/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "inliner.h" #include "art_method-inl.h" #include "base/enums.h" #include "base/logging.h" #include "builder.h" #include "class_linker.h" #include "class_root-inl.h" #include "constant_folding.h" #include "data_type-inl.h" #include "dead_code_elimination.h" #include "dex/inline_method_analyser.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "instruction_simplifier.h" #include "intrinsics.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "mirror/class_loader.h" #include "mirror/dex_cache.h" #include "mirror/object_array-alloc-inl.h" #include "mirror/object_array-inl.h" #include "nodes.h" #include "reference_type_propagation.h" #include "register_allocator_linear_scan.h" #include "scoped_thread_state_change-inl.h" #include "sharpening.h" #include "ssa_builder.h" #include "ssa_phi_elimination.h" #include "thread.h" #include "verifier/verifier_compiler_binding.h" namespace art HIDDEN { // Instruction limit to control memory. static constexpr size_t kMaximumNumberOfTotalInstructions = 1024; // Maximum number of instructions for considering a method small, // which we will always try to inline if the other non-instruction limits // are not reached. static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3; // Limit the number of dex registers that we accumulate while inlining // to avoid creating large amount of nested environments. static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32; // Limit recursive call inlining, which do not benefit from too // much inlining compared to code locality. static constexpr size_t kMaximumNumberOfRecursiveCalls = 4; // Limit recursive polymorphic call inlining to prevent code bloat, since it can quickly get out of // hand in the presence of multiple Wrapper classes. We set this to 0 to disallow polymorphic // recursive calls at all. static constexpr size_t kMaximumNumberOfPolymorphicRecursiveCalls = 0; // Controls the use of inline caches in AOT mode. static constexpr bool kUseAOTInlineCaches = true; // Controls the use of inlining try catches. static constexpr bool kInlineTryCatches = true; // We check for line numbers to make sure the DepthString implementation // aligns the output nicely. #define LOG_INTERNAL(msg) \ static_assert(__LINE__ > 10, "Unhandled line number"); \ static_assert(__LINE__ < 10000, "Unhandled line number"); \ VLOG(compiler) << DepthString(__LINE__) << msg #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ") #define LOG_NOTE() LOG_INTERNAL("Note: ") #define LOG_SUCCESS() LOG_INTERNAL("Success: ") #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ") #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ") std::string HInliner::DepthString(int line) const { std::string value; // Indent according to the inlining depth. size_t count = depth_; // Line numbers get printed in the log, so add a space if the log's line is less // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright. if (!kIsTargetBuild) { if (line < 100) { value += " "; } if (line < 1000) { value += " "; } // Safeguard if this file reaches more than 10000 lines. DCHECK_LT(line, 10000); } for (size_t i = 0; i < count; ++i) { value += " "; } return value; } static size_t CountNumberOfInstructions(HGraph* graph) { size_t number_of_instructions = 0; for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) { for (HInstructionIterator instr_it(block->GetInstructions()); !instr_it.Done(); instr_it.Advance()) { ++number_of_instructions; } } return number_of_instructions; } void HInliner::UpdateInliningBudget() { if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) { // Always try to inline small methods. inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod; } else { inlining_budget_ = std::max( kMaximumNumberOfInstructionsForSmallMethod, kMaximumNumberOfTotalInstructions - total_number_of_instructions_); } } bool HInliner::Run() { if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) { // Inlining effectively disabled. return false; } else if (graph_->IsDebuggable()) { // For simplicity, we currently never inline when the graph is debuggable. This avoids // doing some logic in the runtime to discover if a method could have been inlined. return false; } bool did_inline = false; // The inliner is the only phase that sets invokes as `always throwing`, and since we only run the // inliner once per graph this value should always be false at the beginning of the inlining // phase. This is important since we use `HasAlwaysThrowingInvokes` to know whether the inliner // phase performed a relevant change in the graph. DCHECK(!graph_->HasAlwaysThrowingInvokes()); // Initialize the number of instructions for the method being compiled. Recursive calls // to HInliner::Run have already updated the instruction count. if (outermost_graph_ == graph_) { total_number_of_instructions_ = CountNumberOfInstructions(graph_); } UpdateInliningBudget(); DCHECK_NE(total_number_of_instructions_, 0u); DCHECK_NE(inlining_budget_, 0u); // If we're compiling tests, honor inlining directives in method names: // - if a method's name contains the substring "$noinline$", do not // inline that method; // - if a method's name contains the substring "$inline$", ensure // that this method is actually inlined. // We limit the latter to AOT compilation, as the JIT may or may not inline // depending on the state of classes at runtime. const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest(); const bool honor_inline_directives = honor_noinline_directives && Runtime::Current()->IsAotCompiler(); // Keep a copy of all blocks when starting the visit. ArenaVector blocks = graph_->GetReversePostOrder(); DCHECK(!blocks.empty()); // Because we are changing the graph when inlining, // we just iterate over the blocks of the outer method. // This avoids doing the inlining work again on the inlined blocks. for (HBasicBlock* block : blocks) { for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { HInstruction* next = instruction->GetNext(); HInvoke* call = instruction->AsInvoke(); // As long as the call is not intrinsified, it is worth trying to inline. if (call != nullptr && !codegen_->IsImplementedIntrinsic(call)) { if (honor_noinline_directives) { // Debugging case: directives in method names control or assert on inlining. std::string callee_name = call->GetMethodReference().PrettyMethod(/* with_signature= */ false); // Tests prevent inlining by having $noinline$ in their method names. if (callee_name.find("$noinline$") == std::string::npos) { if (TryInline(call)) { did_inline = true; } else if (honor_inline_directives) { bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos); CHECK(!should_have_inlined) << "Could not inline " << callee_name; } } } else { DCHECK(!honor_inline_directives); // Normal case: try to inline. if (TryInline(call)) { did_inline = true; } } } instruction = next; } } // We return true if we either inlined at least one method, or we marked one of our methods as // always throwing. return did_inline || graph_->HasAlwaysThrowingInvokes(); } static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); } /** * Given the `resolved_method` looked up in the dex cache, try to find * the actual runtime target of an interface or virtual call. * Return nullptr if the runtime target cannot be proven. */ static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* resolved_method = invoke->GetResolvedMethod(); if (IsMethodOrDeclaringClassFinal(resolved_method)) { // No need to lookup further, the resolved method will be the target. return resolved_method; } HInstruction* receiver = invoke->InputAt(0); if (receiver->IsNullCheck()) { // Due to multiple levels of inlining within the same pass, it might be that // null check does not have the reference type of the actual receiver. receiver = receiver->InputAt(0); } ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); if (!info.IsExact()) { // We currently only support inlining with known receivers. // TODO: Remove this check, we should be able to inline final methods // on unknown receivers. return nullptr; } else if (info.GetTypeHandle()->IsInterface()) { // Statically knowing that the receiver has an interface type cannot // help us find what is the target method. return nullptr; } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { // The method that we're trying to call is not in the receiver's class or super classes. return nullptr; } else if (info.GetTypeHandle()->IsErroneous()) { // If the type is erroneous, do not go further, as we are going to query the vtable or // imt table, that we can only safely do on non-erroneous classes. return nullptr; } ClassLinker* cl = Runtime::Current()->GetClassLinker(); PointerSize pointer_size = cl->GetImagePointerSize(); if (invoke->IsInvokeInterface()) { resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( resolved_method, pointer_size); } else { DCHECK(invoke->IsInvokeVirtual()); resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( resolved_method, pointer_size); } if (resolved_method == nullptr) { // The information we had on the receiver was not enough to find // the target method. Since we check above the exact type of the receiver, // the only reason this can happen is an IncompatibleClassChangeError. return nullptr; } else if (!resolved_method->IsInvokable()) { // The information we had on the receiver was not enough to find // the target method. Since we check above the exact type of the receiver, // the only reason this can happen is an IncompatibleClassChangeError. return nullptr; } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { // A final method has to be the target method. return resolved_method; } else if (info.IsExact()) { // If we found a method and the receiver's concrete type is statically // known, we know for sure the target. return resolved_method; } else { // Even if we did find a method, the receiver type was not enough to // statically find the runtime target. return nullptr; } } static uint32_t FindMethodIndexIn(ArtMethod* method, const DexFile& dex_file, uint32_t name_and_signature_index) REQUIRES_SHARED(Locks::mutator_lock_) { if (IsSameDexFile(*method->GetDexFile(), dex_file)) { return method->GetDexMethodIndex(); } else { return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); } } static dex::TypeIndex FindClassIndexIn(ObjPtr cls, const DexCompilationUnit& compilation_unit) REQUIRES_SHARED(Locks::mutator_lock_) { const DexFile& dex_file = *compilation_unit.GetDexFile(); dex::TypeIndex index; if (cls->GetDexCache() == nullptr) { DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); index = cls->FindTypeIndexInOtherDexFile(dex_file); } else if (!cls->GetDexTypeIndex().IsValid()) { DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); // TODO: deal with proxy classes. } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get()); index = cls->GetDexTypeIndex(); } else { index = cls->FindTypeIndexInOtherDexFile(dex_file); // We cannot guarantee the entry will resolve to the same class, // as there may be different class loaders. So only return the index if it's // the right class already resolved with the class loader. if (index.IsValid()) { ObjPtr resolved = compilation_unit.GetClassLinker()->LookupResolvedType( index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); if (resolved != cls) { index = dex::TypeIndex::Invalid(); } } } return index; } HInliner::InlineCacheType HInliner::GetInlineCacheType( const StackHandleScope& classes) { DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); if (number_of_types == 0) { return kInlineCacheUninitialized; } else if (number_of_types == 1) { return kInlineCacheMonomorphic; } else if (number_of_types == InlineCache::kIndividualCacheSize) { return kInlineCacheMegamorphic; } else { return kInlineCachePolymorphic; } } static inline ObjPtr GetMonomorphicType( const StackHandleScope& classes) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(classes.GetReference(0) != nullptr); return classes.GetReference(0)->AsClass(); } ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) { if (!resolved_method->HasSingleImplementation()) { return nullptr; } if (Runtime::Current()->IsAotCompiler()) { // No CHA-based devirtulization for AOT compiler (yet). return nullptr; } if (Runtime::Current()->IsZygote()) { // No CHA-based devirtulization for Zygote, as it compiles with // offline information. return nullptr; } if (outermost_graph_->IsCompilingOsr()) { // We do not support HDeoptimize in OSR methods. return nullptr; } PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize(); ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size); if (single_impl == nullptr) { return nullptr; } if (single_impl->IsProxyMethod()) { // Proxy method is a generic invoker that's not worth // devirtualizing/inlining. It also causes issues when the proxy // method is in another dex file if we try to rewrite invoke-interface to // invoke-virtual because a proxy method doesn't have a real dex file. return nullptr; } if (!single_impl->GetDeclaringClass()->IsResolved()) { // There's a race with the class loading, which updates the CHA info // before setting the class to resolved. So we just bail for this // rare occurence. return nullptr; } return single_impl; } static bool IsMethodVerified(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { if (method->GetDeclaringClass()->IsVerified()) { return true; } // For AOT, we check if the class has a verification status that allows us to // inline / analyze. // At runtime, we know this is cold code if the class is not verified, so don't // bother analyzing. if (Runtime::Current()->IsAotCompiler()) { if (method->GetDeclaringClass()->IsVerifiedNeedsAccessChecks() || method->GetDeclaringClass()->ShouldVerifyAtRuntime()) { return true; } } return false; } static bool AlwaysThrows(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method != nullptr); // Skip non-compilable and unverified methods. if (!method->IsCompilable() || !IsMethodVerified(method)) { return false; } // Skip native methods, methods with try blocks, and methods that are too large. CodeItemDataAccessor accessor(method->DexInstructionData()); if (!accessor.HasCodeItem() || accessor.TriesSize() != 0 || accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) { return false; } // Scan for exits. bool throw_seen = false; for (const DexInstructionPcPair& pair : accessor) { switch (pair.Inst().Opcode()) { case Instruction::RETURN: case Instruction::RETURN_VOID: case Instruction::RETURN_WIDE: case Instruction::RETURN_OBJECT: return false; // found regular control flow back case Instruction::THROW: throw_seen = true; break; default: break; } } return throw_seen; } bool HInliner::TryInline(HInvoke* invoke_instruction) { MaybeRecordStat(stats_, MethodCompilationStat::kTryInline); // Don't bother to move further if we know the method is unresolved or the invocation is // polymorphic (invoke-{polymorphic,custom}). if (invoke_instruction->IsInvokeUnresolved()) { MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved); return false; } else if (invoke_instruction->IsInvokePolymorphic()) { MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic); return false; } else if (invoke_instruction->IsInvokeCustom()) { MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom); return false; } ScopedObjectAccess soa(Thread::Current()); LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod(); ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); if (resolved_method == nullptr) { DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); LOG_FAIL_NO_STAT() << "Not inlining a String. method"; return false; } ArtMethod* actual_method = invoke_instruction->IsInvokeStaticOrDirect() ? invoke_instruction->GetResolvedMethod() : FindVirtualOrInterfaceTarget(invoke_instruction); if (actual_method != nullptr) { // Single target. bool result = TryInlineAndReplace(invoke_instruction, actual_method, ReferenceTypeInfo::CreateInvalid(), /* do_rtp= */ true, /* is_speculative= */ false); if (result) { MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface); if (outermost_graph_ == graph_) { MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvokeVirtualOrInterface); } } else { HInvoke* invoke_to_analyze = nullptr; if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) { // Consider devirtualization as inlining. result = true; MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized); } else { invoke_to_analyze = invoke_instruction; } // Set always throws property for non-inlined method call with single target. if (invoke_instruction->AlwaysThrows() || AlwaysThrows(actual_method)) { invoke_to_analyze->SetAlwaysThrows(/* always_throws= */ true); graph_->SetHasAlwaysThrowingInvokes(/* value= */ true); } } return result; } DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); // No try catch inlining allowed here, or recursively. For try catch inlining we are banking on // the fact that we have a unique dex pc list. We cannot guarantee that for some TryInline methods // e.g. `TryInlinePolymorphicCall`. // TODO(solanes): Setting `try_catch_inlining_allowed_` to false here covers all cases from // `TryInlineFromCHA` and from `TryInlineFromInlineCache` as well (e.g. // `TryInlinePolymorphicCall`). Reassess to see if we can inline inline catch blocks in // `TryInlineFromCHA`, `TryInlineMonomorphicCall` and `TryInlinePolymorphicCallToSameTarget`. // We store the value to restore it since we will use the same HInliner instance for other inlinee // candidates. const bool previous_value = try_catch_inlining_allowed_; try_catch_inlining_allowed_ = false; if (TryInlineFromCHA(invoke_instruction)) { try_catch_inlining_allowed_ = previous_value; return true; } const bool result = TryInlineFromInlineCache(invoke_instruction); try_catch_inlining_allowed_ = previous_value; return result; } bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) { ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod()); if (method == nullptr) { return false; } LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod(); uint32_t dex_pc = invoke_instruction->GetDexPc(); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); if (!TryInlineAndReplace(invoke_instruction, method, ReferenceTypeInfo::CreateInvalid(), /* do_rtp= */ true, /* is_speculative= */ true)) { return false; } AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor); // Add dependency due to devirtualization: we are assuming the resolved method // has a single implementation. outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod()); MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline); return true; } bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() { // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and // do not generate a deopt. // // For AOT: // Generating a deopt does not ensure that we will actually capture the new types; // and the danger is that we could be stuck in a loop with "forever" deoptimizations. // Take for example the following scenario: // - we capture the inline cache in one run // - the next run, we deoptimize because we miss a type check, but the method // never becomes hot again // In this case, the inline cache will not be updated in the profile and the AOT code // will keep deoptimizing. // Another scenario is if we use profile compilation for a process which is not allowed // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the // rest of the lifetime. // TODO(calin): // This is a compromise because we will most likely never update the inline cache // in the profile (unless there's another reason to deopt). So we might be stuck with // a sub-optimal inline cache. // We could be smarter when capturing inline caches to mitigate this. // (e.g. by having different thresholds for new and old methods). // // For OSR: // We may come from the interpreter and it may have seen different receiver types. return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr(); } bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction) REQUIRES_SHARED(Locks::mutator_lock_) { if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) { return false; } StackHandleScope classes(Thread::Current()); // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches // for it. InlineCacheType inline_cache_type = (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote()) ? GetInlineCacheAOT(invoke_instruction, &classes) : GetInlineCacheJIT(invoke_instruction, &classes); switch (inline_cache_type) { case kInlineCacheNoData: { LOG_FAIL_NO_STAT() << "No inline cache information for call to " << invoke_instruction->GetMethodReference().PrettyMethod(); return false; } case kInlineCacheUninitialized: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << invoke_instruction->GetMethodReference().PrettyMethod() << " is not hit and not inlined"; return false; } case kInlineCacheMonomorphic: { MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall); if (UseOnlyPolymorphicInliningWithNoDeopt()) { return TryInlinePolymorphicCall(invoke_instruction, classes); } else { return TryInlineMonomorphicCall(invoke_instruction, classes); } } case kInlineCachePolymorphic: { MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall); return TryInlinePolymorphicCall(invoke_instruction, classes); } case kInlineCacheMegamorphic: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << invoke_instruction->GetMethodReference().PrettyMethod() << " is megamorphic and not inlined"; MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall); return false; } case kInlineCacheMissingTypes: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << invoke_instruction->GetMethodReference().PrettyMethod() << " is missing types and not inlined"; return false; } } UNREACHABLE(); } HInliner::InlineCacheType HInliner::GetInlineCacheJIT( HInvoke* invoke_instruction, /*out*/StackHandleScope* classes) { DCHECK(codegen_->GetCompilerOptions().IsJitCompiler()); ArtMethod* caller = graph_->GetArtMethod(); // Under JIT, we should always know the caller. DCHECK(caller != nullptr); ProfilingInfo* profiling_info = graph_->GetProfilingInfo(); if (profiling_info == nullptr) { return kInlineCacheNoData; } Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto( *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()), classes); return GetInlineCacheType(*classes); } HInliner::InlineCacheType HInliner::GetInlineCacheAOT( HInvoke* invoke_instruction, /*out*/StackHandleScope* classes) { DCHECK_EQ(classes->NumberOfReferences(), InlineCache::kIndividualCacheSize); DCHECK_EQ(classes->RemainingSlots(), InlineCache::kIndividualCacheSize); const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo(); if (pci == nullptr) { return kInlineCacheNoData; } ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference( caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex())); if (!hotness.IsHot()) { return kInlineCacheNoData; // no profile information for this invocation. } const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap(); DCHECK(inline_caches != nullptr); const auto it = inline_caches->find(invoke_instruction->GetDexPc()); if (it == inline_caches->end()) { return kInlineCacheUninitialized; } const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second; if (dex_pc_data.is_missing_types) { return kInlineCacheMissingTypes; } if (dex_pc_data.is_megamorphic) { return kInlineCacheMegamorphic; } DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize); // Walk over the class descriptors and look up the actual classes. // If we cannot find a type we return kInlineCacheMissingTypes. ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); for (const dex::TypeIndex& type_index : dex_pc_data.classes) { const DexFile* dex_file = caller_compilation_unit_.GetDexFile(); const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index); ObjPtr class_loader = caller_compilation_unit_.GetClassLoader().Get(); ObjPtr clazz = class_linker->LookupResolvedType(descriptor, class_loader); if (clazz == nullptr) { VLOG(compiler) << "Could not find class from inline cache in AOT mode " << invoke_instruction->GetMethodReference().PrettyMethod() << " : " << descriptor; return kInlineCacheMissingTypes; } DCHECK_NE(classes->RemainingSlots(), 0u); classes->NewHandle(clazz); } return GetInlineCacheType(*classes); } HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, HInstruction* receiver, uint32_t dex_pc) const { ArtField* field = GetClassRoot(class_linker)->GetInstanceField(0); DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet( receiver, field, DataType::Type::kReference, field->GetOffset(), field->IsVolatile(), field->GetDexFieldIndex(), field->GetDeclaringClass()->GetDexClassDefIndex(), *field->GetDexFile(), dex_pc); // The class of a field is effectively final, and does not have any memory dependencies. result->SetSideEffects(SideEffects::None()); return result; } static ArtMethod* ResolveMethodFromInlineCache(Handle klass, HInvoke* invoke_instruction, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); if (Runtime::Current()->IsAotCompiler()) { // We can get unrelated types when working with profiles (corruption, // systme updates, or anyone can write to it). So first check if the class // actually implements the declaring class of the method that is being // called in bytecode. // Note: the lookup methods used below require to have assignable types. if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) { return nullptr; } // Also check whether the type in the inline cache is an interface or an // abstract class. We only expect concrete classes in inline caches, so this // means the class was changed. if (klass->IsAbstract() || klass->IsInterface()) { return nullptr; } } if (invoke_instruction->IsInvokeInterface()) { resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size); } else { DCHECK(invoke_instruction->IsInvokeVirtual()); resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size); } // Even if the class exists we can still not have the function the // inline-cache targets if the profile is from far enough in the past/future. // We need to allow this since we don't update boot-profiles very often. This // can occur in boot-profiles with inline-caches. DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr); return resolved_method; } bool HInliner::TryInlineMonomorphicCall( HInvoke* invoke_instruction, const StackHandleScope& classes) { DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) << invoke_instruction->DebugName(); dex::TypeIndex class_index = FindClassIndexIn( GetMonomorphicType(classes), caller_compilation_unit_); if (!class_index.IsValid()) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheInaccessibleToCaller) << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod()) << " from inline cache is not inlined because its class is not" << " accessible to the caller"; return false; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); Handle monomorphic_type = graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes)); ArtMethod* resolved_method = ResolveMethodFromInlineCache( monomorphic_type, invoke_instruction, pointer_size); if (resolved_method == nullptr) { // Bogus AOT profile, bail. DCHECK(Runtime::Current()->IsAotCompiler()); return false; } LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod(); HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); if (!TryInlineAndReplace(invoke_instruction, resolved_method, ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true), /* do_rtp= */ false, /* is_speculative= */ true)) { return false; } // We successfully inlined, now add a guard. AddTypeGuard(receiver, cursor, bb_cursor, class_index, monomorphic_type, invoke_instruction, /* with_deoptimization= */ true); // Run type propagation to get the guard typed, and eventually propagate the // type of the receiver. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetDexCache(), /* is_first_run= */ false); rtp_fixup.Run(); MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall); return true; } void HInliner::AddCHAGuard(HInstruction* invoke_instruction, uint32_t dex_pc, HInstruction* cursor, HBasicBlock* bb_cursor) { HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator()) HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc); // ShouldDeoptimizeFlag is used to perform a deoptimization because of a CHA // invalidation or for debugging reasons. It is OK to just check for non-zero // value here instead of the specific CHA value. When a debugging deopt is // requested we deoptimize before we execute any code and hence we shouldn't // see that case here. HInstruction* compare = new (graph_->GetAllocator()) HNotEqual( deopt_flag, graph_->GetIntConstant(0, dex_pc)); HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize( graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(deopt_flag, cursor); } else { bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction()); } bb_cursor->InsertInstructionAfter(compare, deopt_flag); bb_cursor->InsertInstructionAfter(deopt, compare); // Add receiver as input to aid CHA guard optimization later. deopt_flag->AddInput(invoke_instruction->InputAt(0)); DCHECK_EQ(deopt_flag->InputCount(), 1u); deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); outermost_graph_->IncrementNumberOfCHAGuards(); } HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, HInstruction* cursor, HBasicBlock* bb_cursor, dex::TypeIndex class_index, Handle klass, HInstruction* invoke_instruction, bool with_deoptimization) { ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); HInstanceFieldGet* receiver_class = BuildGetReceiverClass( class_linker, receiver, invoke_instruction->GetDexPc()); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(receiver_class, cursor); } else { bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); } const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); bool is_referrer; ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod(); if (outermost_art_method == nullptr) { DCHECK(Runtime::Current()->IsAotCompiler()); // We are in AOT mode and we don't have an ART method to determine // if the inlined method belongs to the referrer. Assume it doesn't. is_referrer = false; } else { is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass(); } // Note that we will just compare the classes, so we don't need Java semantics access checks. // Note that the type index and the dex file are relative to the method this type guard is // inlined into. HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(), class_index, caller_dex_file, klass, is_referrer, invoke_instruction->GetDexPc(), /* needs_access_check= */ false); HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind( load_class, codegen_, caller_compilation_unit_); DCHECK(kind != HLoadClass::LoadKind::kInvalid) << "We should always be able to reference a class for inline caches"; // Load kind must be set before inserting the instruction into the graph. load_class->SetLoadKind(kind); bb_cursor->InsertInstructionAfter(load_class, receiver_class); // In AOT mode, we will most likely load the class from BSS, which will involve a call // to the runtime. In this case, the load instruction will need an environment so copy // it from the invoke instruction. if (load_class->NeedsEnvironment()) { DCHECK(Runtime::Current()->IsAotCompiler()); load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); } HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class); bb_cursor->InsertInstructionAfter(compare, load_class); if (with_deoptimization) { HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( graph_->GetAllocator(), compare, receiver, Runtime::Current()->IsAotCompiler() ? DeoptimizationKind::kAotInlineCache : DeoptimizationKind::kJitInlineCache, invoke_instruction->GetDexPc()); bb_cursor->InsertInstructionAfter(deoptimize, compare); deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); DCHECK_EQ(invoke_instruction->InputAt(0), receiver); receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); } return compare; } static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) { DCHECK(new_instruction != old_instruction); if (new_instruction != nullptr) { old_instruction->ReplaceWith(new_instruction); } old_instruction->GetBlock()->RemoveInstruction(old_instruction); } bool HInliner::TryInlinePolymorphicCall( HInvoke* invoke_instruction, const StackHandleScope& classes) { DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) << invoke_instruction->DebugName(); if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) { return true; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); bool all_targets_inlined = true; bool one_target_inlined = false; DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); for (size_t i = 0; i != number_of_types; ++i) { DCHECK(classes.GetReference(i) != nullptr); Handle handle = graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass()); ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size); if (method == nullptr) { DCHECK(Runtime::Current()->IsAotCompiler()); // AOT profile is bogus. This loop expects to iterate over all entries, // so just just continue. all_targets_inlined = false; continue; } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_); HInstruction* return_replacement = nullptr; // In monomorphic cases when UseOnlyPolymorphicInliningWithNoDeopt() is true, we call // `TryInlinePolymorphicCall` even though we are monomorphic. const bool actually_monomorphic = number_of_types == 1; DCHECK_IMPLIES(actually_monomorphic, UseOnlyPolymorphicInliningWithNoDeopt()); // We only want to limit recursive polymorphic cases, not monomorphic ones. const bool too_many_polymorphic_recursive_calls = !actually_monomorphic && CountRecursiveCallsOf(method) > kMaximumNumberOfPolymorphicRecursiveCalls; if (too_many_polymorphic_recursive_calls) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedPolymorphicRecursiveBudget) << "Method " << method->PrettyMethod() << " is not inlined because it has reached its polymorphic recursive call budget."; } else if (class_index.IsValid()) { LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod(); } if (too_many_polymorphic_recursive_calls || !class_index.IsValid() || !TryBuildAndInline(invoke_instruction, method, ReferenceTypeInfo::Create(handle, /* is_exact= */ true), &return_replacement, /* is_speculative= */ true)) { all_targets_inlined = false; } else { one_target_inlined = true; LOG_SUCCESS() << "Polymorphic call to " << invoke_instruction->GetMethodReference().PrettyMethod() << " has inlined " << ArtMethod::PrettyMethod(method); // If we have inlined all targets before, and this receiver is the last seen, // we deoptimize instead of keeping the original invoke instruction. bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() && all_targets_inlined && (i + 1 == number_of_types); HInstruction* compare = AddTypeGuard(receiver, cursor, bb_cursor, class_index, handle, invoke_instruction, deoptimize); if (deoptimize) { MaybeReplaceAndRemove(return_replacement, invoke_instruction); } else { CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); } } } if (!one_target_inlined) { LOG_FAIL_NO_STAT() << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod() << " from inline cache is not inlined because none" << " of its targets could be inlined"; return false; } MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); // Run type propagation to get the guards typed. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetDexCache(), /* is_first_run= */ false); rtp_fixup.Run(); return true; } void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, HInstruction* return_replacement, HInstruction* invoke_instruction) { uint32_t dex_pc = invoke_instruction->GetDexPc(); HBasicBlock* cursor_block = compare->GetBlock(); HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); ArenaAllocator* allocator = graph_->GetAllocator(); // Spit the block after the compare: `cursor_block` will now be the start of the diamond, // and the returned block is the start of the then branch (that could contain multiple blocks). HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); // Split the block containing the invoke before and after the invoke. The returned block // of the split before will contain the invoke and will be the otherwise branch of // the diamond. The returned block of the split after will be the merge block // of the diamond. HBasicBlock* end_then = invoke_instruction->GetBlock(); HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); // If the methods we are inlining return a value, we create a phi in the merge block // that will have the `invoke_instruction and the `return_replacement` as inputs. if (return_replacement != nullptr) { HPhi* phi = new (allocator) HPhi( allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); merge->AddPhi(phi); invoke_instruction->ReplaceWith(phi); phi->AddInput(return_replacement); phi->AddInput(invoke_instruction); } // Add the control flow instructions. otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); end_then->AddInstruction(new (allocator) HGoto(dex_pc)); cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); // Add the newly created blocks to the graph. graph_->AddBlock(then); graph_->AddBlock(otherwise); graph_->AddBlock(merge); // Set up successor (and implictly predecessor) relations. cursor_block->AddSuccessor(otherwise); cursor_block->AddSuccessor(then); end_then->AddSuccessor(merge); otherwise->AddSuccessor(merge); // Set up dominance information. then->SetDominator(cursor_block); cursor_block->AddDominatedBlock(then); otherwise->SetDominator(cursor_block); cursor_block->AddDominatedBlock(otherwise); merge->SetDominator(cursor_block); cursor_block->AddDominatedBlock(merge); // Update the revert post order. size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); MakeRoomFor(&graph_->reverse_post_order_, 1, index); graph_->reverse_post_order_[++index] = then; index = IndexOfElement(graph_->reverse_post_order_, end_then); MakeRoomFor(&graph_->reverse_post_order_, 2, index); graph_->reverse_post_order_[++index] = otherwise; graph_->reverse_post_order_[++index] = merge; graph_->UpdateLoopAndTryInformationOfNewBlock( then, original_invoke_block, /* replace_if_back_edge= */ false); graph_->UpdateLoopAndTryInformationOfNewBlock( otherwise, original_invoke_block, /* replace_if_back_edge= */ false); // In case the original invoke location was a back edge, we need to update // the loop to now have the merge block as a back edge. graph_->UpdateLoopAndTryInformationOfNewBlock( merge, original_invoke_block, /* replace_if_back_edge= */ true); } bool HInliner::TryInlinePolymorphicCallToSameTarget( HInvoke* invoke_instruction, const StackHandleScope& classes) { // This optimization only works under JIT for now. if (!codegen_->GetCompilerOptions().IsJitCompiler()) { return false; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); ArtMethod* actual_method = nullptr; size_t method_index = invoke_instruction->IsInvokeVirtual() ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() : invoke_instruction->AsInvokeInterface()->GetImtIndex(); // Check whether we are actually calling the same method among // the different types seen. DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); for (size_t i = 0; i != number_of_types; ++i) { DCHECK(classes.GetReference(i) != nullptr); ArtMethod* new_method = nullptr; if (invoke_instruction->IsInvokeInterface()) { new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get( method_index, pointer_size); if (new_method->IsRuntimeMethod()) { // Bail out as soon as we see a conflict trampoline in one of the target's // interface table. return false; } } else { DCHECK(invoke_instruction->IsInvokeVirtual()); new_method = classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size); } DCHECK(new_method != nullptr); if (actual_method == nullptr) { actual_method = new_method; } else if (actual_method != new_method) { // Different methods, bailout. return false; } } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); HInstruction* return_replacement = nullptr; if (!TryBuildAndInline(invoke_instruction, actual_method, ReferenceTypeInfo::CreateInvalid(), &return_replacement, /* is_speculative= */ true)) { return false; } // We successfully inlined, now add a guard. HInstanceFieldGet* receiver_class = BuildGetReceiverClass( class_linker, receiver, invoke_instruction->GetDexPc()); DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) ? DataType::Type::kInt64 : DataType::Type::kInt32; HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet( receiver_class, type, invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable : HClassTableGet::TableKind::kIMTable, method_index, invoke_instruction->GetDexPc()); HConstant* constant; if (type == DataType::Type::kInt64) { constant = graph_->GetLongConstant( reinterpret_cast(actual_method), invoke_instruction->GetDexPc()); } else { constant = graph_->GetIntConstant( reinterpret_cast(actual_method), invoke_instruction->GetDexPc()); } HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(receiver_class, cursor); } else { bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); } bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); bb_cursor->InsertInstructionAfter(compare, class_table_get); if (outermost_graph_->IsCompilingOsr()) { CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); } else { HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( graph_->GetAllocator(), compare, receiver, DeoptimizationKind::kJitSameTarget, invoke_instruction->GetDexPc()); bb_cursor->InsertInstructionAfter(deoptimize, compare); deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); MaybeReplaceAndRemove(return_replacement, invoke_instruction); receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); } // Run type propagation to get the guard typed. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetDexCache(), /* is_first_run= */ false); rtp_fixup.Run(); MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod(); return true; } void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement, HInvoke* invoke_instruction) { if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) { // Actual return value has a more specific type than the method's declared // return type. Run RTP again on the outer graph to propagate it. ReferenceTypePropagation(graph_, outer_compilation_unit_.GetDexCache(), /* is_first_run= */ false).Run(); } } bool HInliner::TryDevirtualize(HInvoke* invoke_instruction, ArtMethod* method, HInvoke** replacement) { DCHECK(invoke_instruction != *replacement); if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) { return false; } // Don't try to devirtualize intrinsics as it breaks pattern matching from later phases. // TODO(solanes): This `if` could be removed if we update optimizations like // TryReplaceStringBuilderAppend. if (invoke_instruction->IsIntrinsic()) { return false; } // Don't bother trying to call directly a default conflict method. It // doesn't have a proper MethodReference, but also `GetCanonicalMethod` // will return an actual default implementation. if (method->IsDefaultConflicting()) { return false; } DCHECK(!method->IsProxyMethod()); ClassLinker* cl = Runtime::Current()->GetClassLinker(); PointerSize pointer_size = cl->GetImagePointerSize(); // The sharpening logic assumes the caller isn't passing a copied method. method = method->GetCanonicalMethod(pointer_size); uint32_t dex_method_index = FindMethodIndexIn( method, *invoke_instruction->GetMethodReference().dex_file, invoke_instruction->GetMethodReference().index); if (dex_method_index == dex::kDexNoIndex) { return false; } HInvokeStaticOrDirect::DispatchInfo dispatch_info = HSharpening::SharpenLoadMethod(method, /* has_method_id= */ true, /* for_interface_call= */ false, codegen_); DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative); if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) { // If sharpening returns that we need to load the method at runtime, keep // the virtual/interface call which will be faster. // Also, the entrypoints for runtime calls do not handle devirtualized // calls. return false; } HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect( graph_->GetAllocator(), invoke_instruction->GetNumberOfArguments(), invoke_instruction->GetType(), invoke_instruction->GetDexPc(), MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index), method, dispatch_info, kDirect, MethodReference(method->GetDexFile(), method->GetDexMethodIndex()), HInvokeStaticOrDirect::ClinitCheckRequirement::kNone, !graph_->IsDebuggable()); HInputsRef inputs = invoke_instruction->GetInputs(); DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments()); for (size_t index = 0; index != inputs.size(); ++index) { new_invoke->SetArgumentAt(index, inputs[index]); } if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) { new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(), graph_->GetCurrentMethod()); } invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); if (invoke_instruction->GetType() == DataType::Type::kReference) { new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo()); } *replacement = new_invoke; MaybeReplaceAndRemove(*replacement, invoke_instruction); // No need to call MaybeRunReferenceTypePropagation, as we know the return type // cannot be more specific. DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction)); return true; } bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, ArtMethod* method, ReferenceTypeInfo receiver_type, bool do_rtp, bool is_speculative) { DCHECK(!codegen_->IsImplementedIntrinsic(invoke_instruction)); HInstruction* return_replacement = nullptr; if (!TryBuildAndInline( invoke_instruction, method, receiver_type, &return_replacement, is_speculative)) { return false; } MaybeReplaceAndRemove(return_replacement, invoke_instruction); FixUpReturnReferenceType(method, return_replacement); if (do_rtp) { MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction); } return true; } size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const { const HInliner* current = this; size_t count = 0; do { if (current->graph_->GetArtMethod() == method) { ++count; } current = current->parent_; } while (current != nullptr); return count; } static inline bool MayInline(const CompilerOptions& compiler_options, const DexFile& inlined_from, const DexFile& inlined_into) { // We're not allowed to inline across dex files if we're the no-inline-from dex file. if (!IsSameDexFile(inlined_from, inlined_into) && ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) { return false; } return true; } // Returns whether inlining is allowed based on ART semantics. bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const { if (!accessor.HasCodeItem()) { LOG_FAIL_NO_STAT() << "Method " << method->PrettyMethod() << " is not inlined because it is native"; return false; } if (!method->IsCompilable()) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotCompilable) << "Method " << method->PrettyMethod() << " has soft failures un-handled by the compiler, so it cannot be inlined"; return false; } if (!IsMethodVerified(method)) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) << "Method " << method->PrettyMethod() << " couldn't be verified, so it cannot be inlined"; return false; } if (annotations::MethodIsNeverInline(*method->GetDexFile(), method->GetClassDef(), method->GetDexMethodIndex())) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNeverInlineAnnotation) << "Method " << method->PrettyMethod() << " has the @NeverInline annotation so it won't be inlined"; return false; } return true; } // Returns whether ART supports inlining this method. // // Some methods are not supported because they have features for which inlining // is not implemented. For example, we do not currently support inlining throw // instructions into a try block. bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction, ArtMethod* method, const CodeItemDataAccessor& accessor) const { if (method->IsProxyMethod()) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy) << "Method " << method->PrettyMethod() << " is not inlined because of unimplemented inline support for proxy methods."; return false; } if (accessor.TriesSize() != 0) { if (!kInlineTryCatches) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchDisabled) << "Method " << method->PrettyMethod() << " is not inlined because inlining try catches is disabled globally"; return false; } const bool disallowed_try_catch_inlining = // Direct parent is a try block. invoke_instruction->GetBlock()->IsTryBlock() || // Indirect parent disallows try catch inlining. !try_catch_inlining_allowed_; if (disallowed_try_catch_inlining) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCallee) << "Method " << method->PrettyMethod() << " is not inlined because it has a try catch and we are not supporting it for this" << " particular call. This is could be because e.g. it would be inlined inside another" << " try block, we arrived here from TryInlinePolymorphicCall, etc."; return false; } } if (invoke_instruction->IsInvokeStaticOrDirect() && invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { // Case of a static method that cannot be inlined because it implicitly // requires an initialization check of its declaring class. LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheClinitCheck) << "Method " << method->PrettyMethod() << " is not inlined because it is static and requires a clinit" << " check that cannot be emitted due to Dex cache limitations"; return false; } return true; } bool HInliner::IsInliningEncouraged(const HInvoke* invoke_instruction, ArtMethod* method, const CodeItemDataAccessor& accessor) const { if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget) << "Method " << method->PrettyMethod() << " is not inlined because it has reached its recursive call budget."; return false; } size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits(); if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem) << "Method " << method->PrettyMethod() << " is not inlined because its code item is too big: " << accessor.InsnsSizeInCodeUnits() << " > " << inline_max_code_units; return false; } if (invoke_instruction->GetBlock()->GetLastInstruction()->IsThrow()) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEndsWithThrow) << "Method " << method->PrettyMethod() << " is not inlined because its block ends with a throw"; return false; } return true; } bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, ArtMethod* method, ReferenceTypeInfo receiver_type, HInstruction** return_replacement, bool is_speculative) { // If invoke_instruction is devirtualized to a different method, give intrinsics // another chance before we try to inline it. if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) { MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized); // For simplicity, always create a new instruction to replace the existing // invoke. HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( graph_->GetAllocator(), invoke_instruction->GetNumberOfArguments(), invoke_instruction->GetType(), invoke_instruction->GetDexPc(), invoke_instruction->GetMethodReference(), // Use existing invoke's method's reference. method, MethodReference(method->GetDexFile(), method->GetDexMethodIndex()), method->GetMethodIndex(), !graph_->IsDebuggable()); DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone); HInputsRef inputs = invoke_instruction->GetInputs(); for (size_t index = 0; index != inputs.size(); ++index) { new_invoke->SetArgumentAt(index, inputs[index]); } invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); if (invoke_instruction->GetType() == DataType::Type::kReference) { new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo()); } *return_replacement = new_invoke; return true; } // Check whether we're allowed to inline. The outermost compilation unit is the relevant // dex file here (though the transitivity of an inline chain would allow checking the caller). if (!MayInline(codegen_->GetCompilerOptions(), *method->GetDexFile(), *outer_compilation_unit_.GetDexFile())) { if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { LOG_SUCCESS() << "Successfully replaced pattern of invoke " << method->PrettyMethod(); MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern); return true; } LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont) << "Won't inline " << method->PrettyMethod() << " in " << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " << method->GetDexFile()->GetLocation(); return false; } CodeItemDataAccessor accessor(method->DexInstructionData()); if (!IsInliningAllowed(method, accessor)) { return false; } if (!IsInliningSupported(invoke_instruction, method, accessor)) { return false; } if (!IsInliningEncouraged(invoke_instruction, method, accessor)) { return false; } if (!TryBuildAndInlineHelper( invoke_instruction, method, receiver_type, return_replacement, is_speculative)) { return false; } LOG_SUCCESS() << method->PrettyMethod(); MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke); if (outermost_graph_ == graph_) { MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvoke); } return true; } static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, size_t arg_vreg_index) REQUIRES_SHARED(Locks::mutator_lock_) { size_t input_index = 0; for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { ++i; DCHECK_NE(i, arg_vreg_index); } } DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); return invoke_instruction->InputAt(input_index); } // Try to recognize known simple patterns and replace invoke call with appropriate instructions. bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, ArtMethod* method, HInstruction** return_replacement) { InlineMethod inline_method; if (!InlineMethodAnalyser::AnalyseMethodCode(method, &inline_method)) { return false; } switch (inline_method.opcode) { case kInlineOpNop: DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid); *return_replacement = nullptr; break; case kInlineOpReturnArg: *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, inline_method.d.return_data.arg); break; case kInlineOpNonWideConst: { char shorty0 = method->GetShorty()[0]; if (shorty0 == 'L') { DCHECK_EQ(inline_method.d.data, 0u); *return_replacement = graph_->GetNullConstant(); } else if (shorty0 == 'F') { *return_replacement = graph_->GetFloatConstant( bit_cast(static_cast(inline_method.d.data))); } else { *return_replacement = graph_->GetIntConstant(static_cast(inline_method.d.data)); } break; } case kInlineOpIGet: { const InlineIGetIPutData& data = inline_method.d.ifield_data; if (data.method_is_static || data.object_arg != 0u) { // TODO: Needs null check. return false; } HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj); DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); *return_replacement = iget; break; } case kInlineOpIPut: { const InlineIGetIPutData& data = inline_method.d.ifield_data; if (data.method_is_static || data.object_arg != 0u) { // TODO: Needs null check. return false; } HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value); DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); if (data.return_arg_plus1 != 0u) { size_t return_arg = data.return_arg_plus1 - 1u; *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); } break; } case kInlineOpConstructor: { const InlineConstructorData& data = inline_method.d.constructor_data; // Get the indexes to arrays for easier processing. uint16_t iput_field_indexes[] = { data.iput0_field_index, data.iput1_field_index, data.iput2_field_index }; uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); // Count valid field indexes. size_t number_of_iputs = 0u; while (number_of_iputs != arraysize(iput_field_indexes) && iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { // Check that there are no duplicate valid field indexes. DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, iput_field_indexes + arraysize(iput_field_indexes), iput_field_indexes[number_of_iputs])); ++number_of_iputs; } // Check that there are no valid field indexes in the rest of the array. DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, iput_field_indexes + arraysize(iput_field_indexes), [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); // Create HInstanceFieldSet for each IPUT that stores non-zero data. HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* arg_vreg_index= */ 0u); bool needs_constructor_barrier = false; for (size_t i = 0; i != number_of_iputs; ++i) { HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); if (!IsZeroBitPattern(value)) { uint16_t field_index = iput_field_indexes[i]; bool is_final; HInstanceFieldSet* iput = CreateInstanceFieldSet(field_index, method, obj, value, &is_final); invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); // Check whether the field is final. If it is, we need to add a barrier. if (is_final) { needs_constructor_barrier = true; } } } if (needs_constructor_barrier) { // See DexCompilationUnit::RequiresConstructorBarrier for more details. DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence"; HConstructorFence* constructor_fence = new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator()); invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence, invoke_instruction); } *return_replacement = nullptr; break; } default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } return true; } HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index, ArtMethod* referrer, HInstruction* obj) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field = class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); DCHECK(resolved_field != nullptr); HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet( obj, resolved_field, DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), *referrer->GetDexFile(), // Read barrier generates a runtime call in slow path and we need a valid // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. /* dex_pc= */ 0); if (iget->GetType() == DataType::Type::kReference) { // Use the same dex_cache that we used for field lookup as the hint_dex_cache. Handle dex_cache = graph_->GetHandleCache()->NewHandle(referrer->GetDexCache()); ReferenceTypePropagation rtp(graph_, dex_cache, /* is_first_run= */ false); rtp.Visit(iget); } return iget; } HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index, ArtMethod* referrer, HInstruction* obj, HInstruction* value, bool* is_final) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field = class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); DCHECK(resolved_field != nullptr); if (is_final != nullptr) { // This information is needed only for constructors. DCHECK(referrer->IsConstructor()); *is_final = resolved_field->IsFinal(); } HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet( obj, value, resolved_field, DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), *referrer->GetDexFile(), // Read barrier generates a runtime call in slow path and we need a valid // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. /* dex_pc= */ 0); return iput; } template static inline Handle NewHandleIfDifferent(ObjPtr object, Handle hint, HGraph* graph) REQUIRES_SHARED(Locks::mutator_lock_) { return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint; } static bool CanEncodeInlinedMethodInStackMap(const DexFile& outer_dex_file, ArtMethod* callee, const CodeGenerator* codegen, bool* out_needs_bss_check) REQUIRES_SHARED(Locks::mutator_lock_) { if (!Runtime::Current()->IsAotCompiler()) { // JIT can always encode methods in stack maps. return true; } const DexFile* dex_file = callee->GetDexFile(); if (IsSameDexFile(outer_dex_file, *dex_file)) { return true; } // Inline across dexfiles if the callee's DexFile is: // 1) in the bootclasspath, or if (callee->GetDeclaringClass()->IsBootStrapClassLoaded()) { // In multi-image, each BCP DexFile has their own OatWriter. Since they don't cooperate with // each other, we request the BSS check for them. // TODO(solanes, 154012332): Add .bss support for BCP multi-image. *out_needs_bss_check = codegen->GetCompilerOptions().IsMultiImage(); return true; } // 2) is a non-BCP dexfile with the OatFile we are compiling. if (codegen->GetCompilerOptions().WithinOatFile(dex_file)) { return true; } // TODO(solanes): Support more AOT cases for inlining: // - methods in class loader context's DexFiles return false; } // Substitutes parameters in the callee graph with their values from the caller. void HInliner::SubstituteArguments(HGraph* callee_graph, HInvoke* invoke_instruction, ReferenceTypeInfo receiver_type, const DexCompilationUnit& dex_compilation_unit) { ArtMethod* const resolved_method = callee_graph->GetArtMethod(); size_t parameter_index = 0; bool run_rtp = false; for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); !instructions.Done(); instructions.Advance()) { HInstruction* current = instructions.Current(); if (current->IsParameterValue()) { HInstruction* argument = invoke_instruction->InputAt(parameter_index); if (argument->IsNullConstant()) { current->ReplaceWith(callee_graph->GetNullConstant()); } else if (argument->IsIntConstant()) { current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); } else if (argument->IsLongConstant()) { current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); } else if (argument->IsFloatConstant()) { current->ReplaceWith( callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); } else if (argument->IsDoubleConstant()) { current->ReplaceWith( callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); } else if (argument->GetType() == DataType::Type::kReference) { if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) { run_rtp = true; current->SetReferenceTypeInfo(receiver_type); } else { current->SetReferenceTypeInfoIfValid(argument->GetReferenceTypeInfo()); } current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); } ++parameter_index; } } // We have replaced formal arguments with actual arguments. If actual types // are more specific than the declared ones, run RTP again on the inner graph. if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { ReferenceTypePropagation(callee_graph, dex_compilation_unit.GetDexCache(), /* is_first_run= */ false).Run(); } } // Returns whether we can inline the callee_graph into the target_block. // // This performs a combination of semantics checks, compiler support checks, and // resource limit checks. // // If this function returns true, it will also set out_number_of_instructions to // the number of instructions in the inlined body. bool HInliner::CanInlineBody(const HGraph* callee_graph, HInvoke* invoke, size_t* out_number_of_instructions, bool is_speculative) const { ArtMethod* const resolved_method = callee_graph->GetArtMethod(); HBasicBlock* exit_block = callee_graph->GetExitBlock(); if (exit_block == nullptr) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because it has an infinite loop"; return false; } bool has_one_return = false; for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { const HInstruction* last_instruction = predecessor->GetLastInstruction(); // On inlinees, we can have Return/ReturnVoid/Throw -> TryBoundary -> Exit. To check for the // actual last instruction, we have to skip the TryBoundary instruction. if (last_instruction->IsTryBoundary()) { predecessor = predecessor->GetSinglePredecessor(); last_instruction = predecessor->GetLastInstruction(); // If the last instruction chain is Return/ReturnVoid -> TryBoundary -> Exit we will have to // split a critical edge in InlineInto and might recompute loop information, which is // unsupported for irreducible loops. if (!last_instruction->IsThrow() && graph_->HasIrreducibleLoops()) { DCHECK(last_instruction->IsReturn() || last_instruction->IsReturnVoid()); // TODO(ngeoffray): Support re-computing loop information to graphs with // irreducible loops? LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because we will have to recompute the loop information and" << " the caller has irreducible loops"; return false; } } if (last_instruction->IsThrow()) { if (graph_->GetExitBlock() == nullptr) { // TODO(ngeoffray): Support adding HExit in the caller graph. LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because one branch always throws and" << " caller does not have an exit block"; return false; } else if (graph_->HasIrreducibleLoops()) { // TODO(ngeoffray): Support re-computing loop information to graphs with // irreducible loops? LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because one branch always throws and" << " the caller has irreducible loops"; return false; } } else { has_one_return = true; } } if (!has_one_return) { if (!is_speculative) { // If we know that the method always throws with the particular parameters, set it as such. // This is better than using the dex instructions as we have more information about this // particular call. We don't mark speculative inlines (e.g. the ones from the inline cache) as // always throwing since they might not throw when executed. invoke->SetAlwaysThrows(/* always_throws= */ true); graph_->SetHasAlwaysThrowingInvokes(/* value= */ true); } LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because it always throws"; return false; } const bool too_many_registers = total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters; bool needs_bss_check = false; const bool can_encode_in_stack_map = CanEncodeInlinedMethodInStackMap( *outer_compilation_unit_.GetDexFile(), resolved_method, codegen_, &needs_bss_check); size_t number_of_instructions = 0; // Skip the entry block, it does not contain instructions that prevent inlining. for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { if (block->IsLoopHeader()) { if (block->GetLoopInformation()->IsIrreducible()) { // Don't inline methods with irreducible loops, they could prevent some // optimizations to run. LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCallee) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because it contains an irreducible loop"; return false; } if (!block->GetLoopInformation()->HasExitEdge()) { // Don't inline methods with loops without exit, since they cause the // loop information to be computed incorrectly when updating after // inlining. LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because it contains a loop with no exit"; return false; } } for (HInstructionIterator instr_it(block->GetInstructions()); !instr_it.Done(); instr_it.Advance()) { if (++number_of_instructions > inlining_budget_) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget) << "Method " << resolved_method->PrettyMethod() << " is not inlined because the outer method has reached" << " its instruction budget limit."; return false; } HInstruction* current = instr_it.Current(); if (current->NeedsEnvironment()) { if (too_many_registers) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget) << "Method " << resolved_method->PrettyMethod() << " is not inlined because its caller has reached" << " its environment budget limit."; return false; } if (!can_encode_in_stack_map) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because " << current->DebugName() << " needs an environment, is in a different dex file" << ", and cannot be encoded in the stack maps."; return false; } } if (current->IsUnresolvedStaticFieldGet() || current->IsUnresolvedInstanceFieldGet() || current->IsUnresolvedStaticFieldSet() || current->IsUnresolvedInstanceFieldSet() || current->IsInvokeUnresolved()) { // Unresolved invokes / field accesses are expensive at runtime when decoding inlining info, // so don't inline methods that have them. LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because it is using an unresolved" << " entrypoint"; return false; } // We currently don't have support for inlining across dex files if we are: // 1) In AoT, // 2) cross-dex inlining, // 3) the callee is a BCP DexFile, // 4) we are compiling multi image, and // 5) have an instruction that needs a bss entry, which will always be // 5)b) an instruction that needs an environment. // 1) - 4) are encoded in `needs_bss_check` (see CanEncodeInlinedMethodInStackMap). if (needs_bss_check && current->NeedsBss()) { DCHECK(current->NeedsEnvironment()); LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedBss) << "Method " << resolved_method->PrettyMethod() << " could not be inlined because it needs a BSS check"; return false; } } } *out_number_of_instructions = number_of_instructions; return true; } bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, ArtMethod* resolved_method, ReferenceTypeInfo receiver_type, HInstruction** return_replacement, bool is_speculative) { DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid())); const dex::CodeItem* code_item = resolved_method->GetCodeItem(); const DexFile& callee_dex_file = *resolved_method->GetDexFile(); uint32_t method_index = resolved_method->GetDexMethodIndex(); CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo()); ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); Handle dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(), caller_compilation_unit_.GetDexCache(), graph_); Handle class_loader = NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(), caller_compilation_unit_.GetClassLoader(), graph_); Handle compiling_class = graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass()); DexCompilationUnit dex_compilation_unit( class_loader, class_linker, callee_dex_file, code_item, resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), method_index, resolved_method->GetAccessFlags(), /* verified_method= */ nullptr, dex_cache, compiling_class); InvokeType invoke_type = invoke_instruction->GetInvokeType(); if (invoke_type == kInterface) { // We have statically resolved the dispatch. To please the class linker // at runtime, we change this call as if it was a virtual call. invoke_type = kVirtual; } bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe(); const dex::ClassDef& callee_class = resolved_method->GetClassDef(); // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation() // is currently rarely true. bool callee_dead_reference_safe = annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class) && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index); const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); HGraph* callee_graph = new (graph_->GetAllocator()) HGraph( graph_->GetAllocator(), graph_->GetArenaStack(), graph_->GetHandleCache()->GetHandles(), callee_dex_file, method_index, codegen_->GetCompilerOptions().GetInstructionSet(), invoke_type, callee_dead_reference_safe, graph_->IsDebuggable(), graph_->GetCompilationKind(), /* start_instruction_id= */ caller_instruction_counter); callee_graph->SetArtMethod(resolved_method); ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), resolved_method, Thread::Current()); if (Runtime::Current()->GetJit() != nullptr) { callee_graph->SetProfilingInfo(spiu.GetProfilingInfo()); } // When they are needed, allocate `inline_stats_` on the Arena instead // of on the stack, as Clang might produce a stack frame too large // for this function, that would not fit the requirements of the // `-Wframe-larger-than` option. if (stats_ != nullptr) { // Reuse one object for all inline attempts from this caller to keep Arena memory usage low. if (inline_stats_ == nullptr) { void* storage = graph_->GetAllocator()->Alloc(kArenaAllocMisc); inline_stats_ = new (storage) OptimizingCompilerStats; } else { inline_stats_->Reset(); } } HGraphBuilder builder(callee_graph, code_item_accessor, &dex_compilation_unit, &outer_compilation_unit_, codegen_, inline_stats_); if (builder.BuildGraph() != kAnalysisSuccess) { LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be built, so cannot be inlined"; return false; } SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit); const bool try_catch_inlining_allowed_for_recursive_inline = // It was allowed previously. try_catch_inlining_allowed_ && // The current invoke is not a try block. !invoke_instruction->GetBlock()->IsTryBlock(); RunOptimizations(callee_graph, code_item, dex_compilation_unit, try_catch_inlining_allowed_for_recursive_inline); size_t number_of_instructions = 0; if (!CanInlineBody(callee_graph, invoke_instruction, &number_of_instructions, is_speculative)) { return false; } DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) << "No instructions can be added to the outer graph while inner graph is being built"; // Inline the callee graph inside the caller graph. const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); graph_->SetCurrentInstructionId(callee_instruction_counter); *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); // Update our budget for other inlining attempts in `caller_graph`. total_number_of_instructions_ += number_of_instructions; UpdateInliningBudget(); DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) << "No instructions can be added to the inner graph during inlining into the outer graph"; if (stats_ != nullptr) { DCHECK(inline_stats_ != nullptr); inline_stats_->AddTo(stats_); } if (caller_dead_reference_safe && !callee_dead_reference_safe) { // Caller was dead reference safe, but is not anymore, since we inlined dead // reference unsafe code. Prior transformations remain valid, since they did not // affect the inlined code. graph_->MarkDeadReferenceUnsafe(); } return true; } void HInliner::RunOptimizations(HGraph* callee_graph, const dex::CodeItem* code_item, const DexCompilationUnit& dex_compilation_unit, bool try_catch_inlining_allowed_for_recursive_inline) { // Note: if the outermost_graph_ is being compiled OSR, we should not run any // optimization that could lead to a HDeoptimize. The following optimizations do not. HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner"); HConstantFolding fold(callee_graph, inline_stats_, "constant_folding$inliner"); InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_); HOptimization* optimizations[] = { &fold, &simplify, &dce, }; for (size_t i = 0; i < arraysize(optimizations); ++i) { HOptimization* optimization = optimizations[i]; optimization->Run(); } // Bail early for pathological cases on the environment (for example recursive calls, // or too large environment). if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) { LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() << " will not be inlined because the outer method has reached" << " its environment budget limit."; return; } // Bail early if we know we already are over the limit. size_t number_of_instructions = CountNumberOfInstructions(callee_graph); if (number_of_instructions > inlining_budget_) { LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() << " will not be inlined because the outer method has reached" << " its instruction budget limit. " << number_of_instructions; return; } CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item); HInliner inliner(callee_graph, outermost_graph_, codegen_, outer_compilation_unit_, dex_compilation_unit, inline_stats_, total_number_of_dex_registers_ + accessor.RegistersSize(), total_number_of_instructions_ + number_of_instructions, this, depth_ + 1, try_catch_inlining_allowed_for_recursive_inline); inliner.Run(); } static bool IsReferenceTypeRefinement(ObjPtr declared_class, bool declared_is_exact, bool declared_can_be_null, HInstruction* actual_obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (declared_can_be_null && !actual_obj->CanBeNull()) { return true; } ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); if (!actual_rti.IsValid()) { return false; } ObjPtr actual_class = actual_rti.GetTypeHandle().Get(); return (actual_rti.IsExact() && !declared_is_exact) || (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class)); } static bool IsReferenceTypeRefinement(ObjPtr declared_class, bool declared_can_be_null, HInstruction* actual_obj) REQUIRES_SHARED(Locks::mutator_lock_) { bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class); return IsReferenceTypeRefinement( admissible ? declared_class : GetClassRoot(), /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(), declared_can_be_null, actual_obj); } bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { // If this is an instance call, test whether the type of the `this` argument // is more specific than the class which declares the method. if (!resolved_method->IsStatic()) { if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(), /*declared_can_be_null=*/ false, invoke_instruction->InputAt(0u))) { return true; } } // Iterate over the list of parameter types and test whether any of the // actual inputs has a more specific reference type than the type declared in // the signature. const dex::TypeList* param_list = resolved_method->GetParameterTypeList(); for (size_t param_idx = 0, input_idx = resolved_method->IsStatic() ? 0 : 1, e = (param_list == nullptr ? 0 : param_list->Size()); param_idx < e; ++param_idx, ++input_idx) { HInstruction* input = invoke_instruction->InputAt(input_idx); if (input->GetType() == DataType::Type::kReference) { ObjPtr param_cls = resolved_method->LookupResolvedClassFromTypeIndex( param_list->GetTypeItem(param_idx).type_idx_); if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) { return true; } } } return false; } bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement, HInvoke* invoke_instruction) { // Check the integrity of reference types and run another type propagation if needed. if (return_replacement != nullptr) { if (return_replacement->GetType() == DataType::Type::kReference) { // Test if the return type is a refinement of the declared return type. ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo(); if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(), invoke_rti.IsExact(), /*declared_can_be_null=*/ true, return_replacement)) { return true; } else if (return_replacement->IsInstanceFieldGet()) { HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet(); if (field_get->GetFieldInfo().GetField() == GetClassRoot()->GetInstanceField(0)) { return true; } } } else if (return_replacement->IsInstanceOf()) { // Inlining InstanceOf into an If may put a tighter bound on reference types. return true; } } return false; } void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, HInstruction* return_replacement) { if (return_replacement != nullptr) { if (return_replacement->GetType() == DataType::Type::kReference) { if (!return_replacement->GetReferenceTypeInfo().IsValid()) { // Make sure that we have a valid type for the return. We may get an invalid one when // we inline invokes with multiple branches and create a Phi for the result. // TODO: we could be more precise by merging the phi inputs but that requires // some functionality from the reference type propagation. DCHECK(return_replacement->IsPhi()); ObjPtr cls = resolved_method->LookupResolvedReturnType(); ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls) ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls)) : graph_->GetInexactObjectRti(); return_replacement->SetReferenceTypeInfo(rti); } } } } } // namespace art