# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Adam.""" import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import adam def adam_update_numpy(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) m_t = beta1 * m + (1 - beta1) * g_t v_t = beta2 * v + (1 - beta2) * g_t * g_t param_t = param - alpha_t * m_t / (np.sqrt(v_t) + epsilon) return param_t, m_t, v_t class AdamOptimizerTest(xla_test.XLATestCase): def testBasic(self): for dtype in self.float_types | self.complex_types: # TODO: test fails for float16 due to excessive precision requirements. if dtype in [np.float16, dtypes.bfloat16.as_numpy_dtype]: continue with self.session(), self.test_scope(): variable_scope.get_variable_scope().set_use_resource(True) # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype) var1_np = np.array([3.0, 4.0], dtype=dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = array_ops.placeholder(dtype) grads1 = array_ops.placeholder(dtype) opt = adam.AdamOptimizer() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType(0.999**t, self.evaluate(beta2_power)) update.run(feed_dict={grads0: grads0_np, grads1: grads1_np}) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) def testTensorLearningRate(self): for dtype in self.float_types | self.complex_types: # TODO: test fails for float16 due to excessive precision requirements. if dtype in [np.float16, dtypes.bfloat16.as_numpy_dtype]: continue with self.session(), self.test_scope(): variable_scope.get_variable_scope().set_use_resource(True) # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype) var1_np = np.array([3.0, 4.0], dtype=dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = array_ops.placeholder(dtype) grads1 = array_ops.placeholder(dtype) opt = adam.AdamOptimizer(constant_op.constant(0.001)) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType(0.999**t, self.evaluate(beta2_power)) update.run(feed_dict={grads0: grads0_np, grads1: grads1_np}) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) def testSharing(self): for dtype in self.float_types | self.complex_types: # TODO: test fails for float16 due to excessive precision requirements. if dtype in [np.float16, dtypes.bfloat16.as_numpy_dtype]: continue with self.session(), self.test_scope(): variable_scope.get_variable_scope().set_use_resource(True) # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype) var1_np = np.array([3.0, 4.0], dtype=dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = array_ops.placeholder(dtype) grads1 = array_ops.placeholder(dtype) opt = adam.AdamOptimizer() update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) self.evaluate(variables.global_variables_initializer()) beta1_power, beta2_power = opt._get_beta_accumulators() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 3 steps of intertwined Adam1 and Adam2. for t in range(1, 4): self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power)) self.assertAllCloseAccordingToType(0.999**t, self.evaluate(beta2_power)) if t % 2 == 0: update1.run(feed_dict={grads0: grads0_np, grads1: grads1_np}) else: update2.run(feed_dict={grads0: grads0_np, grads1: grads1_np}) var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0)) self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1)) if __name__ == "__main__": test.main()