#!/usr/bin/env python3 # # Copyright (C) 2016 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """simpleperf_report_lib.py: a python wrapper of libsimpleperf_report.so. Used to access samples in perf.data. """ import collections import ctypes as ct from pathlib import Path import struct from typing import Any, Dict, List, Optional, Union from simpleperf_utils import (bytes_to_str, get_host_binary_path, is_windows, str_to_bytes, ReportLibOptions) def _is_null(p: Optional[ct._Pointer]) -> bool: if p: return False return ct.cast(p, ct.c_void_p).value is None def _char_pt(s: str) -> bytes: return str_to_bytes(s) def _char_pt_to_str(char_pt: ct.c_char_p) -> str: return bytes_to_str(char_pt) def _check(cond: bool, failmsg: str): if not cond: raise RuntimeError(failmsg) class SampleStruct(ct.Structure): """ Instance of a sample in perf.data. ip: the program counter of the thread generating the sample. pid: process id (or thread group id) of the thread generating the sample. tid: thread id. thread_comm: thread name. time: time at which the sample was generated. The value is in nanoseconds. The clock is decided by the --clockid option in `simpleperf record`. in_kernel: whether the instruction is in kernel space or user space. cpu: the cpu generating the sample. period: count of events have happened since last sample. For example, if we use -e cpu-cycles, it means how many cpu-cycles have happened. If we use -e cpu-clock, it means how many nanoseconds have passed. """ _fields_ = [('ip', ct.c_uint64), ('pid', ct.c_uint32), ('tid', ct.c_uint32), ('_thread_comm', ct.c_char_p), ('time', ct.c_uint64), ('_in_kernel', ct.c_uint32), ('cpu', ct.c_uint32), ('period', ct.c_uint64)] @property def thread_comm(self) -> str: return _char_pt_to_str(self._thread_comm) @property def in_kernel(self) -> bool: return bool(self._in_kernel) class TracingFieldFormatStruct(ct.Structure): """Format of a tracing field. name: name of the field. offset: offset of the field in tracing data. elem_size: size of the element type. elem_count: the number of elements in this field, more than one if the field is an array. is_signed: whether the element type is signed or unsigned. is_dynamic: whether the element is a dynamic string. """ _fields_ = [('_name', ct.c_char_p), ('offset', ct.c_uint32), ('elem_size', ct.c_uint32), ('elem_count', ct.c_uint32), ('is_signed', ct.c_uint32), ('is_dynamic', ct.c_uint32)] _unpack_key_dict = {1: 'b', 2: 'h', 4: 'i', 8: 'q'} @property def name(self) -> str: return _char_pt_to_str(self._name) def parse_value(self, data: ct.c_char_p) -> Union[str, bytes, List[bytes]]: """ Parse value of a field in a tracepoint event. The return value depends on the type of the field, and can be an int value, a string, an array of int values, etc. If the type can't be parsed, return a byte array or an array of byte arrays. """ if self.is_dynamic: offset, max_len = struct.unpack(' 1 and self.elem_size == 1: # Probably the field is a string. # Don't use self.is_signed, which has different values on x86 and arm. length = 0 while length < self.elem_count and bytes_to_str(data[self.offset + length]) != '\x00': length += 1 return bytes_to_str(data[self.offset: self.offset + length]) unpack_key = self._unpack_key_dict.get(self.elem_size) if unpack_key: if not self.is_signed: unpack_key = unpack_key.upper() value = struct.unpack('%d%s' % (self.elem_count, unpack_key), data[self.offset:self.offset + self.elem_count * self.elem_size]) else: # Since we don't know the element type, just return the bytes. value = [] offset = self.offset for _ in range(self.elem_count): value.append(data[offset: offset + self.elem_size]) offset += self.elem_size if self.elem_count == 1: value = value[0] return value class TracingDataFormatStruct(ct.Structure): """Format of tracing data of a tracepoint event, like https://www.kernel.org/doc/html/latest/trace/events.html#event-formats. size: total size of all fields in the tracing data. field_count: the number of fields. fields: an array of fields. """ _fields_ = [('size', ct.c_uint32), ('field_count', ct.c_uint32), ('fields', ct.POINTER(TracingFieldFormatStruct))] class EventStruct(ct.Structure): """Event type of a sample. name: name of the event type. tracing_data_format: only available when it is a tracepoint event. """ _fields_ = [('_name', ct.c_char_p), ('tracing_data_format', TracingDataFormatStruct)] @property def name(self) -> str: return _char_pt_to_str(self._name) class MappingStruct(ct.Structure): """ A mapping area in the monitored threads, like the content in /proc//maps. start: start addr in memory. end: end addr in memory. pgoff: offset in the mapped shared library. """ _fields_ = [('start', ct.c_uint64), ('end', ct.c_uint64), ('pgoff', ct.c_uint64)] class SymbolStruct(ct.Structure): """ Symbol info of the instruction hit by a sample or a callchain entry of a sample. dso_name: path of the shared library containing the instruction. vaddr_in_file: virtual address of the instruction in the shared library. symbol_name: name of the function containing the instruction. symbol_addr: start addr of the function containing the instruction. symbol_len: length of the function in the shared library. mapping: the mapping area hit by the instruction. """ _fields_ = [('_dso_name', ct.c_char_p), ('vaddr_in_file', ct.c_uint64), ('_symbol_name', ct.c_char_p), ('symbol_addr', ct.c_uint64), ('symbol_len', ct.c_uint64), ('mapping', ct.POINTER(MappingStruct))] @property def dso_name(self) -> str: return _char_pt_to_str(self._dso_name) @property def symbol_name(self) -> str: return _char_pt_to_str(self._symbol_name) class CallChainEntryStructure(ct.Structure): """ A callchain entry of a sample. ip: the address of the instruction of the callchain entry. symbol: symbol info of the callchain entry. """ _fields_ = [('ip', ct.c_uint64), ('symbol', SymbolStruct)] class CallChainStructure(ct.Structure): """ Callchain info of a sample. nr: number of entries in the callchain. entries: a pointer to an array of CallChainEntryStructure. For example, if a sample is generated when a thread is running function C with callchain function A -> function B -> function C. Then nr = 2, and entries = [function B, function A]. """ _fields_ = [('nr', ct.c_uint32), ('entries', ct.POINTER(CallChainEntryStructure))] class FeatureSectionStructure(ct.Structure): """ A feature section in perf.data to store information like record cmd, device arch, etc. data: a pointer to a buffer storing the section data. data_size: data size in bytes. """ _fields_ = [('data', ct.POINTER(ct.c_char)), ('data_size', ct.c_uint32)] class ReportLibStructure(ct.Structure): _fields_ = [] # pylint: disable=invalid-name class ReportLib(object): def __init__(self, native_lib_path: Optional[str] = None): if native_lib_path is None: native_lib_path = self._get_native_lib() self._load_dependent_lib() self._lib = ct.CDLL(native_lib_path) self._CreateReportLibFunc = self._lib.CreateReportLib self._CreateReportLibFunc.restype = ct.POINTER(ReportLibStructure) self._DestroyReportLibFunc = self._lib.DestroyReportLib self._SetLogSeverityFunc = self._lib.SetLogSeverity self._SetSymfsFunc = self._lib.SetSymfs self._SetRecordFileFunc = self._lib.SetRecordFile self._SetKallsymsFileFunc = self._lib.SetKallsymsFile self._ShowIpForUnknownSymbolFunc = self._lib.ShowIpForUnknownSymbol self._ShowArtFramesFunc = self._lib.ShowArtFrames self._MergeJavaMethodsFunc = self._lib.MergeJavaMethods self._AddProguardMappingFileFunc = self._lib.AddProguardMappingFile self._AddProguardMappingFileFunc.restype = ct.c_bool self._GetSupportedTraceOffCpuModesFunc = self._lib.GetSupportedTraceOffCpuModes self._GetSupportedTraceOffCpuModesFunc.restype = ct.c_char_p self._SetTraceOffCpuModeFunc = self._lib.SetTraceOffCpuMode self._SetTraceOffCpuModeFunc.restype = ct.c_bool self._SetSampleFilterFunc = self._lib.SetSampleFilter self._SetSampleFilterFunc.restype = ct.c_bool self._AggregateThreadsFunc = self._lib.AggregateThreads self._AggregateThreadsFunc.restype = ct.c_bool self._GetNextSampleFunc = self._lib.GetNextSample self._GetNextSampleFunc.restype = ct.POINTER(SampleStruct) self._GetEventOfCurrentSampleFunc = self._lib.GetEventOfCurrentSample self._GetEventOfCurrentSampleFunc.restype = ct.POINTER(EventStruct) self._GetSymbolOfCurrentSampleFunc = self._lib.GetSymbolOfCurrentSample self._GetSymbolOfCurrentSampleFunc.restype = ct.POINTER(SymbolStruct) self._GetCallChainOfCurrentSampleFunc = self._lib.GetCallChainOfCurrentSample self._GetCallChainOfCurrentSampleFunc.restype = ct.POINTER(CallChainStructure) self._GetTracingDataOfCurrentSampleFunc = self._lib.GetTracingDataOfCurrentSample self._GetTracingDataOfCurrentSampleFunc.restype = ct.POINTER(ct.c_char) self._GetBuildIdForPathFunc = self._lib.GetBuildIdForPath self._GetBuildIdForPathFunc.restype = ct.c_char_p self._GetFeatureSection = self._lib.GetFeatureSection self._GetFeatureSection.restype = ct.POINTER(FeatureSectionStructure) self._instance = self._CreateReportLibFunc() assert not _is_null(self._instance) self.meta_info: Optional[Dict[str, str]] = None self.current_sample: Optional[SampleStruct] = None self.record_cmd: Optional[str] = None def _get_native_lib(self) -> str: return get_host_binary_path('libsimpleperf_report.so') def _load_dependent_lib(self): # As the windows dll is built with mingw we need to load 'libwinpthread-1.dll'. if is_windows(): self._libwinpthread = ct.CDLL(get_host_binary_path('libwinpthread-1.dll')) def Close(self): if self._instance: self._DestroyReportLibFunc(self._instance) self._instance = None def SetReportOptions(self, options: ReportLibOptions): """ Set report options in one call. """ if options.proguard_mapping_files: for file_path in options.proguard_mapping_files: self.AddProguardMappingFile(file_path) if options.show_art_frames: self.ShowArtFrames(True) if options.trace_offcpu: self.SetTraceOffCpuMode(options.trace_offcpu) if options.sample_filters: self.SetSampleFilter(options.sample_filters) if options.aggregate_threads: self.AggregateThreads(options.aggregate_threads) def SetLogSeverity(self, log_level: str = 'info'): """ Set log severity of native lib, can be verbose,debug,info,error,fatal.""" cond: bool = self._SetLogSeverityFunc(self.getInstance(), _char_pt(log_level)) _check(cond, 'Failed to set log level') def SetSymfs(self, symfs_dir: str): """ Set directory used to find symbols.""" cond: bool = self._SetSymfsFunc(self.getInstance(), _char_pt(symfs_dir)) _check(cond, 'Failed to set symbols directory') def SetRecordFile(self, record_file: str): """ Set the path of record file, like perf.data.""" cond: bool = self._SetRecordFileFunc(self.getInstance(), _char_pt(record_file)) _check(cond, 'Failed to set record file') def ShowIpForUnknownSymbol(self): self._ShowIpForUnknownSymbolFunc(self.getInstance()) def ShowArtFrames(self, show: bool = True): """ Show frames of internal methods of the Java interpreter. """ self._ShowArtFramesFunc(self.getInstance(), show) def MergeJavaMethods(self, merge: bool = True): """ This option merges jitted java methods with the same name but in different jit symfiles. If possible, it also merges jitted methods with interpreted methods, by mapping jitted methods to their corresponding dex files. Side effects: It only works at method level, not instruction level. It makes symbol.vaddr_in_file and symbol.mapping not accurate for jitted methods. Java methods are merged by default. """ self._MergeJavaMethodsFunc(self.getInstance(), merge) def AddProguardMappingFile(self, mapping_file: Union[str, Path]): """ Add proguard mapping.txt to de-obfuscate method names. """ if not self._AddProguardMappingFileFunc(self.getInstance(), _char_pt(str(mapping_file))): raise ValueError(f'failed to add proguard mapping file: {mapping_file}') def SetKallsymsFile(self, kallsym_file: str): """ Set the file path to a copy of the /proc/kallsyms file (for off device decoding) """ cond: bool = self._SetKallsymsFileFunc(self.getInstance(), _char_pt(kallsym_file)) _check(cond, 'Failed to set kallsyms file') def GetSupportedTraceOffCpuModes(self) -> List[str]: """ Get trace-offcpu modes supported by the recording file. It should be called after SetRecordFile(). The modes are only available for profiles recorded with --trace-offcpu option. All possible modes are: on-cpu: report on-cpu samples with period representing time spent on cpu off-cpu: report off-cpu samples with period representing time spent off cpu on-off-cpu: report both on-cpu samples and off-cpu samples, which can be split by event name. mixed-on-off-cpu: report on-cpu and off-cpu samples under the same event name. """ modes_str = self._GetSupportedTraceOffCpuModesFunc(self.getInstance()) _check(not _is_null(modes_str), 'Failed to call GetSupportedTraceOffCpuModes()') modes_str = _char_pt_to_str(modes_str) return modes_str.split(',') if modes_str else [] def SetTraceOffCpuMode(self, mode: str): """ Set trace-offcpu mode. It should be called after SetRecordFile(). The mode should be one of the modes returned by GetSupportedTraceOffCpuModes(). """ res: bool = self._SetTraceOffCpuModeFunc(self.getInstance(), _char_pt(mode)) _check(res, f'Failed to call SetTraceOffCpuMode({mode})') def SetSampleFilter(self, filters: List[str]): """ Set options used to filter samples. Available options are: --exclude-pid pid1,pid2,... Exclude samples for selected processes. --exclude-tid tid1,tid2,... Exclude samples for selected threads. --exclude-process-name process_name_regex Exclude samples for processes with name containing the regular expression. --exclude-thread-name thread_name_regex Exclude samples for threads with name containing the regular expression. --include-pid pid1,pid2,... Include samples for selected processes. --include-tid tid1,tid2,... Include samples for selected threads. --include-process-name process_name_regex Include samples for processes with name containing the regular expression. --include-thread-name thread_name_regex Include samples for threads with name containing the regular expression. --filter-file Use filter file to filter samples based on timestamps. The file format is in doc/sampler_filter.md. The filter argument should be a concatenation of options. """ filter_array = (ct.c_char_p * len(filters))() filter_array[:] = [_char_pt(f) for f in filters] res: bool = self._SetSampleFilterFunc(self.getInstance(), filter_array, len(filters)) _check(res, f'Failed to call SetSampleFilter({filters})') def AggregateThreads(self, thread_name_regex_list: List[str]): """ Given a list of thread name regex, threads with names matching the same regex are merged into one thread. As a result, samples from different threads (like a thread pool) can be shown in one flamegraph. """ regex_array = (ct.c_char_p * len(thread_name_regex_list))() regex_array[:] = [_char_pt(f) for f in thread_name_regex_list] res: bool = self._AggregateThreadsFunc( self.getInstance(), regex_array, len(thread_name_regex_list)) _check(res, f'Failed to call AggregateThreads({thread_name_regex_list})') def GetNextSample(self) -> Optional[SampleStruct]: """ Return the next sample. If no more samples, return None. """ psample = self._GetNextSampleFunc(self.getInstance()) if _is_null(psample): self.current_sample = None else: self.current_sample = psample[0] return self.current_sample def GetCurrentSample(self) -> Optional[SampleStruct]: return self.current_sample def GetEventOfCurrentSample(self) -> EventStruct: event = self._GetEventOfCurrentSampleFunc(self.getInstance()) assert not _is_null(event) return event[0] def GetSymbolOfCurrentSample(self) -> SymbolStruct: symbol = self._GetSymbolOfCurrentSampleFunc(self.getInstance()) assert not _is_null(symbol) return symbol[0] def GetCallChainOfCurrentSample(self) -> CallChainStructure: callchain = self._GetCallChainOfCurrentSampleFunc(self.getInstance()) assert not _is_null(callchain) return callchain[0] def GetTracingDataOfCurrentSample(self) -> Optional[Dict[str, Any]]: data = self._GetTracingDataOfCurrentSampleFunc(self.getInstance()) if _is_null(data): return None event = self.GetEventOfCurrentSample() result = collections.OrderedDict() for i in range(event.tracing_data_format.field_count): field = event.tracing_data_format.fields[i] result[field.name] = field.parse_value(data) return result def GetBuildIdForPath(self, path: str) -> str: build_id = self._GetBuildIdForPathFunc(self.getInstance(), _char_pt(path)) assert not _is_null(build_id) return _char_pt_to_str(build_id) def GetRecordCmd(self) -> str: if self.record_cmd is not None: return self.record_cmd self.record_cmd = '' feature_data = self._GetFeatureSection(self.getInstance(), _char_pt('cmdline')) if not _is_null(feature_data): void_p = ct.cast(feature_data[0].data, ct.c_void_p) arg_count = ct.cast(void_p, ct.POINTER(ct.c_uint32)).contents.value void_p.value += 4 args = [] for _ in range(arg_count): str_len = ct.cast(void_p, ct.POINTER(ct.c_uint32)).contents.value void_p.value += 4 char_p = ct.cast(void_p, ct.POINTER(ct.c_char)) current_str = '' for j in range(str_len): c = bytes_to_str(char_p[j]) if c != '\0': current_str += c if ' ' in current_str: current_str = '"' + current_str + '"' args.append(current_str) void_p.value += str_len self.record_cmd = ' '.join(args) return self.record_cmd def _GetFeatureString(self, feature_name: str) -> str: feature_data = self._GetFeatureSection(self.getInstance(), _char_pt(feature_name)) result = '' if not _is_null(feature_data): void_p = ct.cast(feature_data[0].data, ct.c_void_p) str_len = ct.cast(void_p, ct.POINTER(ct.c_uint32)).contents.value void_p.value += 4 char_p = ct.cast(void_p, ct.POINTER(ct.c_char)) for i in range(str_len): c = bytes_to_str(char_p[i]) if c == '\0': break result += c return result def GetArch(self) -> str: return self._GetFeatureString('arch') def MetaInfo(self) -> Dict[str, str]: """ Return a string to string map stored in meta_info section in perf.data. It is used to pass some short meta information. """ if self.meta_info is None: self.meta_info = {} feature_data = self._GetFeatureSection(self.getInstance(), _char_pt('meta_info')) if not _is_null(feature_data): str_list = [] data = feature_data[0].data data_size = feature_data[0].data_size current_str = '' for i in range(data_size): c = bytes_to_str(data[i]) if c != '\0': current_str += c else: str_list.append(current_str) current_str = '' for i in range(0, len(str_list), 2): self.meta_info[str_list[i]] = str_list[i + 1] return self.meta_info def getInstance(self) -> ct._Pointer: if self._instance is None: raise Exception('Instance is Closed') return self._instance