# # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # layout = BoolScalar("layout", False) # NHWC # TEST 1: dilation set to 1 (default) i1 = Input("op1", "TENSOR_FLOAT32", "{1, 3, 3, 1}") f1 = Parameter("op2", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [.25, .25, .25, .25]) b1 = Parameter("op3", "TENSOR_FLOAT32", "{1}", [0]) o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") Model().Operation("CONV_2D", i1, f1, b1, 0, 0, 0, 0, 1, 1, 0, layout, 1, 1).To(o1) # Additional data type quant8 = DataTypeConverter().Identify({ i1: ("TENSOR_QUANT8_ASYMM", 0.5, 0), f1: ("TENSOR_QUANT8_ASYMM", 0.125, 0), b1: ("TENSOR_INT32", 0.0625, 0), o1: ("TENSOR_QUANT8_ASYMM", 0.125, 0) }) # Instantiate an example example = Example({ i1: [1.0, 1.0, 1.0, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0], o1: [.875, .875, .875, .875] }).AddNchw(i1, o1, layout).AddVariations("relaxed", quant8, "float16") # TEST 2: dilation set to 3 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 9, 9, 1}") f2 = Parameter("op2", "TENSOR_FLOAT32", "{1, 3, 3, 1}", [1, 2, 3, 4, 5, 6, 7, 8, 9]) b2 = Parameter("op3", "TENSOR_FLOAT32", "{1}", [0]) o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") Model().Operation("CONV_2D", i2, f2, b2, 0, 0, 0, 0, 1, 1, 0, layout, 3, 3).To(o2) # Additional data type quant8 = DataTypeConverter().Identify({ i2: ("TENSOR_QUANT8_ASYMM", 0.5, 0), f2: ("TENSOR_QUANT8_ASYMM", 0.125, 0), b2: ("TENSOR_INT32", 0.0625, 0), o2: ("TENSOR_QUANT8_ASYMM", 0.125, 0) }) # Instantiate an example example = Example({ i2: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], o2: [5, 5, 5, 5, 5, 5, 5, 5, 5] }).AddNchw(i2, o2, layout).AddVariations("relaxed", quant8, "float16") # TEST 3: same as test 1 but with implicit VALID padding i1 = Input("op1", "TENSOR_FLOAT32", "{1, 3, 3, 1}") f1 = Parameter("op2", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [.25, .25, .25, .25]) b1 = Parameter("op3", "TENSOR_FLOAT32", "{1}", [0]) o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") Model().Operation("CONV_2D", i1, f1, b1, 2, 1, 1, 0, layout, 1, 1).To(o1) # Additional data type quant8 = DataTypeConverter().Identify({ i1: ("TENSOR_QUANT8_ASYMM", 0.5, 0), f1: ("TENSOR_QUANT8_ASYMM", 0.125, 0), b1: ("TENSOR_INT32", 0.0625, 0), o1: ("TENSOR_QUANT8_ASYMM", 0.125, 0) }) # Instantiate an example example = Example({ i1: [1.0, 1.0, 1.0, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0], o1: [.875, .875, .875, .875] }, name="valid_padding").AddNchw(i1, o1, layout).AddVariations("relaxed", quant8, "float16") # TEST 4: same as test 2 but with implicit VALID padding i2 = Input("op1", "TENSOR_FLOAT32", "{1, 9, 9, 1}") f2 = Parameter("op2", "TENSOR_FLOAT32", "{1, 3, 3, 1}", [1, 2, 3, 4, 5, 6, 7, 8, 9]) b2 = Parameter("op3", "TENSOR_FLOAT32", "{1}", [0]) o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") Model().Operation("CONV_2D", i2, f2, b2, 2, 1, 1, 0, layout, 3, 3).To(o2) # Additional data type quant8 = DataTypeConverter().Identify({ i2: ("TENSOR_QUANT8_ASYMM", 0.5, 0), f2: ("TENSOR_QUANT8_ASYMM", 0.125, 0), b2: ("TENSOR_INT32", 0.0625, 0), o2: ("TENSOR_QUANT8_ASYMM", 0.125, 0) }) # Instantiate an example example = Example({ i2: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], o2: [5, 5, 5, 5, 5, 5, 5, 5, 5] }, name="valid_padding").AddNchw(i2, o2, layout).AddVariations("relaxed", quant8, "float16") # TEST 5: dilation set to 3, SAME padding i3 = Input("op1", "TENSOR_FLOAT32", "{1, 6, 6, 1}") f3 = Parameter("op2", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [1, 2, 3, 4]) b3 = Parameter("op3", "TENSOR_FLOAT32", "{1}", [0]) o3 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") Model().Operation("CONV_2D", i3, f3, b3, 1, 2, 2, 0, layout, 3, 3).To(o3) # Additional data type quant8 = DataTypeConverter().Identify({ i3: ("TENSOR_QUANT8_ASYMM", 0.5, 0), f3: ("TENSOR_QUANT8_ASYMM", 0.125, 0), b3: ("TENSOR_INT32", 0.0625, 0), o3: ("TENSOR_QUANT8_ASYMM", 0.125, 0) }) # Instantiate an example example = Example({ i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], o3: [16, 0, 9, 0, 0, 0, 4, 0, 1] }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, "float16") # The tests below can comply with a lower version because the runtime removes # optional arguments set to default values. Example.SetVersion("V1_0", "conv2d_dilation_nhwc", "conv2d_dilation_nhwc_all_inputs_as_internal", "conv2d_dilation_nhwc_all_tensors_as_inputs", "conv2d_dilation_nhwc_all_tensors_as_inputs_all_inputs_as_internal", "conv2d_dilation_nhwc_quant8", "conv2d_dilation_nhwc_quant8_all_inputs_as_internal", "conv2d_dilation_nhwc_quant8_all_tensors_as_inputs", "conv2d_dilation_nhwc_quant8_all_tensors_as_inputs_all_inputs_as_internal", "conv2d_dilation_valid_padding_nhwc", "conv2d_dilation_valid_padding_nhwc_all_inputs_as_internal", "conv2d_dilation_valid_padding_nhwc_all_tensors_as_inputs", "conv2d_dilation_valid_padding_nhwc_all_tensors_as_inputs_all_inputs_as_internal", "conv2d_dilation_valid_padding_nhwc_quant8", "conv2d_dilation_valid_padding_nhwc_quant8_all_inputs_as_internal", "conv2d_dilation_valid_padding_nhwc_quant8_all_tensors_as_inputs", "conv2d_dilation_valid_padding_nhwc_quant8_all_tensors_as_inputs_all_inputs_as_internal")