/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_x86_64.h" #include #include "arch/x86_64/instruction_set_features_x86_64.h" #include "art_method.h" #include "base/bit_utils.h" #include "code_generator_x86_64.h" #include "entrypoints/quick/quick_entrypoints.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference.h" #include "mirror/string.h" #include "scoped_thread_state_change-inl.h" #include "thread-current-inl.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/constants_x86_64.h" namespace art HIDDEN { namespace x86_64 { IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen) : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) { } X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() { return down_cast(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() { return codegen_->GetGraph()->GetAllocator(); } bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } return res->Intrinsified(); } using IntrinsicSlowPathX86_64 = IntrinsicSlowPath; // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(codegen->GetAssembler())-> // NOLINT // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode { public: explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction) : SlowPathCode(instruction) { DCHECK(gUseReadBarrier); DCHECK(kUseBakerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(instruction_->IsInvokeStaticOrDirect()) << "Unexpected instruction in read barrier arraycopy slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); int32_t element_size = DataType::Size(DataType::Type::kReference); CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister(); CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister(); CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister(); __ Bind(GetEntryLabel()); NearLabel loop; __ Bind(&loop); __ movl(CpuRegister(TMP), Address(src_curr_addr, 0)); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); // TODO: Inline the mark bit check before calling the runtime? // TMP = ReadBarrier::Mark(TMP); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(TMP); // This runtime call does not require a stack map. x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); __ MaybePoisonHeapReference(CpuRegister(TMP)); __ movl(Address(dst_curr_addr, 0), CpuRegister(TMP)); __ addl(src_curr_addr, Immediate(element_size)); __ addl(dst_curr_addr, Immediate(element_size)); __ cmpl(src_curr_addr, src_stop_addr); __ j(kNotEqual, &loop); __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64); }; #undef __ #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsRegister(), input.AsFpuRegister(), is64bit); } static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsFpuRegister(), input.AsRegister(), is64bit); } void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt32); } void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) { codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt64); } void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) { codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt16); } static void GenIsInfinite(LocationSummary* locations, bool is64bit, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = codegen->GetAssembler(); XmmRegister input = locations->InAt(0).AsFpuRegister(); CpuRegister output = locations->Out().AsRegister(); NearLabel done1, done2; if (is64bit) { double kPositiveInfinity = std::numeric_limits::infinity(); double kNegativeInfinity = -1 * kPositiveInfinity; __ xorq(output, output); __ comisd(input, codegen->LiteralDoubleAddress(kPositiveInfinity)); __ j(kNotEqual, &done1); __ j(kParityEven, &done2); __ movq(output, Immediate(1)); __ jmp(&done2); __ Bind(&done1); __ comisd(input, codegen->LiteralDoubleAddress(kNegativeInfinity)); __ j(kNotEqual, &done2); __ j(kParityEven, &done2); __ movq(output, Immediate(1)); __ Bind(&done2); } else { float kPositiveInfinity = std::numeric_limits::infinity(); float kNegativeInfinity = -1 * kPositiveInfinity; __ xorl(output, output); __ comiss(input, codegen->LiteralFloatAddress(kPositiveInfinity)); __ j(kNotEqual, &done1); __ j(kParityEven, &done2); __ movl(output, Immediate(1)); __ jmp(&done2); __ Bind(&done1); __ comiss(input, codegen->LiteralFloatAddress(kNegativeInfinity)); __ j(kNotEqual, &done2); __ j(kParityEven, &done2); __ movl(output, Immediate(1)); __ Bind(&done2); } } void IntrinsicLocationsBuilderX86_64::VisitFloatIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitFloatIsInfinite(HInvoke* invoke) { GenIsInfinite(invoke->GetLocations(), /* is64bit=*/ false, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitDoubleIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitDoubleIsInfinite(HInvoke* invoke) { GenIsInfinite(invoke->GetLocations(), /* is64bit=*/ true, codegen_); } static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); GetAssembler()->sqrtsd(out, in); } static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) { return; } CreateFPToFPLocations(allocator, invoke); } static void GenSSE41FPToFPIntrinsic(HInvoke* invoke, X86_64Assembler* assembler, int round_mode) { LocationSummary* locations = invoke->GetLocations(); DCHECK(!locations->WillCall()); XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); __ roundsd(out, in, Immediate(round_mode)); } void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 2); } void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 1); } void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 0); } static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) { return; } LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) { CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); DCHECK(!locations->WillCall()); XmmRegister in = locations->InAt(0).AsFpuRegister(); CpuRegister out = locations->Out().AsRegister(); XmmRegister t1 = locations->GetTemp(0).AsFpuRegister(); XmmRegister t2 = locations->GetTemp(1).AsFpuRegister(); NearLabel skip_incr, done; X86_64Assembler* assembler = GetAssembler(); // Since no direct x86 rounding instruction matches the required semantics, // this intrinsic is implemented as follows: // result = floor(in); // if (in - result >= 0.5f) // result = result + 1.0f; __ movss(t2, in); __ roundss(t1, in, Immediate(1)); __ subss(t2, t1); __ comiss(t2, codegen_->LiteralFloatAddress(0.5f)); __ j(kBelow, &skip_incr); __ addss(t1, codegen_->LiteralFloatAddress(1.0f)); __ Bind(&skip_incr); // Final conversion to an integer. Unfortunately this also does not have a // direct x86 instruction, since NaN should map to 0 and large positive // values need to be clipped to the extreme value. codegen_->Load32BitValue(out, kPrimIntMax); __ cvtsi2ss(t2, out); __ comiss(t1, t2); __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered __ movl(out, Immediate(0)); // does not change flags __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) __ cvttss2si(out, t1); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) { CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); DCHECK(!locations->WillCall()); XmmRegister in = locations->InAt(0).AsFpuRegister(); CpuRegister out = locations->Out().AsRegister(); XmmRegister t1 = locations->GetTemp(0).AsFpuRegister(); XmmRegister t2 = locations->GetTemp(1).AsFpuRegister(); NearLabel skip_incr, done; X86_64Assembler* assembler = GetAssembler(); // Since no direct x86 rounding instruction matches the required semantics, // this intrinsic is implemented as follows: // result = floor(in); // if (in - result >= 0.5) // result = result + 1.0f; __ movsd(t2, in); __ roundsd(t1, in, Immediate(1)); __ subsd(t2, t1); __ comisd(t2, codegen_->LiteralDoubleAddress(0.5)); __ j(kBelow, &skip_incr); __ addsd(t1, codegen_->LiteralDoubleAddress(1.0f)); __ Bind(&skip_incr); // Final conversion to an integer. Unfortunately this also does not have a // direct x86 instruction, since NaN should map to 0 and large positive // values need to be clipped to the extreme value. codegen_->Load64BitValue(out, kPrimLongMax); __ cvtsi2sd(t2, out, /* is64bit= */ true); __ comisd(t1, t2); __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered __ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) __ cvttsd2si(out, t1, /* is64bit= */ true); __ Bind(&done); } static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations); } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); DCHECK(locations->WillCall()); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations); } static void CreateFPFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { DCHECK_EQ(invoke->GetNumberOfArguments(), 3U); LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetInAt(2, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickPow); } void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickHypot); } void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickNextAfter); } static void CreateSystemArrayCopyLocations(HInvoke* invoke) { // Check to see if we have known failures that will cause us to have to bail out // to the runtime, and just generate the runtime call directly. HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); // The positions must be non-negative. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // The length must be > 0. HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } LocationSummary* locations = new (invoke->GetBlock()->GetGraph()->GetAllocator()) LocationSummary (invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(RSI)); locations->AddTemp(Location::RegisterLocation(RDI)); locations->AddTemp(Location::RegisterLocation(RCX)); } static void CheckPosition(X86_64Assembler* assembler, Location pos, CpuRegister input, Location length, SlowPathCode* slow_path, CpuRegister temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. if (length.IsConstant()) { __ cmpl(Address(input, length_offset), Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(Address(input, length_offset), length.AsRegister()); } __ j(kLess, slow_path->GetEntryLabel()); } } else { // Check that length(input) >= pos. __ movl(temp, Address(input, length_offset)); __ subl(temp, Immediate(pos_const)); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister()); } __ j(kLess, slow_path->GetEntryLabel()); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. CpuRegister pos_reg = pos.AsRegister(); __ testl(pos_reg, pos_reg); __ j(kNotEqual, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. CpuRegister pos_reg = pos.AsRegister(); __ testl(pos_reg, pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that pos <= length(input). __ cmpl(Address(input, length_offset), pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ movl(temp, Address(input, length_offset)); __ subl(temp, pos_reg); if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister()); } __ j(kLess, slow_path->GetEntryLabel()); } } static void SystemArrayCopyPrimitive(HInvoke* invoke, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, DataType::Type type) { LocationSummary* locations = invoke->GetLocations(); CpuRegister src = locations->InAt(0).AsRegister(); Location src_pos = locations->InAt(1); CpuRegister dest = locations->InAt(2).AsRegister(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); // Temporaries that we need for MOVSB/W/L. CpuRegister src_base = locations->GetTemp(0).AsRegister(); DCHECK_EQ(src_base.AsRegister(), RSI); CpuRegister dest_base = locations->GetTemp(1).AsRegister(); DCHECK_EQ(dest_base.AsRegister(), RDI); CpuRegister count = locations->GetTemp(2).AsRegister(); DCHECK_EQ(count.AsRegister(), RCX); SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); // Bail out if the source and destination are the same. __ cmpl(src, dest); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the source is null. __ testl(src, src); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, slow_path->GetEntryLabel()); // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant()) { __ testl(length.AsRegister(), length.AsRegister()); __ j(kLess, slow_path->GetEntryLabel()); } // Validity checks: source. Use src_base as a temporary register. CheckPosition(assembler, src_pos, src, length, slow_path, src_base); // Validity checks: dest. Use src_base as a temporary register. CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base); // We need the count in RCX. if (length.IsConstant()) { __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(count, length.AsRegister()); } // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t data_size = DataType::Size(type); const ScaleFactor scale_factor = CodeGenerator::ScaleFactorForType(type); const uint32_t data_offset = mirror::Array::DataOffset(data_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, data_size * src_pos_const + data_offset)); } else { __ leal(src_base, Address(src, src_pos.AsRegister(), scale_factor, data_offset)); } if (dest_pos.IsConstant()) { int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dest_base, Address(dest, data_size * dest_pos_const + data_offset)); } else { __ leal(dest_base, Address(dest, dest_pos.AsRegister(), scale_factor, data_offset)); } // Do the move. switch (type) { case DataType::Type::kInt8: __ rep_movsb(); break; case DataType::Type::kUint16: __ rep_movsw(); break; case DataType::Type::kInt32: __ rep_movsl(); break; default: LOG(FATAL) << "Unexpected data type for intrinsic"; } __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { CreateSystemArrayCopyLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kUint16); } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyByte(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt8); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyByte(HInvoke* invoke) { CreateSystemArrayCopyLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyInt(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt32); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyInt(HInvoke* invoke) { CreateSystemArrayCopyLocations(invoke); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. if (gUseReadBarrier && !kUseBakerReadBarrier) { return; } CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); } // Compute base source address, base destination address, and end // source address for the System.arraycopy intrinsic in `src_base`, // `dst_base` and `src_end` respectively. static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler, DataType::Type type, const CpuRegister& src, const Location& src_pos, const CpuRegister& dst, const Location& dst_pos, const Location& copy_length, const CpuRegister& src_base, const CpuRegister& dst_base, const CpuRegister& src_end) { // This routine is only used by the SystemArrayCopy intrinsic. DCHECK_EQ(type, DataType::Type::kReference); const int32_t element_size = DataType::Size(type); const ScaleFactor scale_factor = static_cast(DataType::SizeShift(type)); const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, element_size * constant + data_offset)); } else { __ leal(src_base, Address(src, src_pos.AsRegister(), scale_factor, data_offset)); } if (dst_pos.IsConstant()) { int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dst_base, Address(dst, element_size * constant + data_offset)); } else { __ leal(dst_base, Address(dst, dst_pos.AsRegister(), scale_factor, data_offset)); } if (copy_length.IsConstant()) { int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_end, Address(src_base, element_size * constant)); } else { __ leal(src_end, Address(src_base, copy_length.AsRegister(), scale_factor, 0)); } } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); CpuRegister src = locations->InAt(0).AsRegister(); Location src_pos = locations->InAt(1); CpuRegister dest = locations->InAt(2).AsRegister(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Location temp1_loc = locations->GetTemp(0); CpuRegister temp1 = temp1_loc.AsRegister(); Location temp2_loc = locations->GetTemp(1); CpuRegister temp2 = temp2_loc.AsRegister(); Location temp3_loc = locations->GetTemp(2); CpuRegister temp3 = temp3_loc.AsRegister(); Location TMP_loc = Location::RegisterLocation(TMP); SlowPathCode* intrinsic_slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(intrinsic_slow_path); NearLabel conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ cmpl(src, dest); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } __ cmpl(dest_pos.AsRegister(), Immediate(src_pos_constant)); __ j(kGreater, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ cmpl(src_pos.AsRegister(), Immediate(dest_pos_constant)); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } else { __ cmpl(src_pos.AsRegister(), dest_pos.AsRegister()); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ testl(src, src); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ testl(length.AsRegister(), length.AsRegister()); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, intrinsic_slow_path, temp1, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, intrinsic_slow_path, temp1, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. bool did_unpoison = false; if (gUseReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = dest->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false); // Register `temp1` is not trashed by the read barrier emitted // by GenerateFieldLoadWithBakerReadBarrier below, as that // method produces a call to a ReadBarrierMarkRegX entry point, // which saves all potentially live registers, including // temporaries such a `temp1`. // /* HeapReference */ temp2 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false); // If heap poisoning is enabled, `temp1` and `temp2` have been // unpoisoned by the the previous calls to // GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ temp1 = dest->klass_ __ movl(temp1, Address(dest, class_offset)); // /* HeapReference */ temp2 = src->klass_ __ movl(temp2, Address(src, class_offset)); if (!optimizations.GetDestinationIsNonPrimitiveArray() || !optimizations.GetSourceIsNonPrimitiveArray()) { // One or two of the references need to be unpoisoned. Unpoison them // both to make the identity check valid. __ MaybeUnpoisonHeapReference(temp1); __ MaybeUnpoisonHeapReference(temp2); did_unpoison = true; } } if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. if (gUseReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ TMP = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `TMP` has been unpoisoned by // the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ TMP = temp1->component_type_ __ movl(CpuRegister(TMP), Address(temp1, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); } __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetSourceIsNonPrimitiveArray()) { // Bail out if the source is not a non primitive array. if (gUseReadBarrier && kUseBakerReadBarrier) { // For the same reason given earlier, `temp1` is not trashed by the // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. // /* HeapReference */ TMP = temp2->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, TMP_loc, temp2, component_offset, /* needs_null_check= */ false); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `TMP` has been unpoisoned by // the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ TMP = temp2->component_type_ __ movl(CpuRegister(TMP), Address(temp2, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); } __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } __ cmpl(temp1, temp2); if (optimizations.GetDestinationIsTypedObjectArray()) { NearLabel do_copy; __ j(kEqual, &do_copy); if (gUseReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false); // We do not need to emit a read barrier for the following // heap reference load, as `temp1` is only used in a // comparison with null below, and this reference is not // kept afterwards. __ cmpl(Address(temp1, super_offset), Immediate(0)); } else { if (!did_unpoison) { __ MaybeUnpoisonHeapReference(temp1); } // /* HeapReference */ temp1 = temp1->component_type_ __ movl(temp1, Address(temp1, component_offset)); __ MaybeUnpoisonHeapReference(temp1); // No need to unpoison the following heap reference load, as // we're comparing against null. __ cmpl(Address(temp1, super_offset), Immediate(0)); } __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. if (gUseReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false); // /* HeapReference */ TMP = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } else { // /* HeapReference */ temp1 = src->klass_ __ movl(temp1, Address(src, class_offset)); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ TMP = temp1->component_type_ __ movl(CpuRegister(TMP), Address(temp1, component_offset)); // No need to unpoison `TMP` now, as we're comparing against null. __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); } __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } const DataType::Type type = DataType::Type::kReference; const int32_t element_size = DataType::Size(type); // Compute base source address, base destination address, and end // source address in `temp1`, `temp2` and `temp3` respectively. GenSystemArrayCopyAddresses( GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3); if (gUseReadBarrier && kUseBakerReadBarrier) { // SystemArrayCopy implementation for Baker read barriers (see // also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier): // // if (src_ptr != end_ptr) { // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // // Slow-path copy. // do { // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); // } while (src_ptr != end_ptr) // } else { // // Fast-path copy. // do { // *dest_ptr++ = *src_ptr++; // } while (src_ptr != end_ptr) // } // } NearLabel loop, done; // Don't enter copy loop if `length == 0`. __ cmpl(temp1, temp3); __ j(kEqual, &done); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; constexpr int32_t test_value = static_cast(1 << gray_bit_position); // if (rb_state == ReadBarrier::GrayState()) // goto slow_path; // At this point, just do the "if" and make sure that flags are preserved until the branch. __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value)); // Load fence to prevent load-load reordering. // Note that this is a no-op, thanks to the x86-64 memory model. codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // Slow path used to copy array when `src` is gray. SlowPathCode* read_barrier_slow_path = new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke); codegen_->AddSlowPath(read_barrier_slow_path); // We have done the "if" of the gray bit check above, now branch based on the flags. __ j(kNotZero, read_barrier_slow_path->GetEntryLabel()); // Fast-path copy. // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. __ Bind(&loop); __ movl(CpuRegister(TMP), Address(temp1, 0)); __ movl(Address(temp2, 0), CpuRegister(TMP)); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(read_barrier_slow_path->GetExitLabel()); __ Bind(&done); } else { // Non read barrier code. // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. NearLabel loop, done; __ cmpl(temp1, temp3); __ j(kEqual, &done); __ Bind(&loop); __ movl(CpuRegister(TMP), Address(temp1, 0)); __ movl(Address(temp2, 0), CpuRegister(TMP)); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(&done); } // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* emit_null_check= */ false); __ Bind(intrinsic_slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister argument = locations->InAt(1).AsRegister(); __ testl(argument, argument); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction. locations->AddTemp(Location::RegisterLocation(RCX)); locations->AddTemp(Location::RegisterLocation(RDI)); // Set output, RSI needed for repe_cmpsq instruction anyways. locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap); } void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister str = locations->InAt(0).AsRegister(); CpuRegister arg = locations->InAt(1).AsRegister(); CpuRegister rcx = locations->GetTemp(0).AsRegister(); CpuRegister rdi = locations->GetTemp(1).AsRegister(); CpuRegister rsi = locations->Out().AsRegister(); NearLabel end, return_true, return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ testl(arg, arg); __ j(kEqual, &return_false); } if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. // // As the String class is expected to be non-movable, we can read the class // field from String.equals' arguments without read barriers. AssertNonMovableStringClass(); // Also, because we use the loaded class references only to compare them, we // don't need to unpoison them. // /* HeapReference */ rcx = str->klass_ __ movl(rcx, Address(str, class_offset)); // if (rcx != /* HeapReference */ arg->klass_) return false __ cmpl(rcx, Address(arg, class_offset)); __ j(kNotEqual, &return_false); } // Reference equality check, return true if same reference. __ cmpl(str, arg); __ j(kEqual, &return_true); // Load length and compression flag of receiver string. __ movl(rcx, Address(str, count_offset)); // Check if lengths and compressiond flags are equal, return false if they're not. // Two identical strings will always have same compression style since // compression style is decided on alloc. __ cmpl(rcx, Address(arg, count_offset)); __ j(kNotEqual, &return_false); // Return true if both strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ jrcxz(&return_true); if (mirror::kUseStringCompression) { NearLabel string_uncompressed; // Extract length and differentiate between both compressed or both uncompressed. // Different compression style is cut above. __ shrl(rcx, Immediate(1)); __ j(kCarrySet, &string_uncompressed); // Divide string length by 2, rounding up, and continue as if uncompressed. // Merge clearing the compression flag with +1 for rounding. __ addl(rcx, Immediate(1)); __ shrl(rcx, Immediate(1)); __ Bind(&string_uncompressed); } // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction. __ leal(rsi, Address(str, value_offset)); __ leal(rdi, Address(arg, value_offset)); // Divide string length by 4 and adjust for lengths not divisible by 4. __ addl(rcx, Immediate(3)); __ shrl(rcx, Immediate(2)); // Assertions that must hold in order to compare strings 4 characters (uncompressed) // or 8 characters (compressed) at a time. DCHECK_ALIGNED(value_offset, 8); static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded"); // Loop to compare strings four characters at a time starting at the beginning of the string. __ repe_cmpsq(); // If strings are not equal, zero flag will be cleared. __ j(kNotEqual, &return_false); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ movl(rsi, Immediate(1)); __ jmp(&end); // Return false and exit the function. __ Bind(&return_false); __ xorl(rsi, rsi); __ Bind(&end); } static void CreateStringIndexOfLocations(HInvoke* invoke, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // The data needs to be in RDI for scasw. So request that the string is there, anyways. locations->SetInAt(0, Location::RegisterLocation(RDI)); // If we look for a constant char, we'll still have to copy it into RAX. So just request the // allocator to do that, anyways. We can still do the constant check by checking the parameter // of the instruction explicitly. // Note: This works as we don't clobber RAX anywhere. locations->SetInAt(1, Location::RegisterLocation(RAX)); if (!start_at_zero) { locations->SetInAt(2, Location::RequiresRegister()); // The starting index. } // As we clobber RDI during execution anyways, also use it as the output. locations->SetOut(Location::SameAsFirstInput()); // repne scasw uses RCX as the counter. locations->AddTemp(Location::RegisterLocation(RCX)); // Need another temporary to be able to compute the result. locations->AddTemp(Location::RequiresRegister()); } static void GenerateStringIndexOf(HInvoke* invoke, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister string_obj = locations->InAt(0).AsRegister(); CpuRegister search_value = locations->InAt(1).AsRegister(); CpuRegister counter = locations->GetTemp(0).AsRegister(); CpuRegister string_length = locations->GetTemp(1).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // Check our assumptions for registers. DCHECK_EQ(string_obj.AsRegister(), RDI); DCHECK_EQ(search_value.AsRegister(), RAX); DCHECK_EQ(counter.AsRegister(), RCX); DCHECK_EQ(out.AsRegister(), RDI); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCode* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (static_cast(code_point->AsIntConstant()->GetValue()) > std::numeric_limits::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != DataType::Type::kUint16) { __ cmpl(search_value, Immediate(std::numeric_limits::max())); slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ j(kAbove, slow_path->GetEntryLabel()); } // From here down, we know that we are looking for a char that fits in // 16 bits (uncompressed) or 8 bits (compressed). // Location of reference to data array within the String object. int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Load the count field of the string containing the length and compression flag. __ movl(string_length, Address(string_obj, count_offset)); // Do a zero-length check. Even with string compression `count == 0` means empty. // TODO: Support jecxz. NearLabel not_found_label; __ testl(string_length, string_length); __ j(kEqual, ¬_found_label); if (mirror::kUseStringCompression) { // Use TMP to keep string_length_flagged. __ movl(CpuRegister(TMP), string_length); // Mask out first bit used as compression flag. __ shrl(string_length, Immediate(1)); } if (start_at_zero) { // Number of chars to scan is the same as the string length. __ movl(counter, string_length); // Move to the start of the string. __ addq(string_obj, Immediate(value_offset)); } else { CpuRegister start_index = locations->InAt(2).AsRegister(); // Do a start_index check. __ cmpl(start_index, string_length); __ j(kGreaterEqual, ¬_found_label); // Ensure we have a start index >= 0; __ xorl(counter, counter); __ cmpl(start_index, Immediate(0)); __ cmov(kGreater, counter, start_index, /* is64bit= */ false); // 32-bit copy is enough. if (mirror::kUseStringCompression) { NearLabel modify_counter, offset_uncompressed_label; __ testl(CpuRegister(TMP), Immediate(1)); __ j(kNotZero, &offset_uncompressed_label); __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset)); __ jmp(&modify_counter); // Move to the start of the string: string_obj + value_offset + 2 * start_index. __ Bind(&offset_uncompressed_label); __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); __ Bind(&modify_counter); } else { __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); } // Now update ecx, the work counter: it's gonna be string.length - start_index. __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit. __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); } if (mirror::kUseStringCompression) { NearLabel uncompressed_string_comparison; NearLabel comparison_done; __ testl(CpuRegister(TMP), Immediate(1)); __ j(kNotZero, &uncompressed_string_comparison); // Check if RAX (search_value) is ASCII. __ cmpl(search_value, Immediate(127)); __ j(kGreater, ¬_found_label); // Comparing byte-per-byte. __ repne_scasb(); __ jmp(&comparison_done); // Everything is set up for repne scasw: // * Comparison address in RDI. // * Counter in ECX. __ Bind(&uncompressed_string_comparison); __ repne_scasw(); __ Bind(&comparison_done); } else { __ repne_scasw(); } // Did we find a match? __ j(kNotEqual, ¬_found_label); // Yes, we matched. Compute the index of the result. __ subl(string_length, counter); __ leal(out, Address(string_length, -1)); NearLabel done; __ jmp(&done); // Failed to match; return -1. __ Bind(¬_found_label); __ movl(out, Immediate(-1)); // And join up at the end. __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true); } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister byte_array = locations->InAt(0).AsRegister(); __ testl(byte_array, byte_array); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister string_to_copy = locations->InAt(0).AsRegister(); __ testl(string_to_copy, string_to_copy); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(RSI)); locations->AddTemp(Location::RegisterLocation(RDI)); locations->AddTemp(Location::RegisterLocation(RCX)); } void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); size_t char_component_size = DataType::Size(DataType::Type::kUint16); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); CpuRegister obj = locations->InAt(0).AsRegister(); Location srcBegin = locations->InAt(1); int srcBegin_value = srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; CpuRegister srcEnd = locations->InAt(2).AsRegister(); CpuRegister dst = locations->InAt(3).AsRegister(); CpuRegister dstBegin = locations->InAt(4).AsRegister(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); NearLabel done; // Compute the number of chars (words) to move. __ movl(CpuRegister(RCX), srcEnd); if (srcBegin.IsConstant()) { __ subl(CpuRegister(RCX), Immediate(srcBegin_value)); } else { DCHECK(srcBegin.IsRegister()); __ subl(CpuRegister(RCX), srcBegin.AsRegister()); } if (mirror::kUseStringCompression) { NearLabel copy_uncompressed, copy_loop; const size_t c_char_size = DataType::Size(DataType::Type::kInt8); DCHECK_EQ(c_char_size, 1u); // Location of count in string. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); __ testl(Address(obj, count_offset), Immediate(1)); static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ j(kNotZero, ©_uncompressed); // Compute the address of the source string by adding the number of chars from // the source beginning to the value offset of a string. __ leaq(CpuRegister(RSI), CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset)); // Start the loop to copy String's value to Array of Char. __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); __ Bind(©_loop); __ jrcxz(&done); // Use TMP as temporary (convert byte from RSI to word). // TODO: Selecting RAX as the temporary and using LODSB/STOSW. __ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0)); __ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP)); __ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size)); __ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size)); // TODO: Add support for LOOP to X86_64Assembler. __ subl(CpuRegister(RCX), Immediate(1)); __ jmp(©_loop); __ Bind(©_uncompressed); } __ leaq(CpuRegister(RSI), CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset)); // Compute the address of the destination buffer. __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); // Do the move. __ rep_movsw(); __ Bind(&done); } static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // == address, here for clarity. // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case DataType::Type::kInt8: __ movsxb(out, Address(address, 0)); break; case DataType::Type::kInt16: __ movsxw(out, Address(address, 0)); break; case DataType::Type::kInt32: __ movl(out, Address(address, 0)); break; case DataType::Type::kInt64: __ movq(out, Address(address, 0)); break; default: LOG(FATAL) << "Type not recognized for peek: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1))); } static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister(); Location value = locations->InAt(1); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case DataType::Type::kInt8: if (value.IsConstant()) { __ movb(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movb(Address(address, 0), value.AsRegister()); } break; case DataType::Type::kInt16: if (value.IsConstant()) { __ movw(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movw(Address(address, 0), value.AsRegister()); } break; case DataType::Type::kInt32: if (value.IsConstant()) { __ movl(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movl(Address(address, 0), value.AsRegister()); } break; case DataType::Type::kInt64: if (value.IsConstant()) { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(address, 0), Immediate(v_32)); } else { __ movq(Address(address, 0), value.AsRegister()); } break; default: LOG(FATAL) << "Type not recognized for poke: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) { CpuRegister out = invoke->GetLocations()->Out().AsRegister(); GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset(), /* no_rip= */ true)); } static void GenUnsafeGet(HInvoke* invoke, DataType::Type type, bool is_volatile ATTRIBUTE_UNUSED, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Location base_loc = locations->InAt(1); CpuRegister base = base_loc.AsRegister(); Location offset_loc = locations->InAt(2); CpuRegister offset = offset_loc.AsRegister(); Location output_loc = locations->Out(); CpuRegister output = output_loc.AsRegister(); switch (type) { case DataType::Type::kInt32: __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; case DataType::Type::kReference: { if (gUseReadBarrier) { if (kUseBakerReadBarrier) { Address src(base, offset, ScaleFactor::TIMES_1, 0); codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, output_loc, base, src, /* needs_null_check= */ false); } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); codegen->GenerateReadBarrierSlow( invoke, output_loc, output_loc, base_loc, 0U, offset_loc); } } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ MaybeUnpoisonHeapReference(output); } break; } case DataType::Type::kInt64: __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } static bool UnsafeGetIntrinsicOnCallList(Intrinsics intrinsic) { switch (intrinsic) { case Intrinsics::kUnsafeGetObject: case Intrinsics::kUnsafeGetObjectVolatile: case Intrinsics::kJdkUnsafeGetObject: case Intrinsics::kJdkUnsafeGetObjectVolatile: case Intrinsics::kJdkUnsafeGetObjectAcquire: return true; default: break; } return false; } static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { bool can_call = gUseReadBarrier && UnsafeGetIntrinsicOnCallList(invoke->GetIntrinsic()); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) { VisitJdkUnsafeGet(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { VisitJdkUnsafeGetVolatile(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) { VisitJdkUnsafeGetLong(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { VisitJdkUnsafeGetLongVolatile(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) { VisitJdkUnsafeGetObject(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { VisitJdkUnsafeGetObjectVolatile(invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) { VisitJdkUnsafeGet(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { VisitJdkUnsafeGetVolatile(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) { VisitJdkUnsafeGetLong(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { VisitJdkUnsafeGetLongVolatile(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) { VisitJdkUnsafeGetObject(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { VisitJdkUnsafeGetObjectVolatile(invoke); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_); } static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator, DataType::Type type, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == DataType::Type::kReference) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) { VisitJdkUnsafePut(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { VisitJdkUnsafePutOrdered(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { VisitJdkUnsafePutVolatile(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) { VisitJdkUnsafePutObject(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { VisitJdkUnsafePutObjectOrdered(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { VisitJdkUnsafePutObjectVolatile(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) { VisitJdkUnsafePutLong(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { VisitJdkUnsafePutLongOrdered(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { VisitJdkUnsafePutLongVolatile(invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutRelease(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 // memory model. static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); CpuRegister base = locations->InAt(1).AsRegister(); CpuRegister offset = locations->InAt(2).AsRegister(); CpuRegister value = locations->InAt(3).AsRegister(); if (type == DataType::Type::kInt64) { __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } else if (kPoisonHeapReferences && type == DataType::Type::kReference) { CpuRegister temp = locations->GetTemp(0).AsRegister(); __ movl(temp, value); __ PoisonHeapReference(temp); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } if (is_volatile) { codegen->MemoryFence(); } if (type == DataType::Type::kReference) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), base, value, value_can_be_null); } } void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) { VisitJdkUnsafePut(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { VisitJdkUnsafePutOrdered(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { VisitJdkUnsafePutVolatile(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) { VisitJdkUnsafePutObject(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { VisitJdkUnsafePutObjectOrdered(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { VisitJdkUnsafePutObjectVolatile(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) { VisitJdkUnsafePutLong(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { VisitJdkUnsafePutLongOrdered(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { VisitJdkUnsafePutLongVolatile(invoke); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutRelease(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObject(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); } static void CreateUnsafeCASLocations(ArenaAllocator* allocator, DataType::Type type, HInvoke* invoke) { const bool can_call = gUseReadBarrier && kUseBakerReadBarrier && IsUnsafeCASObject(invoke); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); // expected value must be in EAX/RAX. locations->SetInAt(3, Location::RegisterLocation(RAX)); locations->SetInAt(4, Location::RequiresRegister()); // RAX is clobbered in CMPXCHG, but we set it as out so no need to add it as temporary. locations->SetOut(Location::RegisterLocation(RAX)); if (type == DataType::Type::kReference) { // Need two temporaries for MarkGCCard. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); if (gUseReadBarrier) { // Need three temporaries for GenerateReferenceLoadWithBakerReadBarrier. DCHECK(kUseBakerReadBarrier); locations->AddTemp(Location::RequiresRegister()); } } } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) { VisitJdkUnsafeCASInt(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) { VisitJdkUnsafeCASLong(invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) { VisitJdkUnsafeCASObject(invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASInt(HInvoke* invoke) { // `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc). VisitJdkUnsafeCompareAndSetInt(invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASLong(HInvoke* invoke) { // `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc). VisitJdkUnsafeCompareAndSetLong(invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASObject(HInvoke* invoke) { // `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc). VisitJdkUnsafeCompareAndSetObject(invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) { CreateUnsafeCASLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) { CreateUnsafeCASLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) { // The only supported read barrier implementation is the Baker-style read barriers. if (gUseReadBarrier && !kUseBakerReadBarrier) { return; } CreateUnsafeCASLocations(allocator_, DataType::Type::kReference, invoke); } // Convert ZF into the Boolean result. static inline void GenZFlagToResult(X86_64Assembler* assembler, CpuRegister out) { __ setcc(kZero, out); __ movzxb(out, out); } // This function assumes that expected value for CMPXCHG and output are in RAX. static void GenCompareAndSetOrExchangeInt(CodeGeneratorX86_64* codegen, DataType::Type type, Address field_addr, Location value, bool is_cmpxchg, bool byte_swap) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen(); if (byte_swap) { instr_codegen->Bswap(Location::RegisterLocation(RAX), type); instr_codegen->Bswap(value, type); } switch (type) { case DataType::Type::kBool: case DataType::Type::kInt8: __ LockCmpxchgb(field_addr, value.AsRegister()); break; case DataType::Type::kInt16: case DataType::Type::kUint16: __ LockCmpxchgw(field_addr, value.AsRegister()); break; case DataType::Type::kInt32: case DataType::Type::kUint32: __ LockCmpxchgl(field_addr, value.AsRegister()); break; case DataType::Type::kInt64: case DataType::Type::kUint64: __ LockCmpxchgq(field_addr, value.AsRegister()); break; default: LOG(FATAL) << "Unexpected non-integral CAS type " << type; } // LOCK CMPXCHG has full barrier semantics, so we don't need barriers here. if (byte_swap) { // Restore byte order for value. instr_codegen->Bswap(value, type); } CpuRegister rax(RAX); if (is_cmpxchg) { if (byte_swap) { instr_codegen->Bswap(Location::RegisterLocation(RAX), type); } // Sign-extend or zero-extend the result as necessary. switch (type) { case DataType::Type::kBool: __ movzxb(rax, rax); break; case DataType::Type::kInt8: __ movsxb(rax, rax); break; case DataType::Type::kInt16: __ movsxw(rax, rax); break; case DataType::Type::kUint16: __ movzxw(rax, rax); break; default: break; // No need to do anything. } } else { GenZFlagToResult(assembler, rax); } } static void GenCompareAndSetOrExchangeFP(CodeGeneratorX86_64* codegen, Address field_addr, CpuRegister temp, Location value, Location expected, Location out, bool is64bit, bool is_cmpxchg, bool byte_swap) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen(); Location rax_loc = Location::RegisterLocation(RAX); Location temp_loc = Location::RegisterLocation(temp.AsRegister()); DataType::Type type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32; // Copy `expected` to RAX (required by the CMPXCHG instruction). codegen->Move(rax_loc, expected); // Copy value to some other register (ensure it's not RAX). DCHECK_NE(temp.AsRegister(), RAX); codegen->Move(temp_loc, value); if (byte_swap) { instr_codegen->Bswap(rax_loc, type); instr_codegen->Bswap(temp_loc, type); } if (is64bit) { __ LockCmpxchgq(field_addr, temp); } else { __ LockCmpxchgl(field_addr, temp); } // LOCK CMPXCHG has full barrier semantics, so we don't need barriers here. // No need to restore byte order for temporary register. if (is_cmpxchg) { if (byte_swap) { instr_codegen->Bswap(rax_loc, type); } __ movd(out.AsFpuRegister(), CpuRegister(RAX), is64bit); } else { GenZFlagToResult(assembler, out.AsRegister()); } } // This function assumes that expected value for CMPXCHG and output are in RAX. static void GenCompareAndSetOrExchangeRef(CodeGeneratorX86_64* codegen, HInvoke* invoke, CpuRegister base, CpuRegister offset, CpuRegister value, CpuRegister temp1, CpuRegister temp2, CpuRegister temp3, bool is_cmpxchg) { // The only supported read barrier implementation is the Baker-style read barriers. DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); // Mark card for object assuming new value is stored. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null); Address field_addr(base, offset, TIMES_1, 0); if (gUseReadBarrier && kUseBakerReadBarrier) { // Need to make sure the reference stored in the field is a to-space // one before attempting the CAS or the CAS could fail incorrectly. codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, Location::RegisterLocation(temp3.AsRegister()), base, field_addr, /* needs_null_check= */ false, /* always_update_field= */ true, &temp1, &temp2); } else { // Nothing to do, the value will be loaded into the out register by CMPXCHG. } bool base_equals_value = (base.AsRegister() == value.AsRegister()); Register value_reg = value.AsRegister(); if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move `value_reg` to a temporary // register. This way, poisoning `value_reg` won't invalidate `base`. value_reg = temp1.AsRegister(); __ movl(CpuRegister(value_reg), base); } // Check that the register allocator did not assign the location of expected value (RAX) to // `value` nor to `base`, so that heap poisoning (when enabled) works as intended below. // - If `value` were equal to RAX, both references would be poisoned twice, meaning they would // not be poisoned at all, as heap poisoning uses address negation. // - If `base` were equal to RAX, poisoning RAX would invalidate `base`. DCHECK_NE(RAX, value_reg); DCHECK_NE(RAX, base.AsRegister()); __ PoisonHeapReference(CpuRegister(RAX)); __ PoisonHeapReference(CpuRegister(value_reg)); } __ LockCmpxchgl(field_addr, CpuRegister(value_reg)); // LOCK CMPXCHG has full barrier semantics, so we don't need barriers. if (is_cmpxchg) { // Output is in RAX, so we can rely on CMPXCHG and do nothing. __ MaybeUnpoisonHeapReference(CpuRegister(RAX)); } else { GenZFlagToResult(assembler, CpuRegister(RAX)); } // If heap poisoning is enabled, we need to unpoison the values that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value_reg` has been moved to a temporary register, no need to unpoison it. } else { // Ensure `value` is not RAX, so that unpoisoning the former does not invalidate the latter. DCHECK_NE(RAX, value_reg); __ UnpoisonHeapReference(CpuRegister(value_reg)); } } } // In debug mode, return true if all registers are pairwise different. In release mode, do nothing // and always return true. static bool RegsAreAllDifferent(const std::vector& regs) { if (kIsDebugBuild) { for (size_t i = 0; i < regs.size(); ++i) { for (size_t j = 0; j < i; ++j) { if (regs[i].AsRegister() == regs[j].AsRegister()) { return false; } } } } return true; } // GenCompareAndSetOrExchange handles all value types and therefore accepts generic locations and // temporary indices that may not correspond to real registers for code paths that do not use them. static void GenCompareAndSetOrExchange(CodeGeneratorX86_64* codegen, HInvoke* invoke, DataType::Type type, CpuRegister base, CpuRegister offset, uint32_t temp1_index, uint32_t temp2_index, uint32_t temp3_index, Location new_value, Location expected, Location out, bool is_cmpxchg, bool byte_swap) { LocationSummary* locations = invoke->GetLocations(); Address field_address(base, offset, TIMES_1, 0); if (DataType::IsFloatingPointType(type)) { bool is64bit = (type == DataType::Type::kFloat64); CpuRegister temp = locations->GetTemp(temp1_index).AsRegister(); DCHECK(RegsAreAllDifferent({base, offset, temp, CpuRegister(RAX)})); GenCompareAndSetOrExchangeFP( codegen, field_address, temp, new_value, expected, out, is64bit, is_cmpxchg, byte_swap); } else { // Both the expected value for CMPXCHG and the output are in RAX. DCHECK_EQ(RAX, expected.AsRegister()); DCHECK_EQ(RAX, out.AsRegister()); if (type == DataType::Type::kReference) { CpuRegister new_value_reg = new_value.AsRegister(); CpuRegister temp1 = locations->GetTemp(temp1_index).AsRegister(); CpuRegister temp2 = locations->GetTemp(temp2_index).AsRegister(); CpuRegister temp3 = gUseReadBarrier ? locations->GetTemp(temp3_index).AsRegister() : CpuRegister(kNoRegister); DCHECK(RegsAreAllDifferent({base, offset, temp1, temp2, temp3})); DCHECK(!byte_swap); GenCompareAndSetOrExchangeRef( codegen, invoke, base, offset, new_value_reg, temp1, temp2, temp3, is_cmpxchg); } else { GenCompareAndSetOrExchangeInt(codegen, type, field_address, new_value, is_cmpxchg, byte_swap); } } } static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) { LocationSummary* locations = invoke->GetLocations(); GenCompareAndSetOrExchange(codegen, invoke, type, /*base=*/ locations->InAt(1).AsRegister(), /*offset=*/ locations->InAt(2).AsRegister(), /*temp1_index=*/ 0, /*temp2_index=*/ 1, /*temp3_index=*/ 2, /*new_value=*/ locations->InAt(4), /*expected=*/ locations->InAt(3), locations->Out(), /*is_cmpxchg=*/ false, /*byte_swap=*/ false); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) { VisitJdkUnsafeCASInt(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) { VisitJdkUnsafeCASLong(invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) { VisitJdkUnsafeCASObject(invoke); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASInt(HInvoke* invoke) { // `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc). VisitJdkUnsafeCompareAndSetInt(invoke); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASLong(HInvoke* invoke) { // `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc). VisitJdkUnsafeCompareAndSetLong(invoke); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASObject(HInvoke* invoke) { // `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc). VisitJdkUnsafeCompareAndSetObject(invoke); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) { GenCAS(DataType::Type::kInt32, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) { GenCAS(DataType::Type::kInt64, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) { // The only supported read barrier implementation is the Baker-style read barriers. DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); GenCAS(DataType::Type::kReference, invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); Immediate imm_mask(mask); __ movl(temp, reg); __ shrl(reg, imm_shift); __ andl(temp, imm_mask); __ andl(reg, imm_mask); __ shll(temp, imm_shift); __ orl(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister(); CpuRegister temp = locations->GetTemp(0).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; */ __ bswapl(reg); SwapBits(reg, temp, 1, 0x55555555, assembler); SwapBits(reg, temp, 2, 0x33333333, assembler); SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); } void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask, int32_t shift, int64_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); __ movq(temp_mask, Immediate(mask)); __ movq(temp, reg); __ shrq(reg, imm_shift); __ andq(temp, temp_mask); __ andq(reg, temp_mask); __ shlq(temp, imm_shift); __ orq(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister(); CpuRegister temp1 = locations->GetTemp(0).AsRegister(); CpuRegister temp2 = locations->GetTemp(1).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a long number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555; * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333; * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F; */ __ bswapq(reg); SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler); SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler); SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler); } static void CreateBitCountLocations( ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) { if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { // Do nothing if there is no popcnt support. This results in generating // a call for the intrinsic rather than direct code. return; } LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenBitCount(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); int32_t result = is_long ? POPCOUNT(static_cast(value)) : POPCOUNT(static_cast(value)); codegen->Load32BitValue(out, result); return; } if (src.IsRegister()) { if (is_long) { __ popcntq(out, src.AsRegister()); } else { __ popcntl(out, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } } void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) { CreateBitCountLocations(allocator_, codegen_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) { CreateBitCountLocations(allocator_, codegen_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true); } static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL : Location::RequiresRegister()); // any will do } static void GenOneBit(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_high, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { __ xorl(out, out); // Clears upper bits too. return; } // Nonzero value. if (is_high) { value = is_long ? 63 - CLZ(static_cast(value)) : 31 - CLZ(static_cast(value)); } else { value = is_long ? CTZ(static_cast(value)) : CTZ(static_cast(value)); } if (is_long) { codegen->Load64BitValue(out, 1ULL << value); } else { codegen->Load32BitValue(out, 1 << value); } return; } // Handle the non-constant cases. if (!is_high && codegen->GetInstructionSetFeatures().HasAVX2() && src.IsRegister()) { __ blsi(out, src.AsRegister()); } else { CpuRegister tmp = locations->GetTemp(0).AsRegister(); if (is_high) { // Use architectural support: basically 1 << bsr. if (src.IsRegister()) { if (is_long) { __ bsrq(tmp, src.AsRegister()); } else { __ bsrl(tmp, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSR sets ZF if the input was zero. NearLabel is_zero, done; __ j(kEqual, &is_zero); __ movl(out, Immediate(1)); // Clears upper bits too. if (is_long) { __ shlq(out, tmp); } else { __ shll(out, tmp); } __ jmp(&done); __ Bind(&is_zero); __ xorl(out, out); // Clears upper bits too. __ Bind(&done); } else { // Copy input into temporary. if (src.IsRegister()) { if (is_long) { __ movq(tmp, src.AsRegister()); } else { __ movl(tmp, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } // Do the bit twiddling: basically tmp & -tmp; if (is_long) { __ movq(out, tmp); __ negq(tmp); __ andq(out, tmp); } else { __ movl(out, tmp); __ negl(tmp); __ andl(out, tmp); } } } } void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high= */ true); } void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high= */ true); } void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ true); } void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high= */ false); } void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high= */ false); } void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ true); } static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenLeadingZeros(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); int zero_value_result = is_long ? 64 : 32; if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = zero_value_result; } else { value = is_long ? CLZ(static_cast(value)) : CLZ(static_cast(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (src.IsRegister()) { if (is_long) { __ bsrq(out, src.AsRegister()); } else { __ bsrl(out, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSR sets ZF if the input was zero, and the output is undefined. NearLabel is_zero, done; __ j(kEqual, &is_zero); // Correct the result from BSR to get the CLZ result. __ xorl(out, Immediate(zero_value_result - 1)); __ jmp(&done); // Fix the zero case with the expected result. __ Bind(&is_zero); __ movl(out, Immediate(zero_value_result)); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true); } static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenTrailingZeros(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); int zero_value_result = is_long ? 64 : 32; if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = zero_value_result; } else { value = is_long ? CTZ(static_cast(value)) : CTZ(static_cast(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (src.IsRegister()) { if (is_long) { __ bsfq(out, src.AsRegister()); } else { __ bsfl(out, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSF sets ZF if the input was zero, and the output is undefined. NearLabel done; __ j(kNotEqual, &done); // Fix the zero case with the expected result. __ movl(out, Immediate(zero_value_result)); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true); } void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConvention calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, Location::RegisterLocation(RAX), Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); LocationSummary* locations = invoke->GetLocations(); X86_64Assembler* assembler = GetAssembler(); CpuRegister out = locations->Out().AsRegister(); InvokeRuntimeCallingConvention calling_convention; CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0)); auto allocate_instance = [&]() { codegen_->LoadIntrinsicDeclaringClass(argument, invoke); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); }; if (invoke->InputAt(0)->IsIntConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (static_cast(value - info.low) < info.length) { // Just embed the j.l.Integer in the code. DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); } else { DCHECK(locations->CanCall()); // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. allocate_instance(); __ movl(Address(out, info.value_offset), Immediate(value)); } } else { DCHECK(locations->CanCall()); CpuRegister in = locations->InAt(0).AsRegister(); // Check bounds of our cache. __ leal(out, Address(in, -info.low)); __ cmpl(out, Immediate(info.length)); NearLabel allocate, done; __ j(kAboveEqual, &allocate); // If the value is within the bounds, load the j.l.Integer directly from the array. DCHECK_NE(out.AsRegister(), argument.AsRegister()); codegen_->LoadBootImageAddress(argument, info.array_data_boot_image_reference); static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference), "Check heap reference size."); __ movl(out, Address(argument, out, TIMES_4, 0)); __ MaybeUnpoisonHeapReference(out); __ jmp(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. allocate_instance(); __ movl(Address(out, info.value_offset), in); __ Bind(&done); } } void IntrinsicLocationsBuilderX86_64::VisitReferenceGetReferent(HInvoke* invoke) { IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitReferenceGetReferent(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location obj = locations->InAt(0); Location out = locations->Out(); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); if (gUseReadBarrier) { // Check self->GetWeakRefAccessEnabled(). ThreadOffset64 offset = Thread::WeakRefAccessEnabledOffset(); __ gs()->cmpl(Address::Absolute(offset, /* no_rip= */ true), Immediate(enum_cast(WeakRefAccessState::kVisiblyEnabled))); __ j(kNotEqual, slow_path->GetEntryLabel()); } // Load the java.lang.ref.Reference class, use the output register as a temporary. codegen_->LoadIntrinsicDeclaringClass(out.AsRegister(), invoke); // Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together. MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset(); DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u); DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u, IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value()); __ cmpw(Address(out.AsRegister(), disable_intrinsic_offset.Uint32Value()), Immediate(0)); __ j(kNotEqual, slow_path->GetEntryLabel()); // Load the value from the field. uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); if (gUseReadBarrier && kUseBakerReadBarrier) { codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, out, obj.AsRegister(), referent_offset, /*needs_null_check=*/ true); // Note that the fence is a no-op, thanks to the x86-64 memory model. codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. } else { __ movl(out.AsRegister(), Address(obj.AsRegister(), referent_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); // Note that the fence is a no-op, thanks to the x86-64 memory model. codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset); } __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitReferenceRefersTo(HInvoke* invoke) { IntrinsicVisitor::CreateReferenceRefersToLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitReferenceRefersTo(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister obj = locations->InAt(0).AsRegister(); CpuRegister other = locations->InAt(1).AsRegister(); CpuRegister out = locations->Out().AsRegister(); uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); __ movl(out, Address(obj, referent_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); __ MaybeUnpoisonHeapReference(out); // Note that the fence is a no-op, thanks to the x86-64 memory model. codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. __ cmpl(out, other); if (gUseReadBarrier) { DCHECK(kUseBakerReadBarrier); NearLabel calculate_result; __ j(kEqual, &calculate_result); // ZF set if taken. // Check if the loaded reference is null in a way that leaves ZF clear for null. __ cmpl(out, Immediate(1)); __ j(kBelow, &calculate_result); // ZF clear if taken. // For correct memory visibility, we need a barrier before loading the lock word // but we already have the barrier emitted for volatile load above which is sufficient. // Load the lockword and check if it is a forwarding address. static_assert(LockWord::kStateShift == 30u); static_assert(LockWord::kStateForwardingAddress == 3u); __ movl(out, Address(out, monitor_offset)); __ cmpl(out, Immediate(static_cast(0xc0000000))); __ j(kBelow, &calculate_result); // ZF clear if taken. // Extract the forwarding address and compare with `other`. __ shll(out, Immediate(LockWord::kForwardingAddressShift)); __ cmpl(out, other); __ Bind(&calculate_result); } // Convert ZF into the Boolean result. __ setcc(kEqual, out); __ movzxb(out, out); } void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); CpuRegister out = invoke->GetLocations()->Out().AsRegister(); Address address = Address::Absolute (Thread::InterruptedOffset().Int32Value(), /* no_rip= */ true); NearLabel done; __ gs()->movl(out, address); __ testl(out, out); __ j(kEqual, &done); __ gs()->movl(address, Immediate(0)); codegen_->MemoryFence(); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); } void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } static void CreateDivideUnsignedLocations(HInvoke* invoke, ArenaAllocator* allocator) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RegisterLocation(RAX)); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); // Intel uses edx:eax as the dividend. locations->AddTemp(Location::RegisterLocation(RDX)); } static void GenerateDivideUnsigned(HInvoke* invoke, CodeGeneratorX86_64* codegen, DataType::Type data_type) { LocationSummary* locations = invoke->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); CpuRegister rdx = locations->GetTemp(0).AsRegister(); CpuRegister second_reg = second.AsRegister(); DCHECK_EQ(RAX, first.AsRegister()); DCHECK_EQ(RAX, out.AsRegister()); DCHECK_EQ(RDX, rdx.AsRegister()); // We check if the divisor is zero and bail to the slow path to handle if so. auto* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); X86_64Assembler* assembler = codegen->GetAssembler(); if (data_type == DataType::Type::kInt32) { __ testl(second_reg, second_reg); __ j(kEqual, slow_path->GetEntryLabel()); __ xorl(rdx, rdx); __ divl(second_reg); } else { DCHECK(data_type == DataType::Type::kInt64); __ testq(second_reg, second_reg); __ j(kEqual, slow_path->GetEntryLabel()); __ xorq(rdx, rdx); __ divq(second_reg); } __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) { CreateDivideUnsignedLocations(invoke, allocator_); } void IntrinsicCodeGeneratorX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) { GenerateDivideUnsigned(invoke, codegen_, DataType::Type::kInt32); } void IntrinsicLocationsBuilderX86_64::VisitLongDivideUnsigned(HInvoke* invoke) { CreateDivideUnsignedLocations(invoke, allocator_); } void IntrinsicCodeGeneratorX86_64::VisitLongDivideUnsigned(HInvoke* invoke) { GenerateDivideUnsigned(invoke, codegen_, DataType::Type::kInt64); } void IntrinsicLocationsBuilderX86_64::VisitMathMultiplyHigh(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RegisterLocation(RAX)); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RegisterLocation(RDX)); locations->AddTemp(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitMathMultiplyHigh(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister y = locations->InAt(1).AsRegister(); DCHECK_EQ(locations->InAt(0).AsRegister(), RAX); DCHECK_EQ(locations->Out().AsRegister(), RDX); __ imulq(y); } enum class GetAndUpdateOp { kSet, kAdd, kBitwiseAnd, kBitwiseOr, kBitwiseXor }; class VarHandleSlowPathX86_64 : public IntrinsicSlowPathX86_64 { public: explicit VarHandleSlowPathX86_64(HInvoke* invoke) : IntrinsicSlowPathX86_64(invoke) { } void SetVolatile(bool is_volatile) { is_volatile_ = is_volatile; } void SetAtomic(bool is_atomic) { is_atomic_ = is_atomic; } void SetNeedAnyStoreBarrier(bool need_any_store_barrier) { need_any_store_barrier_ = need_any_store_barrier; } void SetNeedAnyAnyBarrier(bool need_any_any_barrier) { need_any_any_barrier_ = need_any_any_barrier; } void SetGetAndUpdateOp(GetAndUpdateOp get_and_update_op) { get_and_update_op_ = get_and_update_op; } Label* GetByteArrayViewCheckLabel() { return &byte_array_view_check_label_; } Label* GetNativeByteOrderLabel() { return &native_byte_order_label_; } void EmitNativeCode(CodeGenerator* codegen) override { if (GetByteArrayViewCheckLabel()->IsLinked()) { EmitByteArrayViewCode(down_cast(codegen)); } IntrinsicSlowPathX86_64::EmitNativeCode(codegen); } private: HInvoke* GetInvoke() const { return GetInstruction()->AsInvoke(); } mirror::VarHandle::AccessModeTemplate GetAccessModeTemplate() const { return mirror::VarHandle::GetAccessModeTemplateByIntrinsic(GetInvoke()->GetIntrinsic()); } void EmitByteArrayViewCode(CodeGeneratorX86_64* codegen); Label byte_array_view_check_label_; Label native_byte_order_label_; // Arguments forwarded to specific methods. bool is_volatile_; bool is_atomic_; bool need_any_store_barrier_; bool need_any_any_barrier_; GetAndUpdateOp get_and_update_op_; }; static void GenerateMathFma(HInvoke* invoke, CodeGeneratorX86_64* codegen) { DCHECK(DataType::IsFloatingPointType(invoke->GetType())); X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); XmmRegister left = locations->InAt(0).AsFpuRegister(); XmmRegister right = locations->InAt(1).AsFpuRegister(); XmmRegister accumulator = locations->InAt(2).AsFpuRegister(); if (invoke->GetType() == DataType::Type::kFloat32) { __ vfmadd213ss(left, right, accumulator); } else { DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); __ vfmadd213sd(left, right, accumulator); } } void IntrinsicCodeGeneratorX86_64::VisitMathFmaDouble(HInvoke* invoke) { DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); GenerateMathFma(invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathFmaDouble(HInvoke* invoke) { if (codegen_->GetInstructionSetFeatures().HasAVX2()) { CreateFPFPFPToFPCallLocations(allocator_, invoke); } } void IntrinsicCodeGeneratorX86_64::VisitMathFmaFloat(HInvoke* invoke) { DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); GenerateMathFma(invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathFmaFloat(HInvoke* invoke) { if (codegen_->GetInstructionSetFeatures().HasAVX2()) { CreateFPFPFPToFPCallLocations(allocator_, invoke); } } // Generate subtype check without read barriers. static void GenerateSubTypeObjectCheckNoReadBarrier(CodeGeneratorX86_64* codegen, VarHandleSlowPathX86_64* slow_path, CpuRegister object, CpuRegister temp, Address type_address, bool object_can_be_null = true) { X86_64Assembler* assembler = codegen->GetAssembler(); const MemberOffset class_offset = mirror::Object::ClassOffset(); const MemberOffset super_class_offset = mirror::Class::SuperClassOffset(); NearLabel check_type_compatibility, type_matched; // If the object is null, there is no need to check the type if (object_can_be_null) { __ testl(object, object); __ j(kZero, &type_matched); } // Do not unpoison for in-memory comparison. // We deliberately avoid the read barrier, letting the slow path handle the false negatives. __ movl(temp, Address(object, class_offset)); __ Bind(&check_type_compatibility); __ cmpl(temp, type_address); __ j(kEqual, &type_matched); // Load the super class. __ MaybeUnpoisonHeapReference(temp); __ movl(temp, Address(temp, super_class_offset)); // If the super class is null, we reached the root of the hierarchy without a match. // We let the slow path handle uncovered cases (e.g. interfaces). __ testl(temp, temp); __ j(kEqual, slow_path->GetEntryLabel()); __ jmp(&check_type_compatibility); __ Bind(&type_matched); } // Check access mode and the primitive type from VarHandle.varType. // Check reference arguments against the VarHandle.varType; for references this is a subclass // check without read barrier, so it can have false negatives which we handle in the slow path. static void GenerateVarHandleAccessModeAndVarTypeChecks(HInvoke* invoke, CodeGeneratorX86_64* codegen, VarHandleSlowPathX86_64* slow_path, DataType::Type type) { X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister varhandle = locations->InAt(0).AsRegister(); CpuRegister temp = locations->GetTemp(0).AsRegister(); mirror::VarHandle::AccessMode access_mode = mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic()); Primitive::Type primitive_type = DataTypeToPrimitive(type); const MemberOffset var_type_offset = mirror::VarHandle::VarTypeOffset(); const MemberOffset access_mode_bit_mask_offset = mirror::VarHandle::AccessModesBitMaskOffset(); const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); // Check that the operation is permitted. __ testl(Address(varhandle, access_mode_bit_mask_offset), Immediate(1u << static_cast(access_mode))); __ j(kZero, slow_path->GetEntryLabel()); // For primitive types, we do not need a read barrier when loading a reference only for loading // constant field through the reference. For reference types, we deliberately avoid the read // barrier, letting the slow path handle the false negatives. __ movl(temp, Address(varhandle, var_type_offset)); __ MaybeUnpoisonHeapReference(temp); // Check check the varType.primitiveType field against the type we're trying to retrieve. __ cmpw(Address(temp, primitive_type_offset), Immediate(static_cast(primitive_type))); __ j(kNotEqual, slow_path->GetEntryLabel()); if (type == DataType::Type::kReference) { // Check reference arguments against the varType. // False negatives due to varType being an interface or array type // or due to the missing read barrier are handled by the slow path. size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; uint32_t number_of_arguments = invoke->GetNumberOfArguments(); for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { HInstruction* arg = invoke->InputAt(arg_index); DCHECK_EQ(arg->GetType(), DataType::Type::kReference); if (!arg->IsNullConstant()) { CpuRegister arg_reg = invoke->GetLocations()->InAt(arg_index).AsRegister(); Address type_addr(varhandle, var_type_offset); GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, arg_reg, temp, type_addr); } } } } static void GenerateVarHandleStaticFieldCheck(HInvoke* invoke, CodeGeneratorX86_64* codegen, VarHandleSlowPathX86_64* slow_path) { X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister varhandle = locations->InAt(0).AsRegister(); const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); // Check that the VarHandle references a static field by checking that coordinateType0 == null. // Do not emit read barrier (or unpoison the reference) for comparing to null. __ cmpl(Address(varhandle, coordinate_type0_offset), Immediate(0)); __ j(kNotEqual, slow_path->GetEntryLabel()); } static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke, CodeGeneratorX86_64* codegen, VarHandleSlowPathX86_64* slow_path) { VarHandleOptimizations optimizations(invoke); X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister varhandle = locations->InAt(0).AsRegister(); CpuRegister object = locations->InAt(1).AsRegister(); CpuRegister temp = locations->GetTemp(0).AsRegister(); const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); // Null-check the object. if (!optimizations.GetSkipObjectNullCheck()) { __ testl(object, object); __ j(kZero, slow_path->GetEntryLabel()); } if (!optimizations.GetUseKnownBootImageVarHandle()) { // Check that the VarHandle references an instance field by checking that // coordinateType1 == null. coordinateType0 should be not null, but this is handled by the // type compatibility check with the source object's type, which will fail for null. __ cmpl(Address(varhandle, coordinate_type1_offset), Immediate(0)); __ j(kNotEqual, slow_path->GetEntryLabel()); // Check that the object has the correct type. // We deliberately avoid the read barrier, letting the slow path handle the false negatives. GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, object, temp, Address(varhandle, coordinate_type0_offset), /*object_can_be_null=*/ false); } } static void GenerateVarHandleArrayChecks(HInvoke* invoke, CodeGeneratorX86_64* codegen, VarHandleSlowPathX86_64* slow_path) { VarHandleOptimizations optimizations(invoke); X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister varhandle = locations->InAt(0).AsRegister(); CpuRegister object = locations->InAt(1).AsRegister(); CpuRegister index = locations->InAt(2).AsRegister(); DataType::Type value_type = GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); Primitive::Type primitive_type = DataTypeToPrimitive(value_type); const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); const MemberOffset component_type_offset = mirror::Class::ComponentTypeOffset(); const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); const MemberOffset class_offset = mirror::Object::ClassOffset(); const MemberOffset array_length_offset = mirror::Array::LengthOffset(); // Null-check the object. if (!optimizations.GetSkipObjectNullCheck()) { __ testl(object, object); __ j(kZero, slow_path->GetEntryLabel()); } CpuRegister temp = locations->GetTemp(0).AsRegister(); // Check that the VarHandle references an array, byte array view or ByteBuffer by checking // that coordinateType1 != null. If that's true, coordinateType1 shall be int.class and // coordinateType0 shall not be null but we do not explicitly verify that. // No need for read barrier or unpoisoning of coordinateType1 for comparison with null. __ cmpl(Address(varhandle, coordinate_type1_offset.Int32Value()), Immediate(0)); __ j(kEqual, slow_path->GetEntryLabel()); // Check object class against componentType0. // // This is an exact check and we defer other cases to the runtime. This includes // conversion to array of superclass references, which is valid but subsequently // requires all update operations to check that the value can indeed be stored. // We do not want to perform such extra checks in the intrinsified code. // // We do this check without read barrier, so there can be false negatives which we // defer to the slow path. There shall be no false negatives for array classes in the // boot image (including Object[] and primitive arrays) because they are non-movable. __ movl(temp, Address(object, class_offset.Int32Value())); __ cmpl(temp, Address(varhandle, coordinate_type0_offset.Int32Value())); __ j(kNotEqual, slow_path->GetEntryLabel()); // Check that the coordinateType0 is an array type. We do not need a read barrier // for loading constant reference fields (or chains of them) for comparison with null, // nor for finally loading a constant primitive field (primitive type) below. codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); __ movl(temp, Address(temp, component_type_offset.Int32Value())); codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); __ testl(temp, temp); __ j(kZero, slow_path->GetEntryLabel()); // Check that the array component type matches the primitive type. Label* slow_path_label; if (primitive_type == Primitive::kPrimNot) { slow_path_label = slow_path->GetEntryLabel(); } else { // With the exception of `kPrimNot` (handled above), `kPrimByte` and `kPrimBoolean`, // we shall check for a byte array view in the slow path. // The check requires the ByteArrayViewVarHandle.class to be in the boot image, // so we cannot emit that if we're JITting without boot image. bool boot_image_available = codegen->GetCompilerOptions().IsBootImage() || !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty(); bool can_be_view = (DataType::Size(value_type) != 1u) && boot_image_available; slow_path_label = can_be_view ? slow_path->GetByteArrayViewCheckLabel() : slow_path->GetEntryLabel(); } __ cmpw(Address(temp, primitive_type_offset), Immediate(static_cast(primitive_type))); __ j(kNotEqual, slow_path_label); // Check for array index out of bounds. __ cmpl(index, Address(object, array_length_offset.Int32Value())); __ j(kAboveEqual, slow_path->GetEntryLabel()); } static void GenerateVarHandleCoordinateChecks(HInvoke* invoke, CodeGeneratorX86_64* codegen, VarHandleSlowPathX86_64* slow_path) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); if (expected_coordinates_count == 0u) { GenerateVarHandleStaticFieldCheck(invoke, codegen, slow_path); } else if (expected_coordinates_count == 1u) { GenerateVarHandleInstanceFieldChecks(invoke, codegen, slow_path); } else { DCHECK_EQ(expected_coordinates_count, 2u); GenerateVarHandleArrayChecks(invoke, codegen, slow_path); } } static VarHandleSlowPathX86_64* GenerateVarHandleChecks(HInvoke* invoke, CodeGeneratorX86_64* codegen, DataType::Type type) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); VarHandleOptimizations optimizations(invoke); if (optimizations.GetUseKnownBootImageVarHandle()) { DCHECK_NE(expected_coordinates_count, 2u); if (expected_coordinates_count == 0u || optimizations.GetSkipObjectNullCheck()) { return nullptr; } } VarHandleSlowPathX86_64* slow_path = new (codegen->GetScopedAllocator()) VarHandleSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); if (!optimizations.GetUseKnownBootImageVarHandle()) { GenerateVarHandleAccessModeAndVarTypeChecks(invoke, codegen, slow_path, type); } GenerateVarHandleCoordinateChecks(invoke, codegen, slow_path); return slow_path; } struct VarHandleTarget { Register object; // The object holding the value to operate on. Register offset; // The offset of the value to operate on. }; static VarHandleTarget GetVarHandleTarget(HInvoke* invoke) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); LocationSummary* locations = invoke->GetLocations(); VarHandleTarget target; // The temporary allocated for loading the offset. target.offset = locations->GetTemp(0).AsRegister().AsRegister(); // The reference to the object that holds the value to operate on. target.object = (expected_coordinates_count == 0u) ? locations->GetTemp(1).AsRegister().AsRegister() : locations->InAt(1).AsRegister().AsRegister(); return target; } static void GenerateVarHandleTarget(HInvoke* invoke, const VarHandleTarget& target, CodeGeneratorX86_64* codegen) { LocationSummary* locations = invoke->GetLocations(); X86_64Assembler* assembler = codegen->GetAssembler(); size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); CpuRegister varhandle = locations->InAt(0).AsRegister(); if (expected_coordinates_count <= 1u) { if (VarHandleOptimizations(invoke).GetUseKnownBootImageVarHandle()) { ScopedObjectAccess soa(Thread::Current()); ArtField* target_field = GetBootImageVarHandleField(invoke); if (expected_coordinates_count == 0u) { ObjPtr declaring_class = target_field->GetDeclaringClass(); __ movl(CpuRegister(target.object), Address::Absolute(CodeGeneratorX86_64::kPlaceholder32BitOffset, /*no_rip=*/ false)); if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(declaring_class)) { codegen->RecordBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(declaring_class)); } else { codegen->RecordBootImageTypePatch(declaring_class->GetDexFile(), declaring_class->GetDexTypeIndex()); } } __ movl(CpuRegister(target.offset), Immediate(target_field->GetOffset().Uint32Value())); } else { // For static fields, we need to fill the `target.object` with the declaring class, // so we can use `target.object` as temporary for the `ArtMethod*`. For instance fields, // we do not need the declaring class, so we can forget the `ArtMethod*` when // we load the `target.offset`, so use the `target.offset` to hold the `ArtMethod*`. CpuRegister method((expected_coordinates_count == 0) ? target.object : target.offset); const MemberOffset art_field_offset = mirror::FieldVarHandle::ArtFieldOffset(); const MemberOffset offset_offset = ArtField::OffsetOffset(); // Load the ArtField, the offset and, if needed, declaring class. __ movq(method, Address(varhandle, art_field_offset)); __ movl(CpuRegister(target.offset), Address(method, offset_offset)); if (expected_coordinates_count == 0u) { InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen(); instr_codegen->GenerateGcRootFieldLoad(invoke, Location::RegisterLocation(target.object), Address(method, ArtField::DeclaringClassOffset()), /*fixup_label=*/ nullptr, gCompilerReadBarrierOption); } } } else { DCHECK_EQ(expected_coordinates_count, 2u); DataType::Type value_type = GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); ScaleFactor scale = CodeGenerator::ScaleFactorForType(value_type); MemberOffset data_offset = mirror::Array::DataOffset(DataType::Size(value_type)); CpuRegister index = locations->InAt(2).AsRegister(); // The effect of LEA is `target.offset = index * scale + data_offset`. __ leal(CpuRegister(target.offset), Address(index, scale, data_offset.Int32Value())); } } static bool HasVarHandleIntrinsicImplementation(HInvoke* invoke) { // The only supported read barrier implementation is the Baker-style read barriers. if (gUseReadBarrier && !kUseBakerReadBarrier) { return false; } VarHandleOptimizations optimizations(invoke); if (optimizations.GetDoNotIntrinsify()) { return false; } size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); DCHECK_LE(expected_coordinates_count, 2u); // Filtered by the `DoNotIntrinsify` flag above. return true; } static LocationSummary* CreateVarHandleCommonLocations(HInvoke* invoke) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); LocationSummary* locations = new (allocator) LocationSummary( invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); // Require coordinates in registers. These are the object holding the value // to operate on (except for static fields) and index (for arrays and views). for (size_t i = 0; i != expected_coordinates_count; ++i) { locations->SetInAt(/* VarHandle object */ 1u + i, Location::RequiresRegister()); } uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; uint32_t number_of_arguments = invoke->GetNumberOfArguments(); for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { HInstruction* arg = invoke->InputAt(arg_index); if (DataType::IsFloatingPointType(arg->GetType())) { locations->SetInAt(arg_index, Location::FpuRegisterOrConstant(arg)); } else { locations->SetInAt(arg_index, Location::RegisterOrConstant(arg)); } } // Add a temporary for offset. locations->AddTemp(Location::RequiresRegister()); if (expected_coordinates_count == 0u) { // Add a temporary to hold the declaring class. locations->AddTemp(Location::RequiresRegister()); } return locations; } static void CreateVarHandleGetLocations(HInvoke* invoke) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } LocationSummary* locations = CreateVarHandleCommonLocations(invoke); if (DataType::IsFloatingPointType(invoke->GetType())) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetOut(Location::RequiresRegister()); } } static void GenerateVarHandleGet(HInvoke* invoke, CodeGeneratorX86_64* codegen, bool byte_swap = false) { DataType::Type type = invoke->GetType(); DCHECK_NE(type, DataType::Type::kVoid); LocationSummary* locations = invoke->GetLocations(); X86_64Assembler* assembler = codegen->GetAssembler(); VarHandleTarget target = GetVarHandleTarget(invoke); VarHandleSlowPathX86_64* slow_path = nullptr; if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, type); GenerateVarHandleTarget(invoke, target, codegen); if (slow_path != nullptr) { __ Bind(slow_path->GetNativeByteOrderLabel()); } } // Load the value from the field Address src(CpuRegister(target.object), CpuRegister(target.offset), TIMES_1, 0); Location out = locations->Out(); if (type == DataType::Type::kReference) { if (gUseReadBarrier) { DCHECK(kUseBakerReadBarrier); codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, out, CpuRegister(target.object), src, /* needs_null_check= */ false); } else { __ movl(out.AsRegister(), src); __ MaybeUnpoisonHeapReference(out.AsRegister()); } DCHECK(!byte_swap); } else { codegen->LoadFromMemoryNoReference(type, out, src); if (byte_swap) { CpuRegister temp = locations->GetTemp(0).AsRegister(); codegen->GetInstructionCodegen()->Bswap(out, type, &temp); } } if (slow_path != nullptr) { DCHECK(!byte_swap); __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGet(HInvoke* invoke) { CreateVarHandleGetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGet(HInvoke* invoke) { GenerateVarHandleGet(invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAcquire(HInvoke* invoke) { CreateVarHandleGetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAcquire(HInvoke* invoke) { // VarHandleGetAcquire is the same as VarHandleGet on x86-64 due to the x86 memory model. GenerateVarHandleGet(invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetOpaque(HInvoke* invoke) { CreateVarHandleGetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetOpaque(HInvoke* invoke) { // VarHandleGetOpaque is the same as VarHandleGet on x86-64 due to the x86 memory model. GenerateVarHandleGet(invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetVolatile(HInvoke* invoke) { CreateVarHandleGetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetVolatile(HInvoke* invoke) { // VarHandleGetVolatile is the same as VarHandleGet on x86-64 due to the x86 memory model. GenerateVarHandleGet(invoke, codegen_); } static void CreateVarHandleSetLocations(HInvoke* invoke) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } LocationSummary* locations = CreateVarHandleCommonLocations(invoke); // Extra temporary is used for card in MarkGCCard and to move 64-bit constants to memory. locations->AddTemp(Location::RequiresRegister()); } static void GenerateVarHandleSet(HInvoke* invoke, CodeGeneratorX86_64* codegen, bool is_volatile, bool is_atomic, bool byte_swap = false) { X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); const uint32_t last_temp_index = locations->GetTempCount() - 1; uint32_t value_index = invoke->GetNumberOfArguments() - 1; DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); VarHandleTarget target = GetVarHandleTarget(invoke); VarHandleSlowPathX86_64* slow_path = nullptr; if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, value_type); GenerateVarHandleTarget(invoke, target, codegen); if (slow_path != nullptr) { slow_path->SetVolatile(is_volatile); slow_path->SetAtomic(is_atomic); __ Bind(slow_path->GetNativeByteOrderLabel()); } } switch (invoke->GetIntrinsic()) { case Intrinsics::kVarHandleSetRelease: codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); break; case Intrinsics::kVarHandleSetVolatile: // setVolatile needs kAnyStore barrier, but HandleFieldSet takes care of that. break; default: // Other intrinsics don't need a barrier. break; } Address dst(CpuRegister(target.object), CpuRegister(target.offset), TIMES_1, 0); // Store the value to the field. codegen->GetInstructionCodegen()->HandleFieldSet( invoke, value_index, last_temp_index, value_type, dst, CpuRegister(target.object), is_volatile, is_atomic, /*value_can_be_null=*/true, byte_swap, // Value can be null, and this write barrier is not being relied on for other sets. WriteBarrierKind::kEmitWithNullCheck); // setVolatile needs kAnyAny barrier, but HandleFieldSet takes care of that. if (slow_path != nullptr) { DCHECK(!byte_swap); __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitVarHandleSet(HInvoke* invoke) { CreateVarHandleSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleSet(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetOpaque(HInvoke* invoke) { CreateVarHandleSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetOpaque(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetRelease(HInvoke* invoke) { CreateVarHandleSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetRelease(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetVolatile(HInvoke* invoke) { CreateVarHandleSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetVolatile(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ true, /*is_atomic=*/ true); } static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); uint32_t expected_value_index = number_of_arguments - 2; uint32_t new_value_index = number_of_arguments - 1; DataType::Type return_type = invoke->GetType(); DataType::Type expected_type = GetDataTypeFromShorty(invoke, expected_value_index); DCHECK_EQ(expected_type, GetDataTypeFromShorty(invoke, new_value_index)); LocationSummary* locations = CreateVarHandleCommonLocations(invoke); if (DataType::IsFloatingPointType(return_type)) { locations->SetOut(Location::RequiresFpuRegister()); } else { // Take advantage of the fact that CMPXCHG writes result to RAX. locations->SetOut(Location::RegisterLocation(RAX)); } if (DataType::IsFloatingPointType(expected_type)) { // RAX is needed to load the expected floating-point value into a register for CMPXCHG. locations->AddTemp(Location::RegisterLocation(RAX)); // Another temporary is needed to load the new floating-point value into a register for CMPXCHG. locations->AddTemp(Location::RequiresRegister()); } else { // Ensure that expected value is in RAX, as required by CMPXCHG. locations->SetInAt(expected_value_index, Location::RegisterLocation(RAX)); locations->SetInAt(new_value_index, Location::RequiresRegister()); if (expected_type == DataType::Type::kReference) { // Need two temporaries for MarkGCCard. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); if (gUseReadBarrier) { // Need three temporaries for GenerateReferenceLoadWithBakerReadBarrier. DCHECK(kUseBakerReadBarrier); locations->AddTemp(Location::RequiresRegister()); } } // RAX is clobbered in CMPXCHG, but no need to mark it as temporary as it's the output register. DCHECK_EQ(RAX, locations->Out().AsRegister()); } } static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke, CodeGeneratorX86_64* codegen, bool is_cmpxchg, bool byte_swap = false) { DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t number_of_arguments = invoke->GetNumberOfArguments(); uint32_t expected_value_index = number_of_arguments - 2; uint32_t new_value_index = number_of_arguments - 1; DataType::Type type = GetDataTypeFromShorty(invoke, expected_value_index); VarHandleSlowPathX86_64* slow_path = nullptr; VarHandleTarget target = GetVarHandleTarget(invoke); if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, type); GenerateVarHandleTarget(invoke, target, codegen); if (slow_path != nullptr) { __ Bind(slow_path->GetNativeByteOrderLabel()); } } uint32_t temp_count = locations->GetTempCount(); GenCompareAndSetOrExchange(codegen, invoke, type, CpuRegister(target.object), CpuRegister(target.offset), /*temp1_index=*/ temp_count - 1, /*temp2_index=*/ temp_count - 2, /*temp3_index=*/ temp_count - 3, locations->InAt(new_value_index), locations->InAt(expected_value_index), locations->Out(), is_cmpxchg, byte_swap); // We are using LOCK CMPXCHG in all cases because there is no CAS equivalent that has weak // failure semantics. LOCK CMPXCHG has full barrier semantics, so we don't need barriers. if (slow_path != nullptr) { DCHECK(!byte_swap); __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndSet(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndSet(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchange(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchange(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true); } static void CreateVarHandleGetAndSetLocations(HInvoke* invoke) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); uint32_t new_value_index = number_of_arguments - 1; DataType::Type type = invoke->GetType(); DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); LocationSummary* locations = CreateVarHandleCommonLocations(invoke); if (DataType::IsFloatingPointType(type)) { locations->SetOut(Location::RequiresFpuRegister()); // A temporary is needed to load the new floating-point value into a register for XCHG. locations->AddTemp(Location::RequiresRegister()); } else { // Use the same register for both the new value and output to take advantage of XCHG. // It doesn't have to be RAX, but we need to choose some to make sure it's the same. locations->SetOut(Location::RegisterLocation(RAX)); locations->SetInAt(new_value_index, Location::RegisterLocation(RAX)); if (type == DataType::Type::kReference) { // Need two temporaries for MarkGCCard. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); if (gUseReadBarrier) { // Need a third temporary for GenerateReferenceLoadWithBakerReadBarrier. DCHECK(kUseBakerReadBarrier); locations->AddTemp(Location::RequiresRegister()); } } } } static void GenerateVarHandleGetAndSet(HInvoke* invoke, CodeGeneratorX86_64* codegen, Location value, DataType::Type type, Address field_addr, CpuRegister ref, bool byte_swap) { X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location out = locations->Out(); uint32_t temp_count = locations->GetTempCount(); if (DataType::IsFloatingPointType(type)) { // `getAndSet` for floating-point types: move the new FP value into a register, atomically // exchange it with the field, and move the old value into the output FP register. Location temp = locations->GetTemp(temp_count - 1); codegen->Move(temp, value); bool is64bit = (type == DataType::Type::kFloat64); DataType::Type bswap_type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32; if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(temp, bswap_type); } if (is64bit) { __ xchgq(temp.AsRegister(), field_addr); } else { __ xchgl(temp.AsRegister(), field_addr); } if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(temp, bswap_type); } __ movd(out.AsFpuRegister(), temp.AsRegister(), is64bit); } else if (type == DataType::Type::kReference) { // `getAndSet` for references: load reference and atomically exchange it with the field. // Output register is the same as the one holding new value, so no need to move the result. DCHECK(!byte_swap); CpuRegister temp1 = locations->GetTemp(temp_count - 1).AsRegister(); CpuRegister temp2 = locations->GetTemp(temp_count - 2).AsRegister(); CpuRegister valreg = value.AsRegister(); if (gUseReadBarrier && kUseBakerReadBarrier) { codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, locations->GetTemp(temp_count - 3), ref, field_addr, /*needs_null_check=*/ false, /*always_update_field=*/ true, &temp1, &temp2); } codegen->MarkGCCard(temp1, temp2, ref, valreg, /* emit_null_check= */ false); DCHECK_EQ(valreg, out.AsRegister()); if (kPoisonHeapReferences) { // Use a temp to avoid poisoning base of the field address, which might happen if `valreg` is // the same as `target.object` (for code like `vh.getAndSet(obj, obj)`). __ movl(temp1, valreg); __ PoisonHeapReference(temp1); __ xchgl(temp1, field_addr); __ UnpoisonHeapReference(temp1); __ movl(valreg, temp1); } else { __ xchgl(valreg, field_addr); } } else { // `getAndSet` for integral types: atomically exchange the new value with the field. Output // register is the same as the one holding new value. Do sign extend / zero extend as needed. if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(value, type); } CpuRegister valreg = value.AsRegister(); DCHECK_EQ(valreg, out.AsRegister()); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: __ xchgb(valreg, field_addr); __ movzxb(valreg, valreg); break; case DataType::Type::kInt8: __ xchgb(valreg, field_addr); __ movsxb(valreg, valreg); break; case DataType::Type::kUint16: __ xchgw(valreg, field_addr); __ movzxw(valreg, valreg); break; case DataType::Type::kInt16: __ xchgw(valreg, field_addr); __ movsxw(valreg, valreg); break; case DataType::Type::kInt32: case DataType::Type::kUint32: __ xchgl(valreg, field_addr); break; case DataType::Type::kInt64: case DataType::Type::kUint64: __ xchgq(valreg, field_addr); break; default: DCHECK(false) << "unexpected type in getAndSet intrinsic"; UNREACHABLE(); } if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(value, type); } } } static void CreateVarHandleGetAndBitwiseOpLocations(HInvoke* invoke) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); uint32_t new_value_index = number_of_arguments - 1; DataType::Type type = invoke->GetType(); DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); LocationSummary* locations = CreateVarHandleCommonLocations(invoke); DCHECK_NE(DataType::Type::kReference, type); DCHECK(!DataType::IsFloatingPointType(type)); // A temporary to compute the bitwise operation on the old and the new values. locations->AddTemp(Location::RequiresRegister()); // We need value to be either in a register, or a 32-bit constant (as there are no arithmetic // instructions that accept 64-bit immediate on x86_64). locations->SetInAt(new_value_index, DataType::Is64BitType(type) ? Location::RequiresRegister() : Location::RegisterOrConstant(invoke->InputAt(new_value_index))); // Output is in RAX to accommodate CMPXCHG. It is also used as a temporary. locations->SetOut(Location::RegisterLocation(RAX)); } static void GenerateVarHandleGetAndOp(HInvoke* invoke, CodeGeneratorX86_64* codegen, Location value, DataType::Type type, Address field_addr, GetAndUpdateOp get_and_update_op, bool byte_swap) { X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location temp_loc = locations->GetTemp(locations->GetTempCount() - 1); Location rax_loc = locations->Out(); CpuRegister temp = temp_loc.AsRegister(); CpuRegister rax = rax_loc.AsRegister(); DCHECK_EQ(rax.AsRegister(), RAX); bool is64Bit = DataType::Is64BitType(type); NearLabel retry; __ Bind(&retry); // Load field value into RAX and copy it into a temporary register for the operation. codegen->LoadFromMemoryNoReference(type, Location::RegisterLocation(RAX), field_addr); codegen->Move(temp_loc, rax_loc); if (byte_swap) { // Byte swap the temporary, since we need to perform operation in native endianness. codegen->GetInstructionCodegen()->Bswap(temp_loc, type); } DCHECK_IMPLIES(value.IsConstant(), !is64Bit); int32_t const_value = value.IsConstant() ? CodeGenerator::GetInt32ValueOf(value.GetConstant()) : 0; // Use 32-bit registers for 8/16/32-bit types to save on the REX prefix. switch (get_and_update_op) { case GetAndUpdateOp::kAdd: DCHECK(byte_swap); // The non-byte-swapping path should use a faster XADD instruction. if (is64Bit) { __ addq(temp, value.AsRegister()); } else if (value.IsConstant()) { __ addl(temp, Immediate(const_value)); } else { __ addl(temp, value.AsRegister()); } break; case GetAndUpdateOp::kBitwiseAnd: if (is64Bit) { __ andq(temp, value.AsRegister()); } else if (value.IsConstant()) { __ andl(temp, Immediate(const_value)); } else { __ andl(temp, value.AsRegister()); } break; case GetAndUpdateOp::kBitwiseOr: if (is64Bit) { __ orq(temp, value.AsRegister()); } else if (value.IsConstant()) { __ orl(temp, Immediate(const_value)); } else { __ orl(temp, value.AsRegister()); } break; case GetAndUpdateOp::kBitwiseXor: if (is64Bit) { __ xorq(temp, value.AsRegister()); } else if (value.IsConstant()) { __ xorl(temp, Immediate(const_value)); } else { __ xorl(temp, value.AsRegister()); } break; default: DCHECK(false) << "unexpected operation"; UNREACHABLE(); } if (byte_swap) { // RAX still contains the original value, but we need to byte swap the temporary back. codegen->GetInstructionCodegen()->Bswap(temp_loc, type); } switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: case DataType::Type::kInt8: __ LockCmpxchgb(field_addr, temp); break; case DataType::Type::kUint16: case DataType::Type::kInt16: __ LockCmpxchgw(field_addr, temp); break; case DataType::Type::kInt32: case DataType::Type::kUint32: __ LockCmpxchgl(field_addr, temp); break; case DataType::Type::kInt64: case DataType::Type::kUint64: __ LockCmpxchgq(field_addr, temp); break; default: DCHECK(false) << "unexpected type in getAndBitwiseOp intrinsic"; UNREACHABLE(); } __ j(kNotZero, &retry); // The result is in RAX after CMPXCHG. Byte swap if necessary, but do not sign/zero extend, // as it has already been done by `LoadFromMemoryNoReference` above (and not altered by CMPXCHG). if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(rax_loc, type); } } static void CreateVarHandleGetAndAddLocations(HInvoke* invoke) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); uint32_t new_value_index = number_of_arguments - 1; DataType::Type type = invoke->GetType(); DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); LocationSummary* locations = CreateVarHandleCommonLocations(invoke); if (DataType::IsFloatingPointType(type)) { locations->SetOut(Location::RequiresFpuRegister()); // Require that the new FP value is in a register (and not a constant) for ADDSS/ADDSD. locations->SetInAt(new_value_index, Location::RequiresFpuRegister()); // CMPXCHG clobbers RAX. locations->AddTemp(Location::RegisterLocation(RAX)); // An FP temporary to load the old value from the field and perform FP addition. locations->AddTemp(Location::RequiresFpuRegister()); // A temporary to hold the new value for CMPXCHG. locations->AddTemp(Location::RequiresRegister()); } else { DCHECK_NE(type, DataType::Type::kReference); // Use the same register for both the new value and output to take advantage of XADD. // It should be RAX, because the byte-swapping path of GenerateVarHandleGetAndAdd falls // back to GenerateVarHandleGetAndOp that expects out in RAX. locations->SetOut(Location::RegisterLocation(RAX)); locations->SetInAt(new_value_index, Location::RegisterLocation(RAX)); if (GetExpectedVarHandleCoordinatesCount(invoke) == 2) { // For byte array views with non-native endianness we need extra BSWAP operations, so we // cannot use XADD and have to fallback to a generic implementation based on CMPXCH. In that // case we need two temporary registers: one to hold value instead of RAX (which may get // clobbered by repeated CMPXCHG) and one for performing the operation. At compile time we // cannot distinguish this case from arrays or native-endian byte array views. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } } } static void GenerateVarHandleGetAndAdd(HInvoke* invoke, CodeGeneratorX86_64* codegen, Location value, DataType::Type type, Address field_addr, bool byte_swap) { X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location out = locations->Out(); uint32_t temp_count = locations->GetTempCount(); if (DataType::IsFloatingPointType(type)) { if (byte_swap) { // This code should never be executed: it is the case of a byte array view (since it requires // a byte swap), and varhandles for byte array views support numeric atomic update access mode // only for int and long, but not for floating-point types (see javadoc comments for // java.lang.invoke.MethodHandles.byteArrayViewVarHandle()). But ART varhandle implementation // for byte array views treats floating-point types them as numeric types in // ByteArrayViewVarHandle::Access(). Terefore we do generate intrinsic code, but it always // fails access mode check at runtime prior to reaching this point. Illegal instruction UD2 // ensures that if control flow gets here by mistake, we will notice. __ ud2(); } // `getAndAdd` for floating-point types: load the old FP value into a temporary FP register and // in RAX for CMPXCHG, add the new FP value to the old one, move it to a non-FP temporary for // CMPXCHG and loop until CMPXCHG succeeds. Move the result from RAX to the output FP register. bool is64bit = (type == DataType::Type::kFloat64); DataType::Type bswap_type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32; XmmRegister fptemp = locations->GetTemp(temp_count - 2).AsFpuRegister(); Location rax_loc = Location::RegisterLocation(RAX); Location temp_loc = locations->GetTemp(temp_count - 1); CpuRegister temp = temp_loc.AsRegister(); NearLabel retry; __ Bind(&retry); // Read value from memory into an FP register and copy in into RAX. if (is64bit) { __ movsd(fptemp, field_addr); } else { __ movss(fptemp, field_addr); } __ movd(CpuRegister(RAX), fptemp, is64bit); // If necessary, byte swap RAX and update the value in FP register to also be byte-swapped. if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type); __ movd(fptemp, CpuRegister(RAX), is64bit); } // Perform the FP addition and move it to a temporary register to prepare for CMPXCHG. if (is64bit) { __ addsd(fptemp, value.AsFpuRegister()); } else { __ addss(fptemp, value.AsFpuRegister()); } __ movd(temp, fptemp, is64bit); // If necessary, byte swap RAX before CMPXCHG and the temporary before copying to FP register. if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(temp_loc, bswap_type); codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type); } if (is64bit) { __ LockCmpxchgq(field_addr, temp); } else { __ LockCmpxchgl(field_addr, temp); } __ j(kNotZero, &retry); // The old value is in RAX, byte swap if necessary. if (byte_swap) { codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type); } __ movd(out.AsFpuRegister(), CpuRegister(RAX), is64bit); } else { if (byte_swap) { // We cannot use XADD since we need to byte-swap the old value when reading it from memory, // and then byte-swap the sum before writing it to memory. So fallback to the slower generic // implementation that is also used for bitwise operations. // Move value from RAX to a temporary register, as RAX may get clobbered by repeated CMPXCHG. DCHECK_EQ(GetExpectedVarHandleCoordinatesCount(invoke), 2u); Location temp = locations->GetTemp(temp_count - 2); codegen->Move(temp, value); GenerateVarHandleGetAndOp( invoke, codegen, temp, type, field_addr, GetAndUpdateOp::kAdd, byte_swap); } else { // `getAndAdd` for integral types: atomically exchange the new value with the field and add // the old value to the field. Output register is the same as the one holding new value. Do // sign extend / zero extend as needed. CpuRegister valreg = value.AsRegister(); DCHECK_EQ(valreg, out.AsRegister()); switch (type) { case DataType::Type::kBool: case DataType::Type::kUint8: __ LockXaddb(field_addr, valreg); __ movzxb(valreg, valreg); break; case DataType::Type::kInt8: __ LockXaddb(field_addr, valreg); __ movsxb(valreg, valreg); break; case DataType::Type::kUint16: __ LockXaddw(field_addr, valreg); __ movzxw(valreg, valreg); break; case DataType::Type::kInt16: __ LockXaddw(field_addr, valreg); __ movsxw(valreg, valreg); break; case DataType::Type::kInt32: case DataType::Type::kUint32: __ LockXaddl(field_addr, valreg); break; case DataType::Type::kInt64: case DataType::Type::kUint64: __ LockXaddq(field_addr, valreg); break; default: DCHECK(false) << "unexpected type in getAndAdd intrinsic"; UNREACHABLE(); } } } } static void GenerateVarHandleGetAndUpdate(HInvoke* invoke, CodeGeneratorX86_64* codegen, GetAndUpdateOp get_and_update_op, bool need_any_store_barrier, bool need_any_any_barrier, bool byte_swap = false) { DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); X86_64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t number_of_arguments = invoke->GetNumberOfArguments(); Location value = locations->InAt(number_of_arguments - 1); DataType::Type type = invoke->GetType(); VarHandleSlowPathX86_64* slow_path = nullptr; VarHandleTarget target = GetVarHandleTarget(invoke); if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, type); GenerateVarHandleTarget(invoke, target, codegen); if (slow_path != nullptr) { slow_path->SetGetAndUpdateOp(get_and_update_op); slow_path->SetNeedAnyStoreBarrier(need_any_store_barrier); slow_path->SetNeedAnyAnyBarrier(need_any_any_barrier); __ Bind(slow_path->GetNativeByteOrderLabel()); } } CpuRegister ref(target.object); Address field_addr(ref, CpuRegister(target.offset), TIMES_1, 0); if (need_any_store_barrier) { codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } switch (get_and_update_op) { case GetAndUpdateOp::kSet: GenerateVarHandleGetAndSet(invoke, codegen, value, type, field_addr, ref, byte_swap); break; case GetAndUpdateOp::kAdd: GenerateVarHandleGetAndAdd(invoke, codegen, value, type, field_addr, byte_swap); break; case GetAndUpdateOp::kBitwiseAnd: case GetAndUpdateOp::kBitwiseOr: case GetAndUpdateOp::kBitwiseXor: GenerateVarHandleGetAndOp( invoke, codegen, value, type, field_addr, get_and_update_op, byte_swap); break; } if (need_any_any_barrier) { codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } if (slow_path != nullptr) { DCHECK(!byte_swap); __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSet(HInvoke* invoke) { CreateVarHandleGetAndSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSet(HInvoke* invoke) { // `getAndSet` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { CreateVarHandleGetAndSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { // `getAndSetAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, /*need_any_store_barrier=*/ false, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { CreateVarHandleGetAndSetLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { // `getAndSetRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAdd(HInvoke* invoke) { CreateVarHandleGetAndAddLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAdd(HInvoke* invoke) { // `getAndAdd` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { CreateVarHandleGetAndAddLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { // `getAndAddAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, /*need_any_store_barrier=*/ false, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { CreateVarHandleGetAndAddLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { // `getAndAddRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { // `getAndBitwiseAnd` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseAnd, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { // `getAndBitwiseAndAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseAnd, /*need_any_store_barrier=*/ false, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { // `getAndBitwiseAndRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseAnd, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { // `getAndBitwiseOr` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseOr, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { // `getAndBitwiseOrAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseOr, /*need_any_store_barrier=*/ false, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { // `getAndBitwiseOrRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseOr, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { // `getAndBitwiseXor` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseXor, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ true); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { // `getAndBitwiseXorAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseXor, /*need_any_store_barrier=*/ false, /*need_any_any_barrier=*/ false); } void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { CreateVarHandleGetAndBitwiseOpLocations(invoke); } void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { // `getAndBitwiseXorRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kBitwiseXor, /*need_any_store_barrier=*/ true, /*need_any_any_barrier=*/ false); } void VarHandleSlowPathX86_64::EmitByteArrayViewCode(CodeGeneratorX86_64* codegen) { DCHECK(GetByteArrayViewCheckLabel()->IsLinked()); X86_64Assembler* assembler = codegen->GetAssembler(); HInvoke* invoke = GetInvoke(); LocationSummary* locations = invoke->GetLocations(); mirror::VarHandle::AccessModeTemplate access_mode_template = GetAccessModeTemplate(); DataType::Type value_type = GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); DCHECK_NE(value_type, DataType::Type::kReference); size_t size = DataType::Size(value_type); DCHECK_GT(size, 1u); CpuRegister varhandle = locations->InAt(0).AsRegister(); CpuRegister object = locations->InAt(1).AsRegister(); CpuRegister index = locations->InAt(2).AsRegister(); CpuRegister temp = locations->GetTemp(locations->GetTempCount() - 1).AsRegister(); MemberOffset class_offset = mirror::Object::ClassOffset(); MemberOffset array_length_offset = mirror::Array::LengthOffset(); MemberOffset data_offset = mirror::Array::DataOffset(Primitive::kPrimByte); MemberOffset native_byte_order_offset = mirror::ByteArrayViewVarHandle::NativeByteOrderOffset(); VarHandleTarget target = GetVarHandleTarget(invoke); __ Bind(GetByteArrayViewCheckLabel()); // The main path checked that the coordinateType0 is an array class that matches // the class of the actual coordinate argument but it does not match the value type. // Check if the `varhandle` references a ByteArrayViewVarHandle instance. codegen->LoadClassRootForIntrinsic(temp, ClassRoot::kJavaLangInvokeByteArrayViewVarHandle); assembler->MaybePoisonHeapReference(temp); __ cmpl(temp, Address(varhandle, class_offset.Int32Value())); __ j(kNotEqual, GetEntryLabel()); // Check for array index out of bounds. __ movl(temp, Address(object, array_length_offset.Int32Value())); // SUB sets flags in the same way as CMP. __ subl(temp, index); __ j(kBelowEqual, GetEntryLabel()); // The difference between index and array length must be enough for the `value_type` size. __ cmpl(temp, Immediate(size)); __ j(kBelow, GetEntryLabel()); // Construct the target. __ leal(CpuRegister(target.offset), Address(index, TIMES_1, data_offset.Int32Value())); // Alignment check. For unaligned access, go to the runtime. DCHECK(IsPowerOfTwo(size)); __ testl(CpuRegister(target.offset), Immediate(size - 1u)); __ j(kNotZero, GetEntryLabel()); // Byte order check. For native byte order return to the main path. if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kSet && IsZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) { // There is no reason to differentiate between native byte order and byte-swap // for setting a zero bit pattern. Just return to the main path. __ jmp(GetNativeByteOrderLabel()); return; } __ cmpl(Address(varhandle, native_byte_order_offset.Int32Value()), Immediate(0)); __ j(kNotEqual, GetNativeByteOrderLabel()); switch (access_mode_template) { case mirror::VarHandle::AccessModeTemplate::kGet: GenerateVarHandleGet(invoke, codegen, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kSet: GenerateVarHandleSet(invoke, codegen, is_volatile_, is_atomic_, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: GenerateVarHandleCompareAndSetOrExchange( invoke, codegen, /*is_cmpxchg=*/ false, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: GenerateVarHandleCompareAndSetOrExchange( invoke, codegen, /*is_cmpxchg=*/ true, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: GenerateVarHandleGetAndUpdate(invoke, codegen, get_and_update_op_, need_any_store_barrier_, need_any_any_barrier_, /*byte_swap=*/ true); break; } __ jmp(GetExitLabel()); } #define MARK_UNIMPLEMENTED(Name) UNIMPLEMENTED_INTRINSIC(X86_64, Name) UNIMPLEMENTED_INTRINSIC_LIST_X86_64(MARK_UNIMPLEMENTED); #undef MARK_UNIMPLEMENTED UNREACHABLE_INTRINSICS(X86_64) #undef __ } // namespace x86_64 } // namespace art