/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBPROFILE_PROFILE_PROFILE_COMPILATION_INFO_H_ #define ART_LIBPROFILE_PROFILE_PROFILE_COMPILATION_INFO_H_ #include #include #include #include #include #include "base/arena_containers.h" #include "base/arena_object.h" #include "base/array_ref.h" #include "base/atomic.h" #include "base/bit_memory_region.h" #include "base/hash_map.h" #include "base/hash_set.h" #include "base/malloc_arena_pool.h" #include "base/mem_map.h" #include "base/safe_map.h" #include "dex/dex_file.h" #include "dex/dex_file_types.h" #include "dex/method_reference.h" #include "dex/type_reference.h" namespace art { /** * Convenient class to pass around profile information (including inline caches) * without the need to hold GC-able objects. */ struct ProfileMethodInfo { struct ProfileInlineCache { ProfileInlineCache(uint32_t pc, bool missing_types, const std::vector& profile_classes, // Only used by profman for creating profiles from text bool megamorphic = false) : dex_pc(pc), is_missing_types(missing_types), classes(profile_classes), is_megamorphic(megamorphic) {} const uint32_t dex_pc; const bool is_missing_types; // TODO: Replace `TypeReference` with `dex::TypeIndex` and allow artificial // type indexes for types without a `dex::TypeId` in any dex file processed // by the profman. See `ProfileCompilationInfo::FindOrCreateTypeIndex()`. const std::vector classes; const bool is_megamorphic; }; explicit ProfileMethodInfo(MethodReference reference) : ref(reference) {} ProfileMethodInfo(MethodReference reference, const std::vector& caches) : ref(reference), inline_caches(caches) {} MethodReference ref; std::vector inline_caches; }; class FlattenProfileData; /** * Profile information in a format suitable to be queried by the compiler and * performing profile guided compilation. * It is a serialize-friendly format based on information collected by the * interpreter (ProfileInfo). * Currently it stores only the hot compiled methods. */ class ProfileCompilationInfo { public: static const uint8_t kProfileMagic[]; static const uint8_t kProfileVersion[]; static const uint8_t kProfileVersionForBootImage[]; static const char kDexMetadataProfileEntry[]; static constexpr size_t kProfileVersionSize = 4; static constexpr uint8_t kIndividualInlineCacheSize = 5; // Data structures for encoding the offline representation of inline caches. // This is exposed as public in order to make it available to dex2oat compilations // (see compiler/optimizing/inliner.cc). // The type used to manipulate the profile index of dex files. // It sets an upper limit to how many dex files a given profile can record. using ProfileIndexType = uint16_t; // Encodes a class reference in the profile. // The owning dex file is encoded as the index (dex_profile_index) it has in the // profile rather than as a full reference (location, checksum). // This avoids excessive string copying when managing the profile data. // The dex_profile_index is an index in the `DexFileData::profile_index` (internal use) // and a matching dex file can found with `FindDexFileForProfileIndex()`. // Note that the dex_profile_index is not necessary the multidex index. // We cannot rely on the actual multidex index because a single profile may store // data from multiple splits. This means that a profile may contain a classes2.dex from split-A // and one from split-B. struct ClassReference : public ValueObject { ClassReference(ProfileIndexType dex_profile_idx, const dex::TypeIndex type_idx) : dex_profile_index(dex_profile_idx), type_index(type_idx) {} bool operator==(const ClassReference& other) const { return dex_profile_index == other.dex_profile_index && type_index == other.type_index; } bool operator<(const ClassReference& other) const { return dex_profile_index == other.dex_profile_index ? type_index < other.type_index : dex_profile_index < other.dex_profile_index; } ProfileIndexType dex_profile_index; // the index of the owning dex in the profile info dex::TypeIndex type_index; // the type index of the class }; // Encodes the actual inline cache for a given dex pc (whether or not the receiver is // megamorphic and its possible types). // If the receiver is megamorphic or is missing types the set of classes will be empty. struct DexPcData : public ArenaObject { explicit DexPcData(ArenaAllocator* allocator) : DexPcData(allocator->Adapter(kArenaAllocProfile)) {} explicit DexPcData(const ArenaAllocatorAdapter& allocator) : is_missing_types(false), is_megamorphic(false), classes(std::less(), allocator) {} void AddClass(const dex::TypeIndex& type_idx); void SetIsMegamorphic() { if (is_missing_types) return; is_megamorphic = true; classes.clear(); } void SetIsMissingTypes() { is_megamorphic = false; is_missing_types = true; classes.clear(); } bool operator==(const DexPcData& other) const { return is_megamorphic == other.is_megamorphic && is_missing_types == other.is_missing_types && classes == other.classes; } // Not all runtime types can be encoded in the profile. For example if the receiver // type is in a dex file which is not tracked for profiling its type cannot be // encoded. When types are missing this field will be set to true. bool is_missing_types; bool is_megamorphic; ArenaSet classes; }; // The inline cache map: DexPc -> DexPcData. using InlineCacheMap = ArenaSafeMap; // Maps a method dex index to its inline cache. using MethodMap = ArenaSafeMap; // Profile method hotness information for a single method. Also includes a pointer to the inline // cache map. class MethodHotness { public: enum Flag { // Marker flag used to simplify iterations. kFlagFirst = 1 << 0, // The method is profile-hot (this is implementation specific, e.g. equivalent to JIT-warm) kFlagHot = 1 << 0, // Executed during the app startup as determined by the runtime. kFlagStartup = 1 << 1, // Executed after app startup as determined by the runtime. kFlagPostStartup = 1 << 2, // Marker flag used to simplify iterations. kFlagLastRegular = 1 << 2, // Executed by a 32bit process. kFlag32bit = 1 << 3, // Executed by a 64bit process. kFlag64bit = 1 << 4, // Executed on sensitive thread (e.g. UI). kFlagSensitiveThread = 1 << 5, // Executed during the app startup as determined by the framework (equivalent to am start). kFlagAmStartup = 1 << 6, // Executed after the app startup as determined by the framework (equivalent to am start). kFlagAmPostStartup = 1 << 7, // Executed during system boot. kFlagBoot = 1 << 8, // Executed after the system has booted. kFlagPostBoot = 1 << 9, // The startup bins captured the relative order of when a method become hot. There are 6 // total bins supported and each hot method will have at least one bit set. If the profile was // merged multiple times more than one bit may be set as a given method may become hot at // various times during subsequent executions. // The granularity of the bins is unspecified (i.e. the runtime is free to change the // values it uses - this may be 100ms, 200ms etc...). kFlagStartupBin = 1 << 10, kFlagStartupMaxBin = 1 << 15, // Marker flag used to simplify iterations. kFlagLastBoot = 1 << 15, }; bool IsHot() const { return (flags_ & kFlagHot) != 0; } bool IsStartup() const { return (flags_ & kFlagStartup) != 0; } bool IsPostStartup() const { return (flags_ & kFlagPostStartup) != 0; } void AddFlag(Flag flag) { flags_ |= flag; } uint32_t GetFlags() const { return flags_; } bool HasFlagSet(MethodHotness::Flag flag) { return (flags_ & flag ) != 0; } bool IsInProfile() const { return flags_ != 0; } const InlineCacheMap* GetInlineCacheMap() const { return inline_cache_map_; } private: const InlineCacheMap* inline_cache_map_ = nullptr; uint32_t flags_ = 0; void SetInlineCacheMap(const InlineCacheMap* info) { inline_cache_map_ = info; } friend class ProfileCompilationInfo; }; // Encapsulates metadata that can be associated with the methods and classes added to the profile. // The additional metadata is serialized in the profile and becomes part of the profile key // representation. It can be used to differentiate the samples that are added to the profile // based on the supported criteria (e.g. keep track of which app generated what sample when // constructing a boot profile.). class ProfileSampleAnnotation { public: explicit ProfileSampleAnnotation(const std::string& package_name) : origin_package_name_(package_name) {} const std::string& GetOriginPackageName() const { return origin_package_name_; } bool operator==(const ProfileSampleAnnotation& other) const { return origin_package_name_ == other.origin_package_name_; } bool operator<(const ProfileSampleAnnotation& other) const { return origin_package_name_ < other.origin_package_name_; } // A convenient empty annotation object that can be used to denote that no annotation should // be associated with the profile samples. static const ProfileSampleAnnotation kNone; private: // The name of the package that generated the samples. const std::string origin_package_name_; }; // Helper class for printing referenced dex file information to a stream. struct DexReferenceDumper; // Public methods to create, extend or query the profile. ProfileCompilationInfo(); explicit ProfileCompilationInfo(bool for_boot_image); explicit ProfileCompilationInfo(ArenaPool* arena_pool); ProfileCompilationInfo(ArenaPool* arena_pool, bool for_boot_image); ~ProfileCompilationInfo(); // Returns the maximum value for the profile index. static constexpr ProfileIndexType MaxProfileIndex() { return std::numeric_limits::max(); } // Find a tracked dex file. Returns `MaxProfileIndex()` on failure, whether due to no records // for the dex location or profile key, or checksum/num_type_ids/num_method_ids mismatch. ProfileIndexType FindDexFile( const DexFile& dex_file, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const { const DexFileData* data = FindDexDataUsingAnnotations(&dex_file, annotation); return (data != nullptr) ? data->profile_index : MaxProfileIndex(); } // Find or add a tracked dex file. Returns `MaxProfileIndex()` on failure, whether due to // checksum/num_type_ids/num_method_ids mismatch or reaching the maximum number of dex files. ProfileIndexType FindOrAddDexFile( const DexFile& dex_file, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) { DexFileData* data = GetOrAddDexFileData(&dex_file, annotation); return (data != nullptr) ? data->profile_index : MaxProfileIndex(); } // Add the given methods to the current profile object. // // Note: if an annotation is provided, the methods/classes will be associated with the group // (dex_file, sample_annotation). Each group keeps its unique set of methods/classes. bool AddMethods(const std::vector& methods, MethodHotness::Flag flags, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone); // Find a type index in the `dex_file` if there is a `TypeId` for it. Otherwise, // find or insert the descriptor in "extra descriptors" and return an artificial // type index beyond `dex_file.NumTypeIds()`. This fails if the artificial index // would be kDexNoIndex16 (0xffffu) or higher, returning an invalid type index. // The returned type index can be used, if valid, for `AddClass()` or (TODO) as // a type index for inline caches. dex::TypeIndex FindOrCreateTypeIndex(const DexFile& dex_file, TypeReference class_ref); dex::TypeIndex FindOrCreateTypeIndex(const DexFile& dex_file, const char* descriptor); // Add a class with the specified `type_index` to the profile. The `type_index` // can be either a normal index for a `TypeId` in the dex file, or an artificial // type index created by `FindOrCreateTypeIndex()`. void AddClass(ProfileIndexType profile_index, dex::TypeIndex type_index) { DCHECK_LT(profile_index, info_.size()); DexFileData* const data = info_[profile_index].get(); DCHECK(type_index.IsValid()); DCHECK(type_index.index_ <= data->num_type_ids || type_index.index_ - data->num_type_ids < extra_descriptors_.size()); data->class_set.insert(type_index); } // Add a class with the specified `type_index` to the profile. The `type_index` // can be either a normal index for a `TypeId` in the dex file, or an artificial // type index created by `FindOrCreateTypeIndex()`. // Returns `true` on success, `false` on failure. bool AddClass(const DexFile& dex_file, dex::TypeIndex type_index, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) { DCHECK(type_index.IsValid()); DCHECK(type_index.index_ <= dex_file.NumTypeIds() || type_index.index_ - dex_file.NumTypeIds() < extra_descriptors_.size()); DexFileData* const data = GetOrAddDexFileData(&dex_file, annotation); if (data == nullptr) { // Checksum/num_type_ids/num_method_ids mismatch or too many dex files. return false; } data->class_set.insert(type_index); return true; } // Add a class with the specified `descriptor` to the profile. // Returns `true` on success, `false` on failure. bool AddClass(const DexFile& dex_file, const char* descriptor, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone); bool AddClass(const DexFile& dex_file, const std::string& descriptor, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) { return AddClass(dex_file, descriptor.c_str(), annotation); } bool AddClass(const DexFile& dex_file, std::string_view descriptor, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) { return AddClass(dex_file, std::string(descriptor).c_str(), annotation); } // Add multiple type ids for classes in a single dex file. Iterator is for type_ids not // class_defs. // // Note: see AddMethods docs for the handling of annotations. template bool AddClassesForDex( const DexFile* dex_file, Iterator index_begin, Iterator index_end, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) { DexFileData* data = GetOrAddDexFileData(dex_file, annotation); if (data == nullptr) { return false; } data->class_set.insert(index_begin, index_end); return true; } void AddMethod(ProfileIndexType profile_index, uint32_t method_index, MethodHotness::Flag flags) { DCHECK_LT(profile_index, info_.size()); DexFileData* const data = info_[profile_index].get(); DCHECK_LT(method_index, data->num_method_ids); data->AddMethod(flags, method_index); } // Add a method to the profile using its online representation (containing runtime structures). // // Note: see AddMethods docs for the handling of annotations. bool AddMethod(const ProfileMethodInfo& pmi, MethodHotness::Flag flags, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone); // Bulk add sampled methods and/or hot methods for a single dex, fast since it only has one // GetOrAddDexFileData call. // // Note: see AddMethods docs for the handling of annotations. template bool AddMethodsForDex( MethodHotness::Flag flags, const DexFile* dex_file, Iterator index_begin, Iterator index_end, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) { DexFileData* data = GetOrAddDexFileData(dex_file, annotation); if (data == nullptr) { return false; } for (Iterator it = index_begin; it != index_end; ++it) { DCHECK_LT(*it, data->num_method_ids); if (!data->AddMethod(flags, *it)) { return false; } } return true; } // Load or Merge profile information from the given file descriptor. // If the current profile is non-empty the load will fail. // If merge_classes is set to false, classes will not be merged/loaded. // If filter_fn is present, it will be used to filter out profile data belonging // to dex file which do not comply with the filter // (i.e. for which filter_fn(dex_location, dex_checksum) is false). using ProfileLoadFilterFn = std::function; // Profile filter method which accepts all dex locations. // This is convenient to use when we need to accept all locations without repeating the same // lambda. static bool ProfileFilterFnAcceptAll(const std::string& dex_location, uint32_t checksum); bool Load( int fd, bool merge_classes = true, const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll); // Verify integrity of the profile file with the provided dex files. // If there exists a DexData object which maps to a dex_file, then it verifies that: // - The checksums of the DexData and dex_file are equals. // - No method id exceeds NumMethodIds corresponding to the dex_file. // - No class id exceeds NumTypeIds corresponding to the dex_file. // - For every inline_caches, class_ids does not exceed NumTypeIds corresponding to // the dex_file they are in. bool VerifyProfileData(const std::vector& dex_files); // Loads profile information from the given file. // Returns true on success, false otherwise. // If the current profile is non-empty the load will fail. // If clear_if_invalid is true: // - If the file is invalid, the method clears the file and returns true. // - If the file doesn't exist, the method returns true. bool Load(const std::string& filename, bool clear_if_invalid); // Merge the data from another ProfileCompilationInfo into the current object. Only merges // classes if merge_classes is true. This is used for creating the boot profile since // we don't want all of the classes to be image classes. bool MergeWith(const ProfileCompilationInfo& info, bool merge_classes = true); // Merge profile information from the given file descriptor. bool MergeWith(const std::string& filename); // Save the profile data to the given file descriptor. bool Save(int fd); // Save the current profile into the given file. Overwrites any existing data. bool Save(const std::string& filename, uint64_t* bytes_written); // A fallback implementation of `Save` that uses a flock. bool SaveFallback(const std::string& filename, uint64_t* bytes_written); // Return the number of dex files referenced in the profile. size_t GetNumberOfDexFiles() const { return info_.size(); } // Return the number of methods that were profiled. uint32_t GetNumberOfMethods() const; // Return the number of resolved classes that were profiled. uint32_t GetNumberOfResolvedClasses() const; // Returns whether the referenced method is a startup method. bool IsStartupMethod(ProfileIndexType profile_index, uint32_t method_index) const { return info_[profile_index]->IsStartupMethod(method_index); } // Returns whether the referenced method is a post-startup method. bool IsPostStartupMethod(ProfileIndexType profile_index, uint32_t method_index) const { return info_[profile_index]->IsPostStartupMethod(method_index); } // Returns whether the referenced method is hot. bool IsHotMethod(ProfileIndexType profile_index, uint32_t method_index) const { return info_[profile_index]->IsHotMethod(method_index); } // Returns whether the referenced method is in the profile (with any hotness flag). bool IsMethodInProfile(ProfileIndexType profile_index, uint32_t method_index) const { DCHECK_LT(profile_index, info_.size()); const DexFileData* const data = info_[profile_index].get(); return data->IsMethodInProfile(method_index); } // Returns the profile method info for a given method reference. // // Note that if the profile was built with annotations, the same dex file may be // represented multiple times in the profile (due to different annotation associated with it). // If so, and if no annotation is passed to this method, then only the first dex file is searched. // // Implementation details: It is suitable to pass kNone for regular profile guided compilation // because during compilation we generally don't care about annotations. The metadata is // useful for boot profiles which need the extra information. MethodHotness GetMethodHotness( const MethodReference& method_ref, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const; // Return true if the class's type is present in the profiling info. bool ContainsClass(ProfileIndexType profile_index, dex::TypeIndex type_index) const { DCHECK_LT(profile_index, info_.size()); const DexFileData* const data = info_[profile_index].get(); DCHECK(type_index.IsValid()); DCHECK(type_index.index_ <= data->num_type_ids || type_index.index_ - data->num_type_ids < extra_descriptors_.size()); return data->class_set.find(type_index) != data->class_set.end(); } // Return true if the class's type is present in the profiling info. // // Note: see GetMethodHotness docs for the handling of annotations. bool ContainsClass( const DexFile& dex_file, dex::TypeIndex type_idx, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const; // Return the dex file for the given `profile_index`, or null if none of the provided // dex files has a matching checksum and a location with the same base key. template const DexFile* FindDexFileForProfileIndex(ProfileIndexType profile_index, const Container& dex_files) const { static_assert(std::is_same_v || std::is_same_v>); DCHECK_LE(profile_index, info_.size()); const DexFileData* dex_file_data = info_[profile_index].get(); DCHECK(dex_file_data != nullptr); uint32_t dex_checksum = dex_file_data->checksum; std::string_view base_key = GetBaseKeyViewFromAugmentedKey(dex_file_data->profile_key); for (const auto& dex_file : dex_files) { if (dex_checksum == dex_file->GetLocationChecksum() && base_key == GetProfileDexFileBaseKeyView(dex_file->GetLocation())) { return std::addressof(*dex_file); } } return nullptr; } DexReferenceDumper DumpDexReference(ProfileIndexType profile_index) const; // Dump all the loaded profile info into a string and returns it. // If dex_files is not empty then the method indices will be resolved to their // names. // This is intended for testing and debugging. std::string DumpInfo(const std::vector& dex_files, bool print_full_dex_location = true) const; // Return the classes and methods for a given dex file through out args. The out args are the set // of class as well as the methods and their associated inline caches. Returns true if the dex // file is register and has a matching checksum, false otherwise. // // Note: see GetMethodHotness docs for the handling of annotations. bool GetClassesAndMethods( const DexFile& dex_file, /*out*/std::set* class_set, /*out*/std::set* hot_method_set, /*out*/std::set* startup_method_set, /*out*/std::set* post_startup_method_method_set, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const; const ArenaSet* GetClasses( const DexFile& dex_file, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone) const; // Returns true iff both profiles have the same version. bool SameVersion(const ProfileCompilationInfo& other) const; // Perform an equality test with the `other` profile information. bool Equals(const ProfileCompilationInfo& other); // Return the base profile key associated with the given dex location. The base profile key // is solely constructed based on the dex location (as opposed to the one produced by // GetProfileDexFileAugmentedKey which may include additional metadata like the origin // package name) static std::string GetProfileDexFileBaseKey(const std::string& dex_location); // Returns a base key without the annotation information. static std::string GetBaseKeyFromAugmentedKey(const std::string& profile_key); // Returns the annotations from an augmented key. // If the key is a base key it return ProfileSampleAnnotation::kNone. static ProfileSampleAnnotation GetAnnotationFromKey(const std::string& augmented_key); // Generate a test profile which will contain a percentage of the total maximum // number of methods and classes (method_ratio and class_ratio). static bool GenerateTestProfile(int fd, uint16_t number_of_dex_files, uint16_t method_ratio, uint16_t class_ratio, uint32_t random_seed); // Generate a test profile which will randomly contain classes and methods from // the provided list of dex files. static bool GenerateTestProfile(int fd, std::vector>& dex_files, uint16_t method_percentage, uint16_t class_percentage, uint32_t random_seed); ArenaAllocator* GetAllocator() { return &allocator_; } // Return all of the class descriptors in the profile for a set of dex files. // Note: see GetMethodHotness docs for the handling of annotations.. HashSet GetClassDescriptors( const std::vector& dex_files, const ProfileSampleAnnotation& annotation = ProfileSampleAnnotation::kNone); // Return true if the fd points to a profile file. bool IsProfileFile(int fd); // Update the profile keys corresponding to the given dex files based on their current paths. // This method allows fix-ups in the profile for dex files that might have been renamed. // The new profile key will be constructed based on the current dex location. // // The matching [profile key <-> dex_file] is done based on the dex checksum and the number of // methods ids. If neither is a match then the profile key is not updated. // // If the new profile key would collide with an existing key (for a different dex) // the method returns false. Otherwise it returns true. // // `matched` is set to true if any profile has matched any input dex file. bool UpdateProfileKeys(const std::vector>& dex_files, /*out*/ bool* matched); // Checks if the profile is empty. bool IsEmpty() const; // Clears all the data from the profile. void ClearData(); // Clears all the data from the profile and adjust the object version. void ClearDataAndAdjustVersion(bool for_boot_image); // Prepare the profile to store aggregation counters. // This will change the profile version and allocate extra storage for the counters. // It allocates 2 bytes for every possible method and class, so do not use in performance // critical code which needs to be memory efficient. void PrepareForAggregationCounters(); // Returns true if the profile is configured to store aggregation counters. bool IsForBootImage() const; // Get type descriptor for a valid type index, whether a normal type index // referencing a `dex::TypeId` in the dex file, or an artificial type index // referencing an "extra descriptor". const char* GetTypeDescriptor(const DexFile* dex_file, dex::TypeIndex type_index) const { DCHECK(type_index.IsValid()); uint32_t num_type_ids = dex_file->NumTypeIds(); if (type_index.index_ < num_type_ids) { return dex_file->StringByTypeIdx(type_index); } else { return extra_descriptors_[type_index.index_ - num_type_ids].c_str(); } } // Return the version of this profile. const uint8_t* GetVersion() const; // Extracts the data that the profile has on the given dex files: // - for each method and class, a list of the corresponding annotations and flags // - the maximum number of aggregations for classes and classes across dex files with different // annotations (essentially this sums up how many different packages used the corresponding // method). This information is reconstructible from the other two pieces of info, but it's // convenient to have it precomputed. std::unique_ptr ExtractProfileData( const std::vector>& dex_files) const; private: // Helper classes. class FileHeader; class FileSectionInfo; enum class FileSectionType : uint32_t; enum class ProfileLoadStatus : uint32_t; class ProfileSource; class SafeBuffer; // Extra descriptors are used to reference classes with `TypeIndex` between the dex // file's `NumTypeIds()` and the `DexFile::kDexNoIndex16`. The range of usable // extra descriptor indexes is therefore also limited by `DexFile::kDexNoIndex16`. using ExtraDescriptorIndex = uint16_t; static constexpr ExtraDescriptorIndex kMaxExtraDescriptors = DexFile::kDexNoIndex16; class ExtraDescriptorIndexEmpty { public: void MakeEmpty(ExtraDescriptorIndex& index) const { index = kMaxExtraDescriptors; } bool IsEmpty(const ExtraDescriptorIndex& index) const { return index == kMaxExtraDescriptors; } }; class ExtraDescriptorHash { public: explicit ExtraDescriptorHash(const dchecked_vector* extra_descriptors) : extra_descriptors_(extra_descriptors) {} size_t operator()(const ExtraDescriptorIndex& index) const { std::string_view str = (*extra_descriptors_)[index]; return (*this)(str); } size_t operator()(std::string_view str) const { return DataHash()(str); } private: const dchecked_vector* extra_descriptors_; }; class ExtraDescriptorEquals { public: explicit ExtraDescriptorEquals(const dchecked_vector* extra_descriptors) : extra_descriptors_(extra_descriptors) {} size_t operator()(const ExtraDescriptorIndex& lhs, const ExtraDescriptorIndex& rhs) const { DCHECK_EQ(lhs == rhs, (*this)(lhs, (*extra_descriptors_)[rhs])); return lhs == rhs; } size_t operator()(const ExtraDescriptorIndex& lhs, std::string_view rhs_str) const { std::string_view lhs_str = (*extra_descriptors_)[lhs]; return lhs_str == rhs_str; } private: const dchecked_vector* extra_descriptors_; }; using ExtraDescriptorHashSet = HashSet; // Internal representation of the profile information belonging to a dex file. // Note that we could do without the profile_index (the index of the dex file // in the profile) field in this struct because we can infer it from // `profile_key_map_` and `info_`. However, it makes the profiles logic much // simpler if we have the profile index here as well. struct DexFileData : public DeletableArenaObject { DexFileData(ArenaAllocator* allocator, const std::string& key, uint32_t location_checksum, uint16_t index, uint32_t num_types, uint32_t num_methods, bool for_boot_image) : allocator_(allocator), profile_key(key), profile_index(index), checksum(location_checksum), method_map(std::less(), allocator->Adapter(kArenaAllocProfile)), class_set(std::less(), allocator->Adapter(kArenaAllocProfile)), num_type_ids(num_types), num_method_ids(num_methods), bitmap_storage(allocator->Adapter(kArenaAllocProfile)), is_for_boot_image(for_boot_image) { bitmap_storage.resize(ComputeBitmapStorage(is_for_boot_image, num_method_ids)); if (!bitmap_storage.empty()) { method_bitmap = BitMemoryRegion(MemoryRegion( &bitmap_storage[0], bitmap_storage.size()), 0, ComputeBitmapBits(is_for_boot_image, num_method_ids)); } } static size_t ComputeBitmapBits(bool is_for_boot_image, uint32_t num_method_ids) { size_t flag_bitmap_index = FlagBitmapIndex(is_for_boot_image ? MethodHotness::kFlagLastBoot : MethodHotness::kFlagLastRegular); return num_method_ids * (flag_bitmap_index + 1); } static size_t ComputeBitmapStorage(bool is_for_boot_image, uint32_t num_method_ids) { return RoundUp(ComputeBitmapBits(is_for_boot_image, num_method_ids), kBitsPerByte) / kBitsPerByte; } bool operator==(const DexFileData& other) const { return checksum == other.checksum && num_method_ids == other.num_method_ids && method_map == other.method_map && class_set == other.class_set && BitMemoryRegion::Equals(method_bitmap, other.method_bitmap); } // Mark a method as executed at least once. bool AddMethod(MethodHotness::Flag flags, size_t index); void MergeBitmap(const DexFileData& other) { DCHECK_EQ(bitmap_storage.size(), other.bitmap_storage.size()); for (size_t i = 0; i < bitmap_storage.size(); ++i) { bitmap_storage[i] |= other.bitmap_storage[i]; } } void SetMethodHotness(size_t index, MethodHotness::Flag flags); MethodHotness GetHotnessInfo(uint32_t dex_method_index) const; bool IsStartupMethod(uint32_t method_index) const { DCHECK_LT(method_index, num_method_ids); return method_bitmap.LoadBit( MethodFlagBitmapIndex(MethodHotness::Flag::kFlagStartup, method_index)); } bool IsPostStartupMethod(uint32_t method_index) const { DCHECK_LT(method_index, num_method_ids); return method_bitmap.LoadBit( MethodFlagBitmapIndex(MethodHotness::Flag::kFlagPostStartup, method_index)); } bool IsHotMethod(uint32_t method_index) const { DCHECK_LT(method_index, num_method_ids); return method_map.find(method_index) != method_map.end(); } bool IsMethodInProfile(uint32_t method_index) const { DCHECK_LT(method_index, num_method_ids); bool has_flag = false; ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) { if (method_bitmap.LoadBit(MethodFlagBitmapIndex( static_cast(flag), method_index))) { has_flag = true; return false; } return true; }); return has_flag || IsHotMethod(method_index); } bool ContainsClass(dex::TypeIndex type_index) const; uint32_t ClassesDataSize() const; void WriteClasses(SafeBuffer& buffer) const; ProfileLoadStatus ReadClasses( SafeBuffer& buffer, const dchecked_vector& extra_descriptors_remap, std::string* error); static ProfileLoadStatus SkipClasses(SafeBuffer& buffer, std::string* error); uint32_t MethodsDataSize(/*out*/ uint16_t* method_flags = nullptr, /*out*/ size_t* saved_bitmap_bit_size = nullptr) const; void WriteMethods(SafeBuffer& buffer) const; ProfileLoadStatus ReadMethods( SafeBuffer& buffer, const dchecked_vector& extra_descriptors_remap, std::string* error); static ProfileLoadStatus SkipMethods(SafeBuffer& buffer, std::string* error); // The allocator used to allocate new inline cache maps. ArenaAllocator* const allocator_; // The profile key this data belongs to. std::string profile_key; // The profile index of this dex file (matches ClassReference#dex_profile_index). ProfileIndexType profile_index; // The dex checksum. uint32_t checksum; // The methods' profile information. MethodMap method_map; // The classes which have been profiled. Note that these don't necessarily include // all the classes that can be found in the inline caches reference. ArenaSet class_set; // Find the inline caches of the the given method index. Add an empty entry if // no previous data is found. InlineCacheMap* FindOrAddHotMethod(uint16_t method_index); // Num type ids. uint32_t num_type_ids; // Num method ids. uint32_t num_method_ids; ArenaVector bitmap_storage; BitMemoryRegion method_bitmap; bool is_for_boot_image; private: template void ForMethodBitmapHotnessFlags(Fn fn) const { uint32_t lastFlag = is_for_boot_image ? MethodHotness::kFlagLastBoot : MethodHotness::kFlagLastRegular; for (uint32_t flag = MethodHotness::kFlagFirst; flag <= lastFlag; flag = flag << 1) { if (flag == MethodHotness::kFlagHot) { // There's no bit for hotness in the bitmap. // We store the hotness by recording the method in the method list. continue; } bool cont = fn(enum_cast(flag)); if (!cont) { break; } } } size_t MethodFlagBitmapIndex(MethodHotness::Flag flag, size_t method_index) const { DCHECK_LT(method_index, num_method_ids); // The format is [startup bitmap][post startup bitmap][AmStartup][...] // This compresses better than ([startup bit][post startup bit])* return method_index + FlagBitmapIndex(flag) * num_method_ids; } static size_t FlagBitmapIndex(MethodHotness::Flag flag) { DCHECK(flag != MethodHotness::kFlagHot); DCHECK(IsPowerOfTwo(static_cast(flag))); // We arrange the method flags in order, starting with the startup flag. // The kFlagHot is not encoded in the bitmap and thus not expected as an // argument here. Since all the other flags start at 1 we have to subtract // one from the power of 2. return WhichPowerOf2(static_cast(flag)) - 1; } static void WriteClassSet(SafeBuffer& buffer, const ArenaSet& class_set); uint16_t GetUsedBitmapFlags() const; }; // Return the profile data for the given profile key or null if the dex location // already exists but has a different checksum DexFileData* GetOrAddDexFileData(const std::string& profile_key, uint32_t checksum, uint32_t num_type_ids, uint32_t num_method_ids); DexFileData* GetOrAddDexFileData(const DexFile* dex_file, const ProfileSampleAnnotation& annotation) { return GetOrAddDexFileData(GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation), dex_file->GetLocationChecksum(), dex_file->NumTypeIds(), dex_file->NumMethodIds()); } // Return the dex data associated with the given profile key or null if the profile // doesn't contain the key. const DexFileData* FindDexData(const std::string& profile_key, uint32_t checksum, bool verify_checksum = true) const; // Same as FindDexData but performs the searching using the given annotation: // - If the annotation is kNone then the search ignores it and only looks at the base keys. // In this case only the first matching dex is searched. // - If the annotation is not kNone, the augmented key is constructed and used to invoke // the regular FindDexData. const DexFileData* FindDexDataUsingAnnotations( const DexFile* dex_file, const ProfileSampleAnnotation& annotation) const; // Same as FindDexDataUsingAnnotations but extracts the data for all annotations. void FindAllDexData( const DexFile* dex_file, /*out*/ std::vector* result) const; // Add a new extra descriptor. Returns kMaxExtraDescriptors on failure. ExtraDescriptorIndex AddExtraDescriptor(std::string_view extra_descriptor); // Parsing functionality. ProfileLoadStatus OpenSource(int32_t fd, /*out*/ std::unique_ptr* source, /*out*/ std::string* error); ProfileLoadStatus ReadSectionData(ProfileSource& source, const FileSectionInfo& section_info, /*out*/ SafeBuffer* buffer, /*out*/ std::string* error); ProfileLoadStatus ReadDexFilesSection( ProfileSource& source, const FileSectionInfo& section_info, const ProfileLoadFilterFn& filter_fn, /*out*/ dchecked_vector* dex_profile_index_remap, /*out*/ std::string* error); ProfileLoadStatus ReadExtraDescriptorsSection( ProfileSource& source, const FileSectionInfo& section_info, /*out*/ dchecked_vector* extra_descriptors_remap, /*out*/ std::string* error); ProfileLoadStatus ReadClassesSection( ProfileSource& source, const FileSectionInfo& section_info, const dchecked_vector& dex_profile_index_remap, const dchecked_vector& extra_descriptors_remap, /*out*/ std::string* error); ProfileLoadStatus ReadMethodsSection( ProfileSource& source, const FileSectionInfo& section_info, const dchecked_vector& dex_profile_index_remap, const dchecked_vector& extra_descriptors_remap, /*out*/ std::string* error); // Entry point for profile loading functionality. ProfileLoadStatus LoadInternal( int32_t fd, std::string* error, bool merge_classes = true, const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll); // Find the data for the dex_pc in the inline cache. Adds an empty entry // if no previous data exists. static DexPcData* FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc); // Initializes the profile version to the desired one. void InitProfileVersionInternal(const uint8_t version[]); // Returns the threshold size (in bytes) which will trigger save/load warnings. size_t GetSizeWarningThresholdBytes() const; // Returns the threshold size (in bytes) which will cause save/load failures. size_t GetSizeErrorThresholdBytes() const; // Implementation of `GetProfileDexFileBaseKey()` but returning a subview // referencing the same underlying data to avoid excessive heap allocations. static std::string_view GetProfileDexFileBaseKeyView(std::string_view dex_location); // Implementation of `GetBaseKeyFromAugmentedKey()` but returning a subview // referencing the same underlying data to avoid excessive heap allocations. static std::string_view GetBaseKeyViewFromAugmentedKey(std::string_view dex_location); // Returns the augmented profile key associated with the given dex location. // The return key will contain a serialized form of the information from the provided // annotation. If the annotation is ProfileSampleAnnotation::kNone then no extra info is // added to the key and this method is equivalent to GetProfileDexFileBaseKey. static std::string GetProfileDexFileAugmentedKey(const std::string& dex_location, const ProfileSampleAnnotation& annotation); // Migrates the annotation from an augmented key to a base key. static std::string MigrateAnnotationInfo(const std::string& base_key, const std::string& augmented_key); friend class ProfileCompilationInfoTest; friend class CompilerDriverProfileTest; friend class ProfileAssistantTest; friend class Dex2oatLayoutTest; MallocArenaPool default_arena_pool_; ArenaAllocator allocator_; // Vector containing the actual profile info. // The vector index is the profile index of the dex data and // matched DexFileData::profile_index. ArenaVector> info_; // Cache mapping profile keys to profile index. // This is used to speed up searches since it avoids iterating // over the info_ vector when searching by profile key. // The backing storage for the `string_view` is the associated `DexFileData`. ArenaSafeMap profile_key_map_; // Additional descriptors for referencing types not present in a dex files's `TypeId`s. dchecked_vector extra_descriptors_; ExtraDescriptorHashSet extra_descriptors_indexes_; // The version of the profile. uint8_t version_[kProfileVersionSize]; }; /** * Flatten profile data that list all methods and type references together * with their metadata (such as flags or annotation list). */ class FlattenProfileData { public: class ItemMetadata { public: ItemMetadata(); ItemMetadata(const ItemMetadata& other); uint16_t GetFlags() const { return flags_; } const std::list& GetAnnotations() const { return annotations_; } void AddFlag(ProfileCompilationInfo::MethodHotness::Flag flag) { flags_ |= flag; } bool HasFlagSet(ProfileCompilationInfo::MethodHotness::Flag flag) const { return (flags_ & flag) != 0; } private: // will be 0 for classes and MethodHotness::Flags for methods. uint16_t flags_; // This is a list that may contain duplicates after a merge operation. // It represents that a method was used multiple times across different devices. std::list annotations_; friend class ProfileCompilationInfo; friend class FlattenProfileData; }; FlattenProfileData(); const SafeMap& GetMethodData() const { return method_metadata_; } const SafeMap& GetClassData() const { return class_metadata_; } uint32_t GetMaxAggregationForMethods() const { return max_aggregation_for_methods_; } uint32_t GetMaxAggregationForClasses() const { return max_aggregation_for_classes_; } void MergeData(const FlattenProfileData& other); private: // Method data. SafeMap method_metadata_; // Class data. SafeMap class_metadata_; // Maximum aggregation counter for all methods. // This is essentially a cache equal to the max size of any method's annotation set. // It avoids the traversal of all the methods which can be quite expensive. uint32_t max_aggregation_for_methods_; // Maximum aggregation counter for all classes. // Simillar to max_aggregation_for_methods_. uint32_t max_aggregation_for_classes_; friend class ProfileCompilationInfo; }; struct ProfileCompilationInfo::DexReferenceDumper { const std::string& GetProfileKey() { return dex_file_data->profile_key; } uint32_t GetDexChecksum() const { return dex_file_data->checksum; } uint32_t GetNumTypeIds() const { return dex_file_data->num_type_ids; } uint32_t GetNumMethodIds() const { return dex_file_data->num_method_ids; } const DexFileData* dex_file_data; }; inline ProfileCompilationInfo::DexReferenceDumper ProfileCompilationInfo::DumpDexReference( ProfileIndexType profile_index) const { return DexReferenceDumper{info_[profile_index].get()}; } std::ostream& operator<<(std::ostream& stream, ProfileCompilationInfo::DexReferenceDumper dumper); } // namespace art #endif // ART_LIBPROFILE_PROFILE_PROFILE_COMPILATION_INFO_H_