# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for constant ops.""" import numpy as np import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import MAP_TF_TO_NUMPY_TYPE from tensorflow.lite.testing.zip_test_utils import register_make_test_function # This function tests various TensorFLow functions that generates Const op, # including `tf.ones`, `tf.zeros` and random functions. @register_make_test_function() def make_constant_tests(options): """Make a set of tests to do constant ops.""" test_parameters = [{ "dtype": [tf.float32, tf.int32], "input_shape": [[], [1], [2], [1, 1, 1, 1], [2, 2, 2, 2]], "constant_is_also_output": [True, False], # Models should not be rejected regardless whether it has unread inputs. "has_unread_input": [True, False], }] def build_graph(parameters): """Build a constant graph given `parameters`.""" dummy_input = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input1", shape=parameters["input_shape"]) constant = tf.constant( create_tensor_data(parameters["dtype"], parameters["input_shape"])) outputs = [tf.maximum(dummy_input, constant)] if parameters["constant_is_also_output"]: outputs.append(constant) inputs = [dummy_input] if parameters["has_unread_input"]: unread_input = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="unread_input", shape=parameters["input_shape"]) inputs.append(unread_input) return inputs, outputs def build_inputs(parameters, sess, inputs, outputs): dummy_input = np.zeros( parameters["input_shape"], dtype=MAP_TF_TO_NUMPY_TYPE[parameters["dtype"]]) return [dummy_input], sess.run(outputs, feed_dict={inputs[0]: dummy_input}) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)