE_FACTORY = False SUPPORT_NCP = False TOPOLOGY = { LEADER: { 'name': 'LEADER', 'mode': 'rdn', 'allowlist': [BR, ROUTER1, DUT_ROUTER2] }, BR: { 'name': 'BR', 'mode': 'rdn', 'allowlist': [LEADER] }, ROUTER1: { 'name': 'ROUTER_1', 'mode': 'rdn', 'allowlist': [LEADER, DUT_ROUTER2] }, DUT_ROUTER2: { 'name': 'ROUTER_2', 'mode': 'rdn', 'allowlist': [LEADER, ROUTER1, MED1] }, MED1: { 'name': 'MED', 'is_mtd': True, 'mode': 'rn', 'allowlist': [DUT_ROUTER2] }, } # override wireshark preferences with case needed parameters CASE_WIRESHARK_PREFS = copy.deepcopy(WIRESHARK_OVERRIDE_PREFS) CASE_WIRESHARK_PREFS['6lowpan.context1'] = PREFIX_1 CASE_WIRESHARK_PREFS['6lowpan.context2'] = PREFIX_2 def test(self): # 1 & 2 self.nodes[LEADER].start() self.simulator.go(config.LEADER_STARTUP_DELAY) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[BR].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[BR].get_state(), 'router') # Configure two On-Mesh Prefixes on the BR self.nodes[BR].add_prefix(PREFIX_1, 'paros') self.nodes[BR].add_prefix(PREFIX_2, 'paros') self.nodes[BR].register_netdata() self.nodes[DUT_ROUTER2].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router') self.nodes[ROUTER1].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[ROUTER1].get_state(), 'router') self.nodes[MED1].start() self.simulator.go(5) self.assertEqual(self.nodes[MED1].get_state(), 'child') self.collect_rlocs() self.collect_rloc16s() self.collect_ipaddrs() # 3 MED1: MED1 sends an ICMPv6 Echo Request to Router1 using GUA # PREFIX_1 address router1_addr = self.nodes[ROUTER1].get_addr(PREFIX_1) self.assertTrue(router1_addr is not None) self.assertTrue(self.nodes[MED1].ping(router1_addr)) self.simulator.go(1) # 4 BR: BR sends an ICMPv6 Echo Request to MED1 using GUA PREFIX_1 # address med1_addr = self.nodes[MED1].get_addr(PREFIX_1) self.assertTrue(med1_addr is not None) self.assertTrue(self.nodes[BR].ping(med1_addr)) self.simulator.go(1) # 5 MED1: MED1 sends an ICMPv6 Echo Request to ROUTER1 using GUA PREFIX_1 # address self.assertTrue(self.nodes[MED1].ping(router1_addr)) self.simulator.go(1) # 6 DUT_ROUTER2: Power off ROUTER1 and wait 580 seconds to allow the # LEADER to expire its Router ID router1_id = self.nodes[ROUTER1].get_router_id() self.nodes[ROUTER1].stop() self.simulator.go(580) # Send an ICMPv6 Echo Request from MED1 to ROUTER1 GUA PREFIX_1 address self.assertFalse(self.nodes[MED1].ping(router1_addr)) self.simulator.go(1) # 7 MED1: Power off MED1 and wait to allow DUT_ROUTER2 to timeout the # child self.nodes[MED1].stop() self.simulator.go(config.MLE_END_DEVICE_TIMEOUT) # BR sends two ICMPv6 Echo Requests to MED1 GUA PREFIX_1 address self.assertFalse(self.nodes[BR].ping(med1_addr)) self.assertFalse(self.nodes[BR].ping(med1_addr)) def verify(self, pv): pkts = pv.pkts pv.summary.show() LEADER = pv.vars['LEADER'] ROUTER_1 = pv.vars['ROUTER_1'] ROUTER_2 = pv.vars['ROUTER_2'] ROUTER_2_RLOC = pv.vars['ROUTER_2_RLOC'] ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16'] BR = pv.vars['BR'] BR_RLOC = pv.vars['BR_RLOC'] MED = pv.vars['MED'] MED_RLOC16 = pv.vars['MED_RLOC16'] MM = pv.vars['MM_PORT'] GUA1 = {} for node in ('ROUTER_1', 'BR', 'MED'): for addr in pv.vars['%s_IPADDRS' % node]: if addr.startswith(Bytes(GUA_1_START)): GUA1[node] = addr # Step 2: Build the topology as described pv.verify_attached('BR', 'LEADER') for i in (2, 1): pv.verify_attached('ROUTER_%d' % i, 'LEADER') pv.verify_attached('MED', 'ROUTER_2', 'MTD') # Step 3: MED sends an ICMPv6 Echo Request to Router_1 using GUA 2003:: # address # The DUT MUST generate an Address Query Request on MED’s behalf # to find each node’s RLOC. # The Address Query Request MUST be sent to the Realm-Local # All-Routers address (FF03::2) # CoAP URI-Path # - NON POST coap:// # CoAP Payload # - Target EID TLV # The DUT MUST receive and process the incoming Address Query # Response and forward the ICMPv6 Echo Request packet to Router_1 _pkt = pkts.filter_ping_request().\ filter_wpan_src64(MED).\ filter_ipv6_dst(GUA1['ROUTER_1']).\ must_next() pkts.filter_wpan_src64(ROUTER_2).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_1']).\ must_next() pkts.filter_ping_request(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_2).\ filter_ipv6_dst(GUA1['ROUTER_1']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_1).\ filter_ipv6_dst(GUA1['MED']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_2).\ filter_wpan_dst16(MED_RLOC16).\ must_next() # Step 4: Border Router sends an ICMPv6 Echo Request to MED using GUA 2003:: # addresss # The DUT MUST respond to the Address Query Request with a properly # formatted Address Notification Message: # CoAP URI-Path # - CON POST coap://[
]:MM/a/an # CoAP Payload # - ML-EID TLV # - RLOC16 TLV # - Target EID TLV # The IPv6 Source address MUST be the RLOC of the originator # The IPv6 Destination address MUST be the RLOC of the destination pkts.filter_wpan_src64(BR).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ filter(lambda p: p.thread_address.tlv.target_eid == GUA1['MED']).\ must_next() pkts.filter_ipv6_src_dst(ROUTER_2_RLOC, BR_RLOC).\ filter_coap_request(ADDR_NTF_URI, port=MM).\ filter(lambda p: { NL_ML_EID_TLV, NL_RLOC16_TLV, NL_TARGET_EID_TLV } <= set(p.coap.tlv.type) and\ p.thread_address.tlv.target_eid == GUA1['MED'] and\ p.thread_address.tlv.rloc16 == ROUTER_2_RLOC16 ).\ must_next() _pkt = pkts.filter_ping_request().\ filter_wpan_src64(BR).\ filter_ipv6_dst(GUA1['MED']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(MED).\ filter_ipv6_dst(GUA1['BR']).\ must_next() # Step 5: MED sends an ICMPv6 Echo Request to Router_1 using GUA 2003:: # address # The DUT MUST not send an Address Query as Router_1 address should # be cached. # The DUT MUST forward the ICMPv6 Echo Reply to MED _pkt = pkts.filter_ping_request().\ filter_wpan_src64(MED).\ filter_ipv6_dst(GUA1['ROUTER_1']).\ must_next() lstart = pkts.index pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_1).\ filter_ipv6_dst(GUA1['MED']).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(ROUTER_2).\ filter_wpan_dst16(MED_RLOC16).\ must_next() lend = pkts.index pkts.range(lstart, lend).filter_wpan_src64(ROUTER_2).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ must_not_next() # Step 6: MED sends an ICMPv6 Echo Request to Router_1 using GUA 2003:: # address # The DUT MUST update its address cache and remove all entries # based on Router_1’s Router ID. # The DUT MUST send an Address Query to discover Router_1’s RLOC address. pkts.filter_ping_request().\ filter_wpan_src64(MED).\ filter_ipv6_dst(GUA1['ROUTER_1']).\ must_next() pkts.filter_wpan_src64(ROUTER_2).\ filter_RLARMA().\ filter_coap_request(ADDR_QRY_URI, port=MM).\ filter(lambda p: p.thread_address.tlv.target_eid == GUA1['ROUTER_1']).\ must_next() # Step 7: Border Router sends two ICMPv6 Echo Requests to MED using GUA 2003:: # address # The DUT MUST NOT respond with an Address Notification message pkts.filter_wpan_src64(ROUTER_2).\ filter_ipv6_dst(BR_RLOC).\ filter_coap_request(ADDR_NTF_URI, port=MM).\ must_not_next() pkts.filter_ping_request().\ filter_wpan_src64(BR).\ filter_ipv6_dst(GUA1['MED']).\ must_next() if __name__ == '__main__': unittest.main()