# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for identity.""" import numpy as np import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function from tensorflow.python.ops import array_ops @register_make_test_function() def make_identity_tests(options): """Make a set of tests to do identity.""" # Chose a set of parameters test_parameters = [{ "input_shape": [[], [1], [3, 3]], "op_to_use": [ "identity", "identity_n", "snapshot", "identity_n_with_2_inputs" ], }] def build_graph(parameters): """Make a set of tests to do identity.""" input_tensors = [] input_count = (2 if parameters["op_to_use"] == "identity_n_with_2_inputs" else 1) input_tensors = [ tf.compat.v1.placeholder( dtype=tf.float32, name="input", shape=parameters["input_shape"]) for _ in range(input_count) ] # We add the Multiply before Identity just as a walk-around to make the test # pass when input_shape is scalar. # During graph transformation, converter will replace the Identity op with # Reshape when input has shape. However, currently converter can't # distinguish between missing shape and scalar shape. As a result, when # input has scalar shape, this conversion still fails. inputs_doubled = [input_tensor * 2.0 for input_tensor in input_tensors] if parameters["op_to_use"] == "identity": identity_outputs = [tf.identity(inputs_doubled[0])] elif parameters["op_to_use"] == "snapshot": identity_outputs = [array_ops.snapshot(inputs_doubled[0])] elif parameters["op_to_use"] in ("identity_n", "identity_n_with_2_inputs"): identity_outputs = tf.identity_n(inputs_doubled) return input_tensors, identity_outputs def build_inputs(parameters, sess, inputs, outputs): input_values = [ create_tensor_data( np.float32, parameters["input_shape"], min_value=-4, max_value=10) for _ in range(len(inputs)) ] return input_values, sess.run( outputs, feed_dict=dict(zip(inputs, input_values))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)