#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest import copy import config import thread_cert from pktverify.packet_verifier import PacketVerifier LEADER = 1 ROUTER = 2 MTD = 3 FRAGMENTED_DATA_LEN = 256 # Test Purpose and Description: # ----------------------------- # The purpose of this test case is to validate the Realm-Local addresses # that the DUT configures. # # Test Topology: # ------------- # Leader # | # Router # | # DUT # # DUT Types: # ---------- # ED # SED class Cert_6_4_2_RealmLocal_Base(thread_cert.TestCase): TOPOLOGY = { LEADER: { 'name': 'LEADER', 'mode': 'rdn', 'allowlist': [ROUTER] }, ROUTER: { 'name': 'ROUTER', 'mode': 'rdn', 'allowlist': [LEADER, MTD] }, MTD: { 'name': 'DUT', 'is_mtd': True, 'timeout': config.DEFAULT_CHILD_TIMEOUT, 'allowlist': [ROUTER] }, } def test(self): self.nodes[LEADER].start() self.simulator.go(config.LEADER_STARTUP_DELAY) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ROUTER].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[ROUTER].get_state(), 'router') self.nodes[MTD].start() self.simulator.go(5) self.assertEqual(self.nodes[MTD].get_state(), 'child') self.collect_ipaddrs() self.collect_rloc16s() dut_addr = self.nodes[MTD].get_ip6_address(config.ADDRESS_TYPE.ML_EID) self.assertTrue(self.nodes[LEADER].\ ping(dut_addr, size=FRAGMENTED_DATA_LEN)) self.simulator.go(1) self.assertTrue(self.nodes[LEADER].\ ping(dut_addr)) self.simulator.go(1) if self.TOPOLOGY[MTD]['mode'] == 'rn': self.assertTrue(self.nodes[LEADER].\ ping(config.REALM_LOCAL_ALL_NODES_ADDRESS, num_responses=2, size=FRAGMENTED_DATA_LEN)) self.simulator.go(2) self.assertTrue(self.nodes[LEADER].\ ping(config.REALM_LOCAL_ALL_NODES_ADDRESS, num_responses=2)) self.simulator.go(2) self.assertTrue(self.nodes[LEADER].\ ping(config.REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS, num_responses=2, size=FRAGMENTED_DATA_LEN)) self.simulator.go(2) self.assertTrue(self.nodes[LEADER].\ ping(config.REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS, num_responses=2)) self.simulator.go(2) def verify(self, pv): pkts = pv.pkts pv.summary.show() LEADER = pv.vars['LEADER'] LEADER_MLEID = pv.vars['LEADER_MLEID'] ROUTER = pv.vars['ROUTER'] ROUTER_MLEID = pv.vars['ROUTER_MLEID'] ROUTER_RLOC16 = pv.vars['ROUTER_RLOC16'] DUT = pv.vars['DUT'] DUT_MLEID = pv.vars['DUT_MLEID'] DUT_RLOC16 = pv.vars['DUT_RLOC16'] # Step 1: Ensure topology is formed correctly pv.verify_attached('ROUTER', 'LEADER') pv.verify_attached('DUT', 'ROUTER', 'MTD') # Step 2: Leader sends a Fragmented ICMPv6 Echo Request to # DUT's ML-EID # The DUT MUST respond with an ICMPv6 Echo Reply _pkt = pkts.filter_ping_request().\ filter_ipv6_src_dst(LEADER_MLEID, DUT_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(DUT_MLEID, LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() # Step 3: Leader sends an Unfragmented ICMPv6 Echo Request to # DUT’s ML-EID # The DUT MUST respond with an ICMPv6 Echo Reply _pkt = pkts.filter_ping_request().\ filter_ipv6_src_dst(LEADER_MLEID, DUT_MLEID).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(DUT_MLEID, LEADER_MLEID).\ must_next() if self.TOPOLOGY[MTD]['mode'] == 'rn': # Step 4: Leader sends a Fragmented ICMPv6 Echo Request to the # Realm-Local All Nodes multicast address (FF03::1) # The DUT MUST respond with an ICMPv6 Echo Reply _pkt1 = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_RLANMA().\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt1.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_MLEID, LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_request(identifier=_pkt1.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_RLOC16, DUT_RLOC16).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_not_next() # Step 5: Leader sends an Unfragmented ICMPv6 Echo Request to the # Realm-Local All Nodes multicast address (FF03::1) # The DUT MUST respond with an ICMPv6 Echo Reply _pkt2 = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_RLANMA().\ filter(lambda p: p.icmpv6.echo.sequence_number != _pkt1.icmpv6.echo.sequence_number ).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt2.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_MLEID, LEADER_MLEID).\ must_next() pkts.filter_ping_request(identifier = _pkt2.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_RLOC16, DUT_RLOC16).\ must_not_next() # Step 6: Leader sends a Fragmented ICMPv6 Echo Request to the # Realm-Local All Thread Nodes multicast address # The DUT MUST respond with an ICMPv6 Echo Reply _pkt = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_RLATNMA().\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(DUT).\ filter_ipv6_dst(LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() # Step 7: Leader sends an Unfragmented ICMPv6 Echo Request to the # Realm-Local All Thread Nodes multicast address # The DUT MUST respond with an ICMPv6 Echo Reply _pkt = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_RLATNMA().\ filter(lambda p: p.icmpv6.data.len != FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(DUT).\ filter_ipv6_dst(LEADER_MLEID).\ must_next() class Cert_6_4_2_RealmLocal_ED(Cert_6_4_2_RealmLocal_Base): TOPOLOGY = copy.deepcopy(Cert_6_4_2_RealmLocal_Base.TOPOLOGY) TOPOLOGY[MTD]['mode'] = 'rn' class Cert_6_4_2_RealmLocal_SED(Cert_6_4_2_RealmLocal_Base): TOPOLOGY = copy.deepcopy(Cert_6_4_2_RealmLocal_Base.TOPOLOGY) TOPOLOGY[MTD]['mode'] = '-' del (Cert_6_4_2_RealmLocal_Base) if __name__ == '__main__': unittest.main()