# # Copyright (C) 2019 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # layout = BoolScalar("layout", False) # NHWC # Operation 1, GENERATE_PROPOSALS scores = Input("scores", "TENSOR_FLOAT32", "{1, 1, 1, 1}") deltas = Input("deltas", "TENSOR_FLOAT32", "{1, 1, 1, 4}") anchors = Input("anchors", "TENSOR_FLOAT32", "{1, 4}") image = Input("imageInfo", "TENSOR_FLOAT32", "{1, 2}") scoresOut_1 = Output("scores", "TENSOR_FLOAT32", "{0}") roiOut_1 = Internal("roi", "TENSOR_FLOAT32", "{0, 4}") batchOut_1 = Internal("batches", "TENSOR_INT32", "{0}") model = Model("zero_sized").Operation("GENERATE_PROPOSALS", scores, deltas, anchors, image, 1.0, 1.0, -1, -1, 0.3, 10.0, layout).To(scoresOut_1, roiOut_1, batchOut_1) # Operation 2, ROI_ALIGN feature = Input("featureMap", "TENSOR_FLOAT32", "{1, 1, 1, 1}") featureOut_2 = Internal("scores", "TENSOR_FLOAT32", "{0, 2, 2, 1}") model = model.Operation("ROI_ALIGN", feature, roiOut_1, batchOut_1, 2, 2, 1.0, 1.0, 4, 4, layout).To(featureOut_2) # Operation 3, FULLY_CONNECTED weights_3 = Parameter("weights", "TENSOR_FLOAT32", "{8, 4}", [1] * 32) bias_3 = Parameter("bias", "TENSOR_FLOAT32", "{8}", [1] * 8) deltaOut_3 = Internal("delta", "TENSOR_FLOAT32", "{0, 8}") model = model.Operation("FULLY_CONNECTED", featureOut_2, weights_3, bias_3, 0).To(deltaOut_3) # Operation 4, FULLY_CONNECTED weights_4 = Parameter("weights", "TENSOR_FLOAT32", "{2, 4}", [1] * 8) bias_4 = Parameter("bias", "TENSOR_FLOAT32", "{2}", [1] * 2) scoresOut_4 = Internal("scores", "TENSOR_FLOAT32", "{0, 2}") model = model.Operation("FULLY_CONNECTED", featureOut_2, weights_4, bias_4, 0).To(scoresOut_4) # Operation 5, AXIS_ALIGNED_BBOX_TRANSFORM roiOut_5 = Internal("roi", "TENSOR_FLOAT32", "{0, 8}") model = model.Operation("AXIS_ALIGNED_BBOX_TRANSFORM", roiOut_1, deltaOut_3, batchOut_1, image).To(roiOut_5) # Operation 6, BOX_WITH_NMS_LIMIT scoresOut_6 = Output("scores", "TENSOR_FLOAT32", "{0}") roiOut_6 = Output("roi", "TENSOR_FLOAT32", "{0, 4}") classOut_6 = Output("classes", "TENSOR_INT32", "{0}") batchOut_6 = Output("batches", "TENSOR_INT32", "{0}") model = model.Operation("BOX_WITH_NMS_LIMIT", scoresOut_4, roiOut_5, batchOut_1, 0.1, -1, 0, 0.3, 1.0, 0.1).To(scoresOut_6, roiOut_6, classOut_6, batchOut_6) quant8 = DataTypeConverter().Identify({ scores: ("TENSOR_QUANT8_ASYMM", 0.1, 128), deltas: ("TENSOR_QUANT8_ASYMM", 0.1, 128), anchors: ("TENSOR_QUANT16_SYMM", 0.125, 0), image: ("TENSOR_QUANT16_ASYMM", 0.125, 0), scoresOut_1: ("TENSOR_QUANT8_ASYMM", 0.1, 128), roiOut_1: ("TENSOR_QUANT16_ASYMM", 0.125, 0), feature: ("TENSOR_QUANT8_ASYMM", 0.1, 128), featureOut_2: ("TENSOR_QUANT8_ASYMM", 0.1, 128), weights_3: ("TENSOR_QUANT8_ASYMM", 0.1, 128), bias_3: ("TENSOR_INT32", 0.01, 0), deltaOut_3: ("TENSOR_QUANT8_ASYMM", 0.1, 128), weights_4: ("TENSOR_QUANT8_ASYMM", 0.1, 128), bias_4: ("TENSOR_INT32", 0.01, 0), scoresOut_4: ("TENSOR_QUANT8_ASYMM", 0.1, 128), roiOut_5: ("TENSOR_QUANT16_ASYMM", 0.125, 0), scoresOut_6: ("TENSOR_QUANT8_ASYMM", 0.1, 128), roiOut_6: ("TENSOR_QUANT16_ASYMM", 0.125, 0), }) Example({ # Inputs that will lead to zero-sized output of GENERATE_PROPOSALS scores: [0.5], deltas: [0, 0, -10, -10], anchors: [0, 0, 10, 10], image: [32, 32], feature: [1], # Placeholder outputs scoresOut_1: [], scoresOut_6: [], roiOut_6: [], classOut_6: [], batchOut_6: [], }).AddVariations("relaxed", "float16", quant8)