/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "android-base/logging.h" #include "android-base/parseint.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "arch/instruction_set_features.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/bit_utils_iterator.h" #include "base/indenter.h" #include "base/os.h" #include "base/safe_map.h" #include "base/stats-inl.h" #include "base/stl_util.h" #include "base/unix_file/fd_file.h" #include "class_linker-inl.h" #include "class_linker.h" #include "class_root-inl.h" #include "debug/debug_info.h" #include "debug/elf_debug_writer.h" #include "debug/method_debug_info.h" #include "dex/art_dex_file_loader.h" #include "dex/class_accessor-inl.h" #include "dex/code_item_accessors-inl.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_instruction-inl.h" #include "dex/string_reference.h" #include "dex/type_lookup_table.h" #include "dexlayout.h" #include "disassembler.h" #include "elf/elf_builder.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "image-inl.h" #include "imtable-inl.h" #include "index_bss_mapping.h" #include "interpreter/unstarted_runtime.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat.h" #include "oat_file-inl.h" #include "oat_file_manager.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "stack_map.h" #include "stream/buffered_output_stream.h" #include "stream/file_output_stream.h" #include "subtype_check.h" #include "thread_list.h" #include "vdex_file.h" #include "verifier/method_verifier.h" #include "verifier/verifier_deps.h" #include "well_known_classes.h" #include #include "cmdline.h" namespace art { using android::base::StringPrintf; const char* image_methods_descriptions_[] = { "kResolutionMethod", "kImtConflictMethod", "kImtUnimplementedMethod", "kSaveAllCalleeSavesMethod", "kSaveRefsOnlyMethod", "kSaveRefsAndArgsMethod", "kSaveEverythingMethod", "kSaveEverythingMethodForClinit", "kSaveEverythingMethodForSuspendCheck", }; const char* image_roots_descriptions_[] = { "kDexCaches", "kClassRoots", "kSpecialRoots", }; // Map is so that we don't allocate multiple dex files for the same OatDexFile. static std::map> opened_dex_files; const DexFile* OpenDexFile(const OatDexFile* oat_dex_file, std::string* error_msg) { DCHECK(oat_dex_file != nullptr); auto it = opened_dex_files.find(oat_dex_file); if (it != opened_dex_files.end()) { return it->second.get(); } const DexFile* ret = oat_dex_file->OpenDexFile(error_msg).release(); opened_dex_files.emplace(oat_dex_file, std::unique_ptr(ret)); return ret; } template class OatSymbolizer final { public: OatSymbolizer(const OatFile* oat_file, const std::string& output_name, bool no_bits) : oat_file_(oat_file), builder_(nullptr), output_name_(output_name.empty() ? "symbolized.oat" : output_name), no_bits_(no_bits) { } bool Symbolize() { const InstructionSet isa = oat_file_->GetOatHeader().GetInstructionSet(); std::unique_ptr features = InstructionSetFeatures::FromBitmap( isa, oat_file_->GetOatHeader().GetInstructionSetFeaturesBitmap()); std::unique_ptr elf_file(OS::CreateEmptyFile(output_name_.c_str())); if (elf_file == nullptr) { return false; } std::unique_ptr output_stream = std::make_unique( std::make_unique(elf_file.get())); builder_.reset(new ElfBuilder(isa, output_stream.get())); builder_->Start(); auto* rodata = builder_->GetRoData(); auto* text = builder_->GetText(); const uint8_t* rodata_begin = oat_file_->Begin(); const size_t rodata_size = oat_file_->GetOatHeader().GetExecutableOffset(); if (!no_bits_) { rodata->Start(); rodata->WriteFully(rodata_begin, rodata_size); rodata->End(); } const uint8_t* text_begin = oat_file_->Begin() + rodata_size; const size_t text_size = oat_file_->End() - text_begin; if (!no_bits_) { text->Start(); text->WriteFully(text_begin, text_size); text->End(); } builder_->PrepareDynamicSection(elf_file->GetPath(), rodata_size, text_size, oat_file_->DataBimgRelRoSize(), oat_file_->BssSize(), oat_file_->BssMethodsOffset(), oat_file_->BssRootsOffset(), oat_file_->VdexSize()); builder_->WriteDynamicSection(); const OatHeader& oat_header = oat_file_->GetOatHeader(); #define DO_TRAMPOLINE(fn_name) \ if (oat_header.Get ## fn_name ## Offset() != 0) { \ debug::MethodDebugInfo info = {}; \ info.custom_name = #fn_name; \ info.isa = oat_header.GetInstructionSet(); \ info.is_code_address_text_relative = true; \ size_t code_offset = oat_header.Get ## fn_name ## Offset(); \ code_offset -= GetInstructionSetEntryPointAdjustment(oat_header.GetInstructionSet()); \ info.code_address = code_offset - oat_header.GetExecutableOffset(); \ info.code_size = 0; /* The symbol lasts until the next symbol. */ \ method_debug_infos_.push_back(std::move(info)); \ } DO_TRAMPOLINE(JniDlsymLookupTrampoline); DO_TRAMPOLINE(JniDlsymLookupCriticalTrampoline); DO_TRAMPOLINE(QuickGenericJniTrampoline); DO_TRAMPOLINE(QuickImtConflictTrampoline); DO_TRAMPOLINE(QuickResolutionTrampoline); DO_TRAMPOLINE(QuickToInterpreterBridge); DO_TRAMPOLINE(NterpTrampoline); #undef DO_TRAMPOLINE Walk(); // TODO: Try to symbolize link-time thunks? // This would require disassembling all methods to find branches outside the method code. // TODO: Add symbols for dex bytecode in the .dex section. debug::DebugInfo debug_info{}; debug_info.compiled_methods = ArrayRef(method_debug_infos_); debug::WriteDebugInfo(builder_.get(), debug_info); builder_->End(); bool ret_value = builder_->Good(); builder_.reset(); output_stream.reset(); if (elf_file->FlushCloseOrErase() != 0) { return false; } elf_file.reset(); return ret_value; } void Walk() { std::vector oat_dex_files = oat_file_->GetOatDexFiles(); for (size_t i = 0; i < oat_dex_files.size(); i++) { const OatDexFile* oat_dex_file = oat_dex_files[i]; CHECK(oat_dex_file != nullptr); WalkOatDexFile(oat_dex_file); } } void WalkOatDexFile(const OatDexFile* oat_dex_file) { std::string error_msg; const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg); if (dex_file == nullptr) { return; } for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index); OatClassType type = oat_class.GetType(); switch (type) { case OatClassType::kAllCompiled: case OatClassType::kSomeCompiled: WalkOatClass(oat_class, *dex_file, class_def_index); break; case OatClassType::kNoneCompiled: case OatClassType::kOatClassMax: // Ignore. break; } } } void WalkOatClass(const OatFile::OatClass& oat_class, const DexFile& dex_file, uint32_t class_def_index) { ClassAccessor accessor(dex_file, class_def_index); // Note: even if this is an interface or a native class, we still have to walk it, as there // might be a static initializer. uint32_t class_method_idx = 0; for (const ClassAccessor::Method& method : accessor.GetMethods()) { WalkOatMethod(oat_class.GetOatMethod(class_method_idx++), dex_file, class_def_index, method.GetIndex(), method.GetCodeItem(), method.GetAccessFlags()); } } void WalkOatMethod(const OatFile::OatMethod& oat_method, const DexFile& dex_file, uint32_t class_def_index, uint32_t dex_method_index, const dex::CodeItem* code_item, uint32_t method_access_flags) { if ((method_access_flags & kAccAbstract) != 0) { // Abstract method, no code. return; } const OatHeader& oat_header = oat_file_->GetOatHeader(); const OatQuickMethodHeader* method_header = oat_method.GetOatQuickMethodHeader(); if (method_header == nullptr || method_header->GetCodeSize() == 0) { // No code. return; } uint32_t entry_point = oat_method.GetCodeOffset() - oat_header.GetExecutableOffset(); // Clear Thumb2 bit. const void* code_address = EntryPointToCodePointer(reinterpret_cast(entry_point)); debug::MethodDebugInfo info = {}; DCHECK(info.custom_name.empty()); info.dex_file = &dex_file; info.class_def_index = class_def_index; info.dex_method_index = dex_method_index; info.access_flags = method_access_flags; info.code_item = code_item; info.isa = oat_header.GetInstructionSet(); info.deduped = !seen_offsets_.insert(oat_method.GetCodeOffset()).second; info.is_native_debuggable = oat_header.IsNativeDebuggable(); info.is_optimized = method_header->IsOptimized(); info.is_code_address_text_relative = true; info.code_address = reinterpret_cast(code_address); info.code_size = method_header->GetCodeSize(); info.frame_size_in_bytes = method_header->GetFrameSizeInBytes(); info.code_info = info.is_optimized ? method_header->GetOptimizedCodeInfoPtr() : nullptr; info.cfi = ArrayRef(); method_debug_infos_.push_back(info); } private: const OatFile* oat_file_; std::unique_ptr> builder_; std::vector method_debug_infos_; std::unordered_set seen_offsets_; const std::string output_name_; bool no_bits_; }; class OatDumperOptions { public: OatDumperOptions(bool dump_vmap, bool dump_code_info_stack_maps, bool disassemble_code, bool absolute_addresses, const char* class_filter, const char* method_filter, bool list_classes, bool list_methods, bool dump_header_only, const char* export_dex_location, const char* app_image, const char* app_oat, uint32_t addr2instr) : dump_vmap_(dump_vmap), dump_code_info_stack_maps_(dump_code_info_stack_maps), disassemble_code_(disassemble_code), absolute_addresses_(absolute_addresses), class_filter_(class_filter), method_filter_(method_filter), list_classes_(list_classes), list_methods_(list_methods), dump_header_only_(dump_header_only), export_dex_location_(export_dex_location), app_image_(app_image), app_oat_(app_oat), addr2instr_(addr2instr), class_loader_(nullptr) {} const bool dump_vmap_; const bool dump_code_info_stack_maps_; const bool disassemble_code_; const bool absolute_addresses_; const char* const class_filter_; const char* const method_filter_; const bool list_classes_; const bool list_methods_; const bool dump_header_only_; const char* const export_dex_location_; const char* const app_image_; const char* const app_oat_; uint32_t addr2instr_; Handle* class_loader_; }; class OatDumper { public: OatDumper(const OatFile& oat_file, const OatDumperOptions& options) : oat_file_(oat_file), oat_dex_files_(oat_file.GetOatDexFiles()), options_(options), resolved_addr2instr_(0), instruction_set_(oat_file_.GetOatHeader().GetInstructionSet()), disassembler_(Disassembler::Create(instruction_set_, new DisassemblerOptions( options_.absolute_addresses_, oat_file.Begin(), oat_file.End(), /* can_read_literals_= */ true, Is64BitInstructionSet(instruction_set_) ? &Thread::DumpThreadOffset : &Thread::DumpThreadOffset))) { CHECK(options_.class_loader_ != nullptr); CHECK(options_.class_filter_ != nullptr); CHECK(options_.method_filter_ != nullptr); AddAllOffsets(); } ~OatDumper() { delete disassembler_; } InstructionSet GetInstructionSet() { return instruction_set_; } using DexFileUniqV = std::vector>; bool Dump(std::ostream& os) { bool success = true; const OatHeader& oat_header = oat_file_.GetOatHeader(); os << "MAGIC:\n"; os << oat_header.GetMagic() << "\n\n"; os << "LOCATION:\n"; os << oat_file_.GetLocation() << "\n\n"; os << "CHECKSUM:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetChecksum()); os << "INSTRUCTION SET:\n"; os << oat_header.GetInstructionSet() << "\n\n"; { std::unique_ptr features( InstructionSetFeatures::FromBitmap(oat_header.GetInstructionSet(), oat_header.GetInstructionSetFeaturesBitmap())); os << "INSTRUCTION SET FEATURES:\n"; os << features->GetFeatureString() << "\n\n"; } os << "DEX FILE COUNT:\n"; os << oat_header.GetDexFileCount() << "\n\n"; #define DUMP_OAT_HEADER_OFFSET(label, offset) \ os << label " OFFSET:\n"; \ os << StringPrintf("0x%08x", oat_header.offset()); \ if (oat_header.offset() != 0 && options_.absolute_addresses_) { \ os << StringPrintf(" (%p)", oat_file_.Begin() + oat_header.offset()); \ } \ os << StringPrintf("\n\n"); DUMP_OAT_HEADER_OFFSET("EXECUTABLE", GetExecutableOffset); DUMP_OAT_HEADER_OFFSET("JNI DLSYM LOOKUP TRAMPOLINE", GetJniDlsymLookupTrampolineOffset); DUMP_OAT_HEADER_OFFSET("JNI DLSYM LOOKUP CRITICAL TRAMPOLINE", GetJniDlsymLookupCriticalTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK GENERIC JNI TRAMPOLINE", GetQuickGenericJniTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK IMT CONFLICT TRAMPOLINE", GetQuickImtConflictTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK RESOLUTION TRAMPOLINE", GetQuickResolutionTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK TO INTERPRETER BRIDGE", GetQuickToInterpreterBridgeOffset); DUMP_OAT_HEADER_OFFSET("NTERP_TRAMPOLINE", GetNterpTrampolineOffset); #undef DUMP_OAT_HEADER_OFFSET // Print the key-value store. { os << "KEY VALUE STORE:\n"; size_t index = 0; const char* key; const char* value; while (oat_header.GetStoreKeyValuePairByIndex(index, &key, &value)) { os << key << " = " << value << "\n"; index++; } os << "\n"; } if (options_.absolute_addresses_) { os << "BEGIN:\n"; os << reinterpret_cast(oat_file_.Begin()) << "\n\n"; os << "END:\n"; os << reinterpret_cast(oat_file_.End()) << "\n\n"; } os << "SIZE:\n"; os << oat_file_.Size() << "\n\n"; os << std::flush; // If set, adjust relative address to be searched if (options_.addr2instr_ != 0) { resolved_addr2instr_ = options_.addr2instr_ + oat_header.GetExecutableOffset(); os << "SEARCH ADDRESS (executable offset + input):\n"; os << StringPrintf("0x%08x\n\n", resolved_addr2instr_); } // Dump .data.bimg.rel.ro entries. DumpDataBimgRelRoEntries(os); // Dump .bss summary, individual entries are dumped per dex file. os << ".bss: "; if (oat_file_.GetBssMethods().empty() && oat_file_.GetBssGcRoots().empty()) { os << "empty.\n\n"; } else { os << oat_file_.GetBssMethods().size() << " methods, "; os << oat_file_.GetBssGcRoots().size() << " GC roots.\n\n"; } // Dumping the dex file overview is compact enough to do even if header only. for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); std::string error_msg; const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg); if (dex_file == nullptr) { os << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; continue; } const DexLayoutSections* const layout_sections = oat_dex_file->GetDexLayoutSections(); if (layout_sections != nullptr) { os << "Layout data\n"; os << *layout_sections; os << "\n"; } if (!options_.dump_header_only_) { DumpBssMappings(os, dex_file, oat_dex_file->GetMethodBssMapping(), oat_dex_file->GetTypeBssMapping(), oat_dex_file->GetPublicTypeBssMapping(), oat_dex_file->GetPackageTypeBssMapping(), oat_dex_file->GetStringBssMapping()); } } if (!options_.dump_header_only_) { Runtime* const runtime = Runtime::Current(); ClassLinker* const linker = runtime != nullptr ? runtime->GetClassLinker() : nullptr; if (linker != nullptr) { ArrayRef bcp_dex_files(linker->GetBootClassPath()); // The guarantee that we have is that we can safely take a look the BCP DexFiles in // [0..number_of_compiled_bcp_dexfiles) since the runtime may add more DexFiles after that. // As a note, in the case of not having mappings or in the case of multi image we // purposively leave `oat_file_.bcp_bss_info` empty. CHECK_LE(oat_file_.bcp_bss_info_.size(), bcp_dex_files.size()); for (size_t i = 0; i < oat_file_.bcp_bss_info_.size(); i++) { const DexFile* const dex_file = bcp_dex_files[i]; os << "Dumping entries for BCP DexFile: " << dex_file->GetLocation() << "\n"; DumpBssMappings(os, dex_file, oat_file_.bcp_bss_info_[i].method_bss_mapping, oat_file_.bcp_bss_info_[i].type_bss_mapping, oat_file_.bcp_bss_info_[i].public_type_bss_mapping, oat_file_.bcp_bss_info_[i].package_type_bss_mapping, oat_file_.bcp_bss_info_[i].string_bss_mapping); } } else { // We don't have a runtime, just dump the offsets for (size_t i = 0; i < oat_file_.bcp_bss_info_.size(); i++) { os << "We don't have a runtime, just dump the offsets for BCP Dexfile " << i << "\n"; DumpBssOffsets(os, "ArtMethod", oat_file_.bcp_bss_info_[i].method_bss_mapping); DumpBssOffsets(os, "Class", oat_file_.bcp_bss_info_[i].type_bss_mapping); DumpBssOffsets(os, "Public Class", oat_file_.bcp_bss_info_[i].public_type_bss_mapping); DumpBssOffsets(os, "Package Class", oat_file_.bcp_bss_info_[i].package_type_bss_mapping); DumpBssOffsets(os, "String", oat_file_.bcp_bss_info_[i].string_bss_mapping); } } } if (!options_.dump_header_only_) { VariableIndentationOutputStream vios(&os); VdexFile::VdexFileHeader vdex_header = oat_file_.GetVdexFile()->GetVdexFileHeader(); if (vdex_header.IsValid()) { std::string error_msg; std::vector dex_files; for (size_t i = 0; i < oat_dex_files_.size(); i++) { const DexFile* dex_file = OpenDexFile(oat_dex_files_[i], &error_msg); if (dex_file == nullptr) { os << "Error opening dex file: " << error_msg << std::endl; return false; } dex_files.push_back(dex_file); } verifier::VerifierDeps deps(dex_files, /*output_only=*/ false); if (!deps.ParseStoredData(dex_files, oat_file_.GetVdexFile()->GetVerifierDepsData())) { os << "Error parsing verifier dependencies." << std::endl; return false; } deps.Dump(&vios); } else { os << "UNRECOGNIZED vdex file, magic " << vdex_header.GetMagic() << ", version " << vdex_header.GetVdexVersion() << "\n"; } for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); if (!DumpOatDexFile(os, *oat_dex_file)) { success = false; } } } if (options_.export_dex_location_) { std::string error_msg; std::string vdex_filename = GetVdexFilename(oat_file_.GetLocation()); if (!OS::FileExists(vdex_filename.c_str())) { os << "File " << vdex_filename.c_str() << " does not exist\n"; return false; } DexFileUniqV vdex_dex_files; std::unique_ptr vdex_file = OpenVdex(vdex_filename, &vdex_dex_files, &error_msg); if (vdex_file.get() == nullptr) { os << "Failed to open vdex file: " << error_msg << "\n"; return false; } if (oat_dex_files_.size() != vdex_dex_files.size()) { os << "Dex files number in Vdex file does not match Dex files number in Oat file: " << vdex_dex_files.size() << " vs " << oat_dex_files_.size() << '\n'; return false; } size_t i = 0; for (const auto& vdex_dex_file : vdex_dex_files) { const OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); CHECK(vdex_dex_file != nullptr); // If a CompactDex file is detected within a Vdex container, DexLayout is used to convert // back to a StandardDex file. Since the converted DexFile will most likely not reproduce // the original input Dex file, the `update_checksum_` option is used to recompute the // checksum. If the vdex container does not contain cdex resources (`used_dexlayout` is // false), ExportDexFile() enforces a reproducible checksum verification. if (vdex_dex_file->IsCompactDexFile()) { Options options; options.compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone; options.update_checksum_ = true; DexLayout dex_layout(options, /*info=*/ nullptr, /*out_file=*/ nullptr, /*header=*/ nullptr); std::unique_ptr dex_container; bool result = dex_layout.ProcessDexFile(vdex_dex_file->GetLocation().c_str(), vdex_dex_file.get(), i, &dex_container, &error_msg); if (!result) { os << "DexLayout failed to process Dex file: " + error_msg; success = false; break; } DexContainer::Section* main_section = dex_container->GetMainSection(); CHECK_EQ(dex_container->GetDataSection()->Size(), 0u); ArtDexFileLoader dex_file_loader( main_section->Begin(), main_section->Size(), vdex_dex_file->GetLocation()); std::unique_ptr dex(dex_file_loader.Open(vdex_file->GetLocationChecksum(i), /*oat_dex_file=*/nullptr, /*verify=*/false, /*verify_checksum=*/true, &error_msg)); if (dex == nullptr) { os << "Failed to load DexFile from layout container: " + error_msg; success = false; break; } if (dex->IsCompactDexFile()) { os <<"CompactDex conversion to StandardDex failed"; success = false; break; } if (!ExportDexFile(os, *oat_dex_file, dex.get(), /*used_dexlayout=*/ true)) { success = false; break; } } else { if (!ExportDexFile(os, *oat_dex_file, vdex_dex_file.get(), /*used_dexlayout=*/ false)) { success = false; break; } } i++; } } { os << "OAT FILE STATS:\n"; VariableIndentationOutputStream vios(&os); stats_.AddBytes(oat_file_.Size()); stats_.DumpSizes(vios, "OatFile"); } os << std::flush; return success; } size_t ComputeSize(const void* oat_data) { if (reinterpret_cast(oat_data) < oat_file_.Begin() || reinterpret_cast(oat_data) > oat_file_.End()) { return 0; // Address not in oat file } uintptr_t begin_offset = reinterpret_cast(oat_data) - reinterpret_cast(oat_file_.Begin()); auto it = offsets_.upper_bound(begin_offset); CHECK(it != offsets_.end()); uintptr_t end_offset = *it; return end_offset - begin_offset; } InstructionSet GetOatInstructionSet() { return oat_file_.GetOatHeader().GetInstructionSet(); } const void* GetQuickOatCode(ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); std::string error_msg; const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg); if (dex_file == nullptr) { LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; } else { const char* descriptor = m->GetDeclaringClassDescriptor(); const dex::ClassDef* class_def = OatDexFile::FindClassDef(*dex_file, descriptor, ComputeModifiedUtf8Hash(descriptor)); if (class_def != nullptr) { uint16_t class_def_index = dex_file->GetIndexForClassDef(*class_def); const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index); uint32_t oat_method_index; if (m->IsStatic() || m->IsDirect()) { // Simple case where the oat method index was stashed at load time. oat_method_index = m->GetMethodIndex(); } else { // Compute the oat_method_index by search for its position in the class def. ClassAccessor accessor(*dex_file, *class_def); oat_method_index = accessor.NumDirectMethods(); bool found_virtual = false; for (ClassAccessor::Method dex_method : accessor.GetVirtualMethods()) { // Check method index instead of identity in case of duplicate method definitions. if (dex_method.GetIndex() == m->GetDexMethodIndex()) { found_virtual = true; break; } ++oat_method_index; } CHECK(found_virtual) << "Didn't find oat method index for virtual method: " << dex_file->PrettyMethod(m->GetDexMethodIndex()); } return oat_class.GetOatMethod(oat_method_index).GetQuickCode(); } } } return nullptr; } // Returns nullptr and updates error_msg if the Vdex file cannot be opened, otherwise all Dex // files are stored in dex_files. std::unique_ptr OpenVdex(const std::string& vdex_filename, /* out */ DexFileUniqV* dex_files, /* out */ std::string* error_msg) { std::unique_ptr file(OS::OpenFileForReading(vdex_filename.c_str())); if (file == nullptr) { *error_msg = "Could not open file " + vdex_filename + " for reading."; return nullptr; } int64_t vdex_length = file->GetLength(); if (vdex_length == -1) { *error_msg = "Could not read the length of file " + vdex_filename; return nullptr; } MemMap mmap = MemMap::MapFile( file->GetLength(), PROT_READ | PROT_WRITE, MAP_PRIVATE, file->Fd(), /* start offset= */ 0, /* low_4gb= */ false, vdex_filename.c_str(), error_msg); if (!mmap.IsValid()) { *error_msg = "Failed to mmap file " + vdex_filename + ": " + *error_msg; return nullptr; } std::unique_ptr vdex_file(new VdexFile(std::move(mmap))); if (!vdex_file->IsValid()) { *error_msg = "Vdex file is not valid"; return nullptr; } DexFileUniqV tmp_dex_files; if (!vdex_file->OpenAllDexFiles(&tmp_dex_files, error_msg)) { *error_msg = "Failed to open Dex files from Vdex: " + *error_msg; return nullptr; } *dex_files = std::move(tmp_dex_files); return vdex_file; } bool AddStatsObject(const void* address) { return seen_stats_objects_.insert(address).second; // Inserted new entry. } private: void AddAllOffsets() { // We don't know the length of the code for each method, but we need to know where to stop // when disassembling. What we do know is that a region of code will be followed by some other // region, so if we keep a sorted sequence of the start of each region, we can infer the length // of a piece of code by using upper_bound to find the start of the next region. for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); std::string error_msg; const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg); if (dex_file == nullptr) { LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; continue; } offsets_.insert(reinterpret_cast(&dex_file->GetHeader())); for (ClassAccessor accessor : dex_file->GetClasses()) { const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(accessor.GetClassDefIndex()); for (uint32_t class_method_index = 0; class_method_index < accessor.NumMethods(); ++class_method_index) { AddOffsets(oat_class.GetOatMethod(class_method_index)); } } } // If the last thing in the file is code for a method, there won't be an offset for the "next" // thing. Instead of having a special case in the upper_bound code, let's just add an entry // for the end of the file. offsets_.insert(oat_file_.Size()); } static uint32_t AlignCodeOffset(uint32_t maybe_thumb_offset) { return maybe_thumb_offset & ~0x1; // TODO: Make this Thumb2 specific. } void AddOffsets(const OatFile::OatMethod& oat_method) { uint32_t code_offset = oat_method.GetCodeOffset(); if (oat_file_.GetOatHeader().GetInstructionSet() == InstructionSet::kThumb2) { code_offset &= ~0x1; } offsets_.insert(code_offset); offsets_.insert(oat_method.GetVmapTableOffset()); } bool DumpOatDexFile(std::ostream& os, const OatDexFile& oat_dex_file) { bool success = true; bool stop_analysis = false; os << "OatDexFile:\n"; os << StringPrintf("location: %s\n", oat_dex_file.GetDexFileLocation().c_str()); os << StringPrintf("checksum: 0x%08x\n", oat_dex_file.GetDexFileLocationChecksum()); if (oat_dex_file.GetOatFile()->ContainsDexCode()) { const uint8_t* const vdex_file_begin = oat_dex_file.GetOatFile()->DexBegin(); // Print data range of the dex file embedded inside the corresponding vdex file. const uint8_t* const dex_file_pointer = oat_dex_file.GetDexFilePointer(); uint32_t dex_offset = dchecked_integral_cast(dex_file_pointer - vdex_file_begin); os << StringPrintf( "dex-file: 0x%08x..0x%08x\n", dex_offset, dchecked_integral_cast(dex_offset + oat_dex_file.FileSize() - 1)); } else { os << StringPrintf("dex-file not in VDEX file\n"); } // Create the dex file early. A lot of print-out things depend on it. std::string error_msg; const DexFile* const dex_file = OpenDexFile(&oat_dex_file, &error_msg); if (dex_file == nullptr) { os << "NOT FOUND: " << error_msg << "\n\n"; os << std::flush; return false; } // Print lookup table, if it exists. if (oat_dex_file.GetLookupTableData() != nullptr) { uint32_t table_offset = dchecked_integral_cast( oat_dex_file.GetLookupTableData() - oat_dex_file.GetOatFile()->DexBegin()); uint32_t table_size = TypeLookupTable::RawDataLength(dex_file->NumClassDefs()); os << StringPrintf("type-table: 0x%08x..0x%08x\n", table_offset, table_offset + table_size - 1); const TypeLookupTable& lookup = oat_dex_file.GetTypeLookupTable(); lookup.Dump(os); } VariableIndentationOutputStream vios(&os); ScopedIndentation indent1(&vios); for (ClassAccessor accessor : dex_file->GetClasses()) { // TODO: Support regex const char* descriptor = accessor.GetDescriptor(); if (DescriptorToDot(descriptor).find(options_.class_filter_) == std::string::npos) { continue; } const uint16_t class_def_index = accessor.GetClassDefIndex(); uint32_t oat_class_offset = oat_dex_file.GetOatClassOffset(class_def_index); const OatFile::OatClass oat_class = oat_dex_file.GetOatClass(class_def_index); os << StringPrintf("%zd: %s (offset=0x%08x) (type_idx=%d)", static_cast(class_def_index), descriptor, oat_class_offset, accessor.GetClassIdx().index_) << " (" << oat_class.GetStatus() << ")" << " (" << oat_class.GetType() << ")\n"; // TODO: include bitmap here if type is kOatClassSomeCompiled? if (options_.list_classes_) { continue; } if (!DumpOatClass(&vios, oat_class, *dex_file, accessor, &stop_analysis)) { success = false; } if (stop_analysis) { os << std::flush; return success; } } os << "\n"; os << std::flush; return success; } // Backwards compatible Dex file export. If dex_file is nullptr (valid Vdex file not present) the // Dex resource is extracted from the oat_dex_file and its checksum is repaired since it's not // unquickened. Otherwise the dex_file has been fully unquickened and is expected to verify the // original checksum. bool ExportDexFile(std::ostream& os, const OatDexFile& oat_dex_file, const DexFile* dex_file, bool used_dexlayout) { std::string error_msg; std::string dex_file_location = oat_dex_file.GetDexFileLocation(); // If dex_file (from unquicken or dexlayout) is not available, the output DexFile size is the // same as the one extracted from the Oat container (pre-oreo) size_t fsize = dex_file == nullptr ? oat_dex_file.FileSize() : dex_file->Size(); // Some quick checks just in case if (fsize == 0 || fsize < sizeof(DexFile::Header)) { os << "Invalid dex file\n"; return false; } if (dex_file == nullptr) { // Exported bytecode is quickened (dex-to-dex transformations present) dex_file = OpenDexFile(&oat_dex_file, &error_msg); if (dex_file == nullptr) { os << "Failed to open dex file '" << dex_file_location << "': " << error_msg; return false; } // Recompute checksum reinterpret_cast(const_cast(dex_file->Begin()))->checksum_ = dex_file->CalculateChecksum(); } else { // If dexlayout was used to convert CompactDex back to StandardDex, checksum will be updated // due to `update_checksum_` option, otherwise we expect a reproducible checksum. if (!used_dexlayout) { // Vdex unquicken output should match original input bytecode uint32_t orig_checksum = reinterpret_cast(const_cast(dex_file->Begin()))->checksum_; if (orig_checksum != dex_file->CalculateChecksum()) { os << "Unexpected checksum from unquicken dex file '" << dex_file_location << "'\n"; return false; } } } // Verify output directory exists if (!OS::DirectoryExists(options_.export_dex_location_)) { // TODO: Extend OS::DirectoryExists if symlink support is required os << options_.export_dex_location_ << " output directory not found or symlink\n"; return false; } // Beautify path names if (dex_file_location.size() > PATH_MAX || dex_file_location.size() <= 0) { return false; } std::string dex_orig_name; size_t dex_orig_pos = dex_file_location.rfind('/'); if (dex_orig_pos == std::string::npos) dex_orig_name = dex_file_location; else dex_orig_name = dex_file_location.substr(dex_orig_pos + 1); // A more elegant approach to efficiently name user installed apps is welcome if (dex_orig_name.size() == 8 && dex_orig_name.compare("base.apk") == 0 && dex_orig_pos != std::string::npos) { dex_file_location.erase(dex_orig_pos, strlen("base.apk") + 1); size_t apk_orig_pos = dex_file_location.rfind('/'); if (apk_orig_pos != std::string::npos) { dex_orig_name = dex_file_location.substr(++apk_orig_pos); } } std::string out_dex_path(options_.export_dex_location_); if (out_dex_path.back() != '/') { out_dex_path.append("/"); } out_dex_path.append(dex_orig_name); out_dex_path.append("_export.dex"); if (out_dex_path.length() > PATH_MAX) { return false; } std::unique_ptr file(OS::CreateEmptyFile(out_dex_path.c_str())); if (file.get() == nullptr) { os << "Failed to open output dex file " << out_dex_path; return false; } bool success = file->WriteFully(dex_file->Begin(), fsize); if (!success) { os << "Failed to write dex file"; file->Erase(); return false; } if (file->FlushCloseOrErase() != 0) { os << "Flush and close failed"; return false; } os << StringPrintf("Dex file exported at %s (%zd bytes)\n", out_dex_path.c_str(), fsize); os << std::flush; return true; } bool DumpOatClass(VariableIndentationOutputStream* vios, const OatFile::OatClass& oat_class, const DexFile& dex_file, const ClassAccessor& class_accessor, bool* stop_analysis) { bool success = true; bool addr_found = false; uint32_t class_method_index = 0; for (const ClassAccessor::Method& method : class_accessor.GetMethods()) { if (!DumpOatMethod(vios, dex_file.GetClassDef(class_accessor.GetClassDefIndex()), class_method_index, oat_class, dex_file, method.GetIndex(), method.GetCodeItem(), method.GetAccessFlags(), &addr_found)) { success = false; } if (addr_found) { *stop_analysis = true; return success; } class_method_index++; } vios->Stream() << std::flush; return success; } static constexpr uint32_t kPrologueBytes = 16; // When this was picked, the largest arm method was 55,256 bytes and arm64 was 50,412 bytes. static constexpr uint32_t kMaxCodeSize = 100 * 1000; bool DumpOatMethod(VariableIndentationOutputStream* vios, const dex::ClassDef& class_def, uint32_t class_method_index, const OatFile::OatClass& oat_class, const DexFile& dex_file, uint32_t dex_method_idx, const dex::CodeItem* code_item, uint32_t method_access_flags, bool* addr_found) { bool success = true; CodeItemDataAccessor code_item_accessor(dex_file, code_item); // TODO: Support regex std::string method_name = dex_file.GetMethodName(dex_file.GetMethodId(dex_method_idx)); if (method_name.find(options_.method_filter_) == std::string::npos) { return success; } std::string pretty_method = dex_file.PrettyMethod(dex_method_idx, true); vios->Stream() << StringPrintf("%d: %s (dex_method_idx=%d)\n", class_method_index, pretty_method.c_str(), dex_method_idx); if (options_.list_methods_) { return success; } uint32_t oat_method_offsets_offset = oat_class.GetOatMethodOffsetsOffset(class_method_index); const OatMethodOffsets* oat_method_offsets = oat_class.GetOatMethodOffsets(class_method_index); const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_index); uint32_t code_offset = oat_method.GetCodeOffset(); uint32_t code_size = oat_method.GetQuickCodeSize(); if (resolved_addr2instr_ != 0) { if (resolved_addr2instr_ > code_offset + code_size) { return success; } else { *addr_found = true; // stop analyzing file at next iteration } } // Everything below is indented at least once. ScopedIndentation indent1(vios); { vios->Stream() << "DEX CODE:\n"; ScopedIndentation indent2(vios); if (code_item_accessor.HasCodeItem()) { uint32_t max_pc = code_item_accessor.InsnsSizeInCodeUnits(); for (const DexInstructionPcPair& inst : code_item_accessor) { if (inst.DexPc() + inst->SizeInCodeUnits() > max_pc) { LOG(WARNING) << "GLITCH: run-away instruction at idx=0x" << std::hex << inst.DexPc(); break; } vios->Stream() << StringPrintf("0x%04x: ", inst.DexPc()) << inst->DumpHexLE(5) << StringPrintf("\t| %s\n", inst->DumpString(&dex_file).c_str()); } } } std::unique_ptr> hs; std::unique_ptr verifier; if (Runtime::Current() != nullptr) { // We need to have the handle scope stay live until after the verifier since the verifier has // a handle to the dex cache from hs. ScopedObjectAccess soa(Thread::Current()); hs.reset(new StackHandleScope<1>(Thread::Current())); vios->Stream() << "VERIFIER TYPE ANALYSIS:\n"; ScopedIndentation indent2(vios); verifier.reset(DumpVerifier(vios, soa, hs.get(), dex_method_idx, &dex_file, class_def, code_item, method_access_flags)); } { vios->Stream() << "OatMethodOffsets "; if (options_.absolute_addresses_) { vios->Stream() << StringPrintf("%p ", oat_method_offsets); } vios->Stream() << StringPrintf("(offset=0x%08x)\n", oat_method_offsets_offset); if (oat_method_offsets_offset > oat_file_.Size()) { vios->Stream() << StringPrintf( "WARNING: oat method offsets offset 0x%08x is past end of file 0x%08zx.\n", oat_method_offsets_offset, oat_file_.Size()); // If we can't read OatMethodOffsets, the rest of the data is dangerous to read. vios->Stream() << std::flush; return false; } ScopedIndentation indent2(vios); vios->Stream() << StringPrintf("code_offset: 0x%08x ", code_offset); uint32_t aligned_code_begin = AlignCodeOffset(oat_method.GetCodeOffset()); if (aligned_code_begin > oat_file_.Size()) { vios->Stream() << StringPrintf("WARNING: " "code offset 0x%08x is past end of file 0x%08zx.\n", aligned_code_begin, oat_file_.Size()); success = false; } vios->Stream() << "\n"; } { vios->Stream() << "OatQuickMethodHeader "; uint32_t method_header_offset = oat_method.GetOatQuickMethodHeaderOffset(); const OatQuickMethodHeader* method_header = oat_method.GetOatQuickMethodHeader(); if (AddStatsObject(method_header)) { stats_["QuickMethodHeader"].AddBytes(sizeof(*method_header)); } if (options_.absolute_addresses_) { vios->Stream() << StringPrintf("%p ", method_header); } vios->Stream() << StringPrintf("(offset=0x%08x)\n", method_header_offset); if (method_header_offset > oat_file_.Size() || sizeof(OatQuickMethodHeader) > oat_file_.Size() - method_header_offset) { vios->Stream() << StringPrintf( "WARNING: oat quick method header at offset 0x%08x is past end of file 0x%08zx.\n", method_header_offset, oat_file_.Size()); // If we can't read the OatQuickMethodHeader, the rest of the data is dangerous to read. vios->Stream() << std::flush; return false; } ScopedIndentation indent2(vios); vios->Stream() << "vmap_table: "; if (options_.absolute_addresses_) { vios->Stream() << StringPrintf("%p ", oat_method.GetVmapTable()); } uint32_t vmap_table_offset = (method_header == nullptr) ? 0 : method_header->GetCodeInfoOffset(); vios->Stream() << StringPrintf("(offset=0x%08x)\n", vmap_table_offset); size_t vmap_table_offset_limit = method_header->GetCode() - oat_file_.Begin(); if (vmap_table_offset >= vmap_table_offset_limit) { vios->Stream() << StringPrintf("WARNING: " "vmap table offset 0x%08x is past end of file 0x%08zx. ", vmap_table_offset, vmap_table_offset_limit); success = false; } else if (options_.dump_vmap_) { DumpVmapData(vios, oat_method, code_item_accessor); } } { vios->Stream() << "QuickMethodFrameInfo\n"; ScopedIndentation indent2(vios); vios->Stream() << StringPrintf("frame_size_in_bytes: %zd\n", oat_method.GetFrameSizeInBytes()); vios->Stream() << StringPrintf("core_spill_mask: 0x%08x ", oat_method.GetCoreSpillMask()); DumpSpillMask(vios->Stream(), oat_method.GetCoreSpillMask(), false); vios->Stream() << "\n"; vios->Stream() << StringPrintf("fp_spill_mask: 0x%08x ", oat_method.GetFpSpillMask()); DumpSpillMask(vios->Stream(), oat_method.GetFpSpillMask(), true); vios->Stream() << "\n"; } { // Based on spill masks from QuickMethodFrameInfo so placed // after it is dumped, but useful for understanding quick // code, so dumped here. ScopedIndentation indent2(vios); DumpVregLocations(vios->Stream(), oat_method, code_item_accessor); } { vios->Stream() << "CODE: "; { const void* code = oat_method.GetQuickCode(); uint32_t aligned_code_begin = AlignCodeOffset(code_offset); uint64_t aligned_code_end = aligned_code_begin + code_size; if (AddStatsObject(code)) { stats_["Code"].AddBytes(code_size); } if (options_.absolute_addresses_) { vios->Stream() << StringPrintf("%p ", code); } vios->Stream() << StringPrintf("(code_offset=0x%08x size=%u)%s\n", code_offset, code_size, code != nullptr ? "..." : ""); ScopedIndentation indent2(vios); if (aligned_code_begin > oat_file_.Size()) { vios->Stream() << StringPrintf("WARNING: " "start of code at 0x%08x is past end of file 0x%08zx.", aligned_code_begin, oat_file_.Size()); success = false; } else if (aligned_code_end > oat_file_.Size()) { vios->Stream() << StringPrintf( "WARNING: " "end of code at 0x%08" PRIx64 " is past end of file 0x%08zx. " "code size is 0x%08x.\n", aligned_code_end, oat_file_.Size(), code_size); success = false; if (options_.disassemble_code_) { if (aligned_code_begin + kPrologueBytes <= oat_file_.Size()) { DumpCode(vios, oat_method, code_item_accessor, true, kPrologueBytes); } } } else if (code_size > kMaxCodeSize) { vios->Stream() << StringPrintf( "WARNING: " "code size %d is bigger than max expected threshold of %d. " "code size is 0x%08x.\n", code_size, kMaxCodeSize, code_size); success = false; if (options_.disassemble_code_) { if (aligned_code_begin + kPrologueBytes <= oat_file_.Size()) { DumpCode(vios, oat_method, code_item_accessor, true, kPrologueBytes); } } } else if (options_.disassemble_code_) { DumpCode(vios, oat_method, code_item_accessor, !success, 0); } } } vios->Stream() << std::flush; return success; } void DumpSpillMask(std::ostream& os, uint32_t spill_mask, bool is_float) { if (spill_mask == 0) { return; } os << "("; for (size_t i = 0; i < 32; i++) { if ((spill_mask & (1 << i)) != 0) { if (is_float) { os << "fr" << i; } else { os << "r" << i; } spill_mask ^= 1 << i; // clear bit if (spill_mask != 0) { os << ", "; } else { break; } } } os << ")"; } // Display data stored at the the vmap offset of an oat method. void DumpVmapData(VariableIndentationOutputStream* vios, const OatFile::OatMethod& oat_method, const CodeItemDataAccessor& code_item_accessor) { if (IsMethodGeneratedByOptimizingCompiler(oat_method, code_item_accessor)) { // The optimizing compiler outputs its CodeInfo data in the vmap table. const uint8_t* raw_code_info = oat_method.GetVmapTable(); if (raw_code_info != nullptr) { CodeInfo code_info(raw_code_info); DCHECK(code_item_accessor.HasCodeItem()); ScopedIndentation indent1(vios); DumpCodeInfo(vios, code_info, oat_method); } } else { // Otherwise, there is nothing to display. } } // Display a CodeInfo object emitted by the optimizing compiler. void DumpCodeInfo(VariableIndentationOutputStream* vios, const CodeInfo& code_info, const OatFile::OatMethod& oat_method) { code_info.Dump(vios, oat_method.GetCodeOffset(), options_.dump_code_info_stack_maps_, instruction_set_); } static int GetOutVROffset(uint16_t out_num, InstructionSet isa) { // According to stack model, the first out is above the Method referernce. return static_cast(InstructionSetPointerSize(isa)) + out_num * sizeof(uint32_t); } static uint32_t GetVRegOffsetFromQuickCode(const CodeItemDataAccessor& code_item_accessor, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int reg, InstructionSet isa) { PointerSize pointer_size = InstructionSetPointerSize(isa); if (kIsDebugBuild) { auto* runtime = Runtime::Current(); if (runtime != nullptr) { CHECK_EQ(runtime->GetClassLinker()->GetImagePointerSize(), pointer_size); } } DCHECK_ALIGNED(frame_size, kStackAlignment); DCHECK_NE(reg, -1); int spill_size = POPCOUNT(core_spills) * GetBytesPerGprSpillLocation(isa) + POPCOUNT(fp_spills) * GetBytesPerFprSpillLocation(isa) + sizeof(uint32_t); // Filler. int num_regs = code_item_accessor.RegistersSize() - code_item_accessor.InsSize(); int temp_threshold = code_item_accessor.RegistersSize(); const int max_num_special_temps = 1; if (reg == temp_threshold) { // The current method pointer corresponds to special location on stack. return 0; } else if (reg >= temp_threshold + max_num_special_temps) { /* * Special temporaries may have custom locations and the logic above deals with that. * However, non-special temporaries are placed relative to the outs. */ int temps_start = code_item_accessor.OutsSize() * sizeof(uint32_t) + static_cast(pointer_size) /* art method */; int relative_offset = (reg - (temp_threshold + max_num_special_temps)) * sizeof(uint32_t); return temps_start + relative_offset; } else if (reg < num_regs) { int locals_start = frame_size - spill_size - num_regs * sizeof(uint32_t); return locals_start + (reg * sizeof(uint32_t)); } else { // Handle ins. return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + static_cast(pointer_size) /* art method */; } } void DumpVregLocations(std::ostream& os, const OatFile::OatMethod& oat_method, const CodeItemDataAccessor& code_item_accessor) { if (code_item_accessor.HasCodeItem()) { size_t num_locals_ins = code_item_accessor.RegistersSize(); size_t num_ins = code_item_accessor.InsSize(); size_t num_locals = num_locals_ins - num_ins; size_t num_outs = code_item_accessor.OutsSize(); os << "vr_stack_locations:"; for (size_t reg = 0; reg <= num_locals_ins; reg++) { // For readability, delimit the different kinds of VRs. if (reg == num_locals_ins) { os << "\n\tmethod*:"; } else if (reg == num_locals && num_ins > 0) { os << "\n\tins:"; } else if (reg == 0 && num_locals > 0) { os << "\n\tlocals:"; } uint32_t offset = GetVRegOffsetFromQuickCode(code_item_accessor, oat_method.GetCoreSpillMask(), oat_method.GetFpSpillMask(), oat_method.GetFrameSizeInBytes(), reg, GetInstructionSet()); os << " v" << reg << "[sp + #" << offset << "]"; } for (size_t out_reg = 0; out_reg < num_outs; out_reg++) { if (out_reg == 0) { os << "\n\touts:"; } uint32_t offset = GetOutVROffset(out_reg, GetInstructionSet()); os << " v" << out_reg << "[sp + #" << offset << "]"; } os << "\n"; } } // Has `oat_method` -- corresponding to the Dex `code_item` -- been compiled by // the optimizing compiler? static bool IsMethodGeneratedByOptimizingCompiler( const OatFile::OatMethod& oat_method, const CodeItemDataAccessor& code_item_accessor) { // If the native GC map is null and the Dex `code_item` is not // null, then this method has been compiled with the optimizing // compiler. return oat_method.GetQuickCode() != nullptr && oat_method.GetVmapTable() != nullptr && code_item_accessor.HasCodeItem(); } verifier::MethodVerifier* DumpVerifier(VariableIndentationOutputStream* vios, ScopedObjectAccess& soa, StackHandleScope<1>* hs, uint32_t dex_method_idx, const DexFile* dex_file, const dex::ClassDef& class_def, const dex::CodeItem* code_item, uint32_t method_access_flags) REQUIRES_SHARED(Locks::mutator_lock_) { if ((method_access_flags & kAccNative) == 0) { Runtime* const runtime = Runtime::Current(); DCHECK(options_.class_loader_ != nullptr); Handle dex_cache = hs->NewHandle( runtime->GetClassLinker()->RegisterDexFile(*dex_file, options_.class_loader_->Get())); CHECK(dex_cache != nullptr); ArtMethod* method = runtime->GetClassLinker()->ResolveMethodWithoutInvokeType( dex_method_idx, dex_cache, *options_.class_loader_); if (method == nullptr) { soa.Self()->ClearException(); return nullptr; } return verifier::MethodVerifier::VerifyMethodAndDump( soa.Self(), vios, dex_method_idx, dex_file, dex_cache, *options_.class_loader_, class_def, code_item, method_access_flags, /* api_level= */ 0); } return nullptr; } void DumpCode(VariableIndentationOutputStream* vios, const OatFile::OatMethod& oat_method, const CodeItemDataAccessor& code_item_accessor, bool bad_input, size_t code_size) { const void* quick_code = oat_method.GetQuickCode(); if (code_size == 0) { code_size = oat_method.GetQuickCodeSize(); } if (code_size == 0 || quick_code == nullptr) { vios->Stream() << "NO CODE!\n"; return; } else if (!bad_input && IsMethodGeneratedByOptimizingCompiler(oat_method, code_item_accessor)) { // The optimizing compiler outputs its CodeInfo data in the vmap table. CodeInfo code_info(oat_method.GetVmapTable()); if (AddStatsObject(oat_method.GetVmapTable())) { code_info.CollectSizeStats(oat_method.GetVmapTable(), stats_["CodeInfo"]); } std::unordered_map> stack_maps; for (const StackMap& it : code_info.GetStackMaps()) { stack_maps[it.GetNativePcOffset(instruction_set_)].push_back(it); } const uint8_t* quick_native_pc = reinterpret_cast(quick_code); size_t offset = 0; while (offset < code_size) { offset += disassembler_->Dump(vios->Stream(), quick_native_pc + offset); auto it = stack_maps.find(offset); if (it != stack_maps.end()) { ScopedIndentation indent1(vios); for (StackMap stack_map : it->second) { stack_map.Dump(vios, code_info, oat_method.GetCodeOffset(), instruction_set_); } stack_maps.erase(it); } } DCHECK_EQ(stack_maps.size(), 0u); // Check that all stack maps have been printed. } else { const uint8_t* quick_native_pc = reinterpret_cast(quick_code); size_t offset = 0; while (offset < code_size) { offset += disassembler_->Dump(vios->Stream(), quick_native_pc + offset); } } } std::pair GetBootImageLiveObjectsDataRange(gc::Heap* heap) const REQUIRES_SHARED(Locks::mutator_lock_) { const std::vector& boot_image_spaces = heap->GetBootImageSpaces(); const ImageHeader& main_header = boot_image_spaces[0]->GetImageHeader(); ObjPtr> boot_image_live_objects = ObjPtr>::DownCast( main_header.GetImageRoot(ImageHeader::kBootImageLiveObjects)); DCHECK(boot_image_live_objects != nullptr); DCHECK(heap->ObjectIsInBootImageSpace(boot_image_live_objects)); const uint8_t* boot_image_live_objects_address = reinterpret_cast(boot_image_live_objects.Ptr()); uint32_t begin_offset = mirror::ObjectArray::OffsetOfElement(0).Uint32Value(); uint32_t end_offset = mirror::ObjectArray::OffsetOfElement( boot_image_live_objects->GetLength()).Uint32Value(); return std::make_pair(boot_image_live_objects_address + begin_offset, boot_image_live_objects_address + end_offset); } void DumpDataBimgRelRoEntries(std::ostream& os) { os << ".data.bimg.rel.ro: "; if (oat_file_.GetBootImageRelocations().empty()) { os << "empty.\n\n"; return; } os << oat_file_.GetBootImageRelocations().size() << " entries.\n"; Runtime* runtime = Runtime::Current(); if (runtime != nullptr && !runtime->GetHeap()->GetBootImageSpaces().empty()) { const std::vector& boot_image_spaces = runtime->GetHeap()->GetBootImageSpaces(); ScopedObjectAccess soa(Thread::Current()); auto live_objects = GetBootImageLiveObjectsDataRange(runtime->GetHeap()); const uint8_t* live_objects_begin = live_objects.first; const uint8_t* live_objects_end = live_objects.second; for (const uint32_t& object_offset : oat_file_.GetBootImageRelocations()) { uint32_t entry_index = &object_offset - oat_file_.GetBootImageRelocations().data(); uint32_t entry_offset = entry_index * sizeof(oat_file_.GetBootImageRelocations()[0]); os << StringPrintf(" 0x%x: 0x%08x", entry_offset, object_offset); uint8_t* address = boot_image_spaces[0]->Begin() + object_offset; bool found = false; for (gc::space::ImageSpace* space : boot_image_spaces) { uint64_t local_offset = address - space->Begin(); if (local_offset < space->GetImageHeader().GetImageSize()) { if (space->GetImageHeader().GetObjectsSection().Contains(local_offset)) { if (address >= live_objects_begin && address < live_objects_end) { size_t index = (address - live_objects_begin) / sizeof(mirror::HeapReference); os << StringPrintf(" 0x%08x BootImageLiveObject[%zu]", object_offset, index); } else { ObjPtr o = reinterpret_cast(address); if (o->IsString()) { os << " String: " << o->AsString()->ToModifiedUtf8(); } else if (o->IsClass()) { os << " Class: " << o->AsClass()->PrettyDescriptor(); } else { os << StringPrintf(" 0x%08x %s", object_offset, o->GetClass()->PrettyDescriptor().c_str()); } } } else if (space->GetImageHeader().GetMethodsSection().Contains(local_offset)) { ArtMethod* m = reinterpret_cast(address); os << " ArtMethod: " << m->PrettyMethod(); } else { os << StringPrintf(" 0x%08x ", object_offset, space->GetImageFilename().c_str()); } found = true; break; } } if (!found) { os << StringPrintf(" 0x%08x ", object_offset); } os << "\n"; } } else { for (const uint32_t& object_offset : oat_file_.GetBootImageRelocations()) { uint32_t entry_index = &object_offset - oat_file_.GetBootImageRelocations().data(); uint32_t entry_offset = entry_index * sizeof(oat_file_.GetBootImageRelocations()[0]); os << StringPrintf(" 0x%x: 0x%08x\n", entry_offset, object_offset); } } os << "\n"; } template void DumpBssEntries(std::ostream& os, const char* slot_type, const IndexBssMapping* mapping, uint32_t number_of_indexes, size_t slot_size, NameGetter name) { os << ".bss mapping for " << slot_type << ": "; if (mapping == nullptr) { os << "empty.\n"; return; } size_t index_bits = IndexBssMappingEntry::IndexBits(number_of_indexes); size_t num_valid_indexes = 0u; for (const IndexBssMappingEntry& entry : *mapping) { num_valid_indexes += 1u + POPCOUNT(entry.GetMask(index_bits)); } os << mapping->size() << " entries for " << num_valid_indexes << " valid indexes.\n"; os << std::hex; for (const IndexBssMappingEntry& entry : *mapping) { uint32_t index = entry.GetIndex(index_bits); uint32_t mask = entry.GetMask(index_bits); size_t bss_offset = entry.bss_offset - POPCOUNT(mask) * slot_size; for (uint32_t n : LowToHighBits(mask)) { size_t current_index = index - (32u - index_bits) + n; os << " 0x" << bss_offset << ": " << slot_type << ": " << name(current_index) << "\n"; bss_offset += slot_size; } DCHECK_EQ(bss_offset, entry.bss_offset); os << " 0x" << bss_offset << ": " << slot_type << ": " << name(index) << "\n"; } os << std::dec; } void DumpBssMappings(std::ostream& os, const DexFile* dex_file, const IndexBssMapping* method_bss_mapping, const IndexBssMapping* type_bss_mapping, const IndexBssMapping* public_type_bss_mapping, const IndexBssMapping* package_type_bss_mapping, const IndexBssMapping* string_bss_mapping) { DumpBssEntries(os, "ArtMethod", method_bss_mapping, dex_file->NumMethodIds(), static_cast(GetInstructionSetPointerSize(instruction_set_)), [=](uint32_t index) { return dex_file->PrettyMethod(index); }); DumpBssEntries(os, "Class", type_bss_mapping, dex_file->NumTypeIds(), sizeof(GcRoot), [=](uint32_t index) { return dex_file->PrettyType(dex::TypeIndex(index)); }); DumpBssEntries(os, "Public Class", public_type_bss_mapping, dex_file->NumTypeIds(), sizeof(GcRoot), [=](uint32_t index) { return dex_file->PrettyType(dex::TypeIndex(index)); }); DumpBssEntries(os, "Package Class", package_type_bss_mapping, dex_file->NumTypeIds(), sizeof(GcRoot), [=](uint32_t index) { return dex_file->PrettyType(dex::TypeIndex(index)); }); DumpBssEntries( os, "String", string_bss_mapping, dex_file->NumStringIds(), sizeof(GcRoot), [=](uint32_t index) { return dex_file->StringDataByIdx(dex::StringIndex(index)); }); } void DumpBssOffsets(std::ostream& os, const char* slot_type, const IndexBssMapping* mapping) { os << ".bss offset for " << slot_type << ": "; if (mapping == nullptr) { os << "empty.\n"; return; } os << "Mapping size: " << mapping->size() << "\n"; for (size_t i = 0; i < mapping->size(); ++i) { os << "Entry[" << i << "]: index_and_mask: " << mapping->At(i).index_and_mask << ", bss_offset: " << mapping->At(i).bss_offset << "\n"; } // TODO(solanes, 154012332): We are dumping the raw values but we could make assumptions about // ordering of the entries and deconstruct even the `index_and_mask`. This would allow us to use // DumpBssEntries and dump more information. The size and alignment of the entry (ArtMethod* // depends on instruction set but Class and String references are 32-bit) and the difference // from the previous `bss_offset` (or from the "oatbss" symbol for the first item) tell us how // many .bss entries a single `IndexBssMappingEntry` should describe. So we know how many most // significant set bits represent the mask and the rest is the actual index. And the position of // the mask bits would allow reconstructing the other indexes. } const OatFile& oat_file_; const std::vector oat_dex_files_; const OatDumperOptions& options_; uint32_t resolved_addr2instr_; const InstructionSet instruction_set_; std::set offsets_; Disassembler* disassembler_; Stats stats_; std::unordered_set seen_stats_objects_; }; class ImageDumper { public: ImageDumper(std::ostream* os, gc::space::ImageSpace& image_space, const ImageHeader& image_header, OatDumperOptions* oat_dumper_options) : os_(os), vios_(os), indent1_(&vios_), image_space_(image_space), image_header_(image_header), oat_dumper_options_(oat_dumper_options) {} bool Dump() REQUIRES_SHARED(Locks::mutator_lock_) { std::ostream& os = *os_; std::ostream& indent_os = vios_.Stream(); os << "MAGIC: " << image_header_.GetMagic() << "\n\n"; os << "IMAGE LOCATION: " << image_space_.GetImageLocation() << "\n\n"; os << "IMAGE BEGIN: " << reinterpret_cast(image_header_.GetImageBegin()) << "\n"; os << "IMAGE SIZE: " << image_header_.GetImageSize() << "\n"; os << "IMAGE CHECKSUM: " << std::hex << image_header_.GetImageChecksum() << std::dec << "\n\n"; os << "OAT CHECKSUM: " << StringPrintf("0x%08x\n\n", image_header_.GetOatChecksum()) << "\n"; os << "OAT FILE BEGIN:" << reinterpret_cast(image_header_.GetOatFileBegin()) << "\n"; os << "OAT DATA BEGIN:" << reinterpret_cast(image_header_.GetOatDataBegin()) << "\n"; os << "OAT DATA END:" << reinterpret_cast(image_header_.GetOatDataEnd()) << "\n"; os << "OAT FILE END:" << reinterpret_cast(image_header_.GetOatFileEnd()) << "\n\n"; os << "BOOT IMAGE BEGIN: " << reinterpret_cast(image_header_.GetBootImageBegin()) << "\n"; os << "BOOT IMAGE SIZE: " << image_header_.GetBootImageSize() << "\n\n"; for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { auto section = static_cast(i); os << "IMAGE SECTION " << section << ": " << image_header_.GetImageSection(section) << "\n\n"; } { os << "ROOTS: " << reinterpret_cast(image_header_.GetImageRoots().Ptr()) << "\n"; static_assert(arraysize(image_roots_descriptions_) == static_cast(ImageHeader::kImageRootsMax), "sizes must match"); DCHECK_LE(image_header_.GetImageRoots()->GetLength(), ImageHeader::kImageRootsMax); for (int32_t i = 0, size = image_header_.GetImageRoots()->GetLength(); i != size; ++i) { ImageHeader::ImageRoot image_root = static_cast(i); const char* image_root_description = image_roots_descriptions_[i]; ObjPtr image_root_object = image_header_.GetImageRoot(image_root); indent_os << StringPrintf("%s: %p\n", image_root_description, image_root_object.Ptr()); if (image_root_object != nullptr && image_root_object->IsObjectArray()) { ObjPtr> image_root_object_array = image_root_object->AsObjectArray(); ScopedIndentation indent2(&vios_); for (int j = 0; j < image_root_object_array->GetLength(); j++) { ObjPtr value = image_root_object_array->Get(j); size_t run = 0; for (int32_t k = j + 1; k < image_root_object_array->GetLength(); k++) { if (value == image_root_object_array->Get(k)) { run++; } else { break; } } if (run == 0) { indent_os << StringPrintf("%d: ", j); } else { indent_os << StringPrintf("%d to %zd: ", j, j + run); j = j + run; } if (value != nullptr) { PrettyObjectValue(indent_os, value->GetClass(), value); } else { indent_os << j << ": null\n"; } } } } } { os << "METHOD ROOTS\n"; static_assert(arraysize(image_methods_descriptions_) == static_cast(ImageHeader::kImageMethodsCount), "sizes must match"); for (int i = 0; i < ImageHeader::kImageMethodsCount; i++) { auto image_root = static_cast(i); const char* description = image_methods_descriptions_[i]; auto* image_method = image_header_.GetImageMethod(image_root); indent_os << StringPrintf("%s: %p\n", description, image_method); } } os << "\n"; Runtime* const runtime = Runtime::Current(); std::string image_filename = image_space_.GetImageFilename(); std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(image_filename); os << "OAT LOCATION: " << oat_location; os << "\n"; std::string error_msg; const OatFile* oat_file = image_space_.GetOatFile(); if (oat_file == nullptr) { oat_file = runtime->GetOatFileManager().FindOpenedOatFileFromOatLocation(oat_location); } if (oat_file == nullptr) { oat_file = OatFile::Open(/*zip_fd=*/ -1, oat_location, oat_location, /*executable=*/ false, /*low_4gb=*/ false, &error_msg); } if (oat_file == nullptr) { os << "OAT FILE NOT FOUND: " << error_msg << "\n"; return EXIT_FAILURE; } os << "\n"; stats_.oat_file_bytes = oat_file->Size(); stats_.oat_file_stats.AddBytes(oat_file->Size()); oat_dumper_.reset(new OatDumper(*oat_file, *oat_dumper_options_)); for (const OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) { CHECK(oat_dex_file != nullptr); stats_.oat_dex_file_sizes.push_back(std::make_pair(oat_dex_file->GetDexFileLocation(), oat_dex_file->FileSize())); } os << "OBJECTS:\n" << std::flush; // Loop through the image space and dump its objects. gc::Heap* heap = runtime->GetHeap(); Thread* self = Thread::Current(); { { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); } // Since FlushAllocStack() above resets the (active) allocation // stack. Need to revoke the thread-local allocation stacks that // point into it. ScopedThreadSuspension sts(self, ThreadState::kNative); ScopedSuspendAll ssa(__FUNCTION__); heap->RevokeAllThreadLocalAllocationStacks(self); } { auto dump_visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { DumpObject(obj); }; ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // Dump the normal objects before ArtMethods. image_space_.GetLiveBitmap()->Walk(dump_visitor); indent_os << "\n"; // TODO: Dump fields. // Dump methods after. image_header_.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { std::ostream& indent_os = vios_.Stream(); indent_os << &method << " " << " ArtMethod: " << method.PrettyMethod() << "\n"; DumpMethod(&method, indent_os); indent_os << "\n"; }, image_space_.Begin(), image_header_.GetPointerSize()); // Dump the large objects separately. heap->GetLargeObjectsSpace()->GetLiveBitmap()->Walk(dump_visitor); indent_os << "\n"; } os << "STATS:\n" << std::flush; std::unique_ptr file(OS::OpenFileForReading(image_filename.c_str())); size_t data_size = image_header_.GetDataSize(); // stored size in file. if (file == nullptr) { LOG(WARNING) << "Failed to find image in " << image_filename; } else { size_t file_bytes = file->GetLength(); // If the image is compressed, adjust to decompressed size. size_t uncompressed_size = image_header_.GetImageSize() - sizeof(ImageHeader); if (!image_header_.HasCompressedBlock()) { DCHECK_EQ(uncompressed_size, data_size) << "Sizes should match for uncompressed image"; } file_bytes += uncompressed_size - data_size; stats_.art_file_stats.AddBytes(file_bytes); stats_.art_file_stats["Header"].AddBytes(sizeof(ImageHeader)); } size_t pointer_size = static_cast(image_header_.GetPointerSize()); CHECK_ALIGNED(image_header_.GetFieldsSection().Offset(), 4); CHECK_ALIGNED_PARAM(image_header_.GetMethodsSection().Offset(), pointer_size); CHECK_ALIGNED(image_header_.GetInternedStringsSection().Offset(), 8); CHECK_ALIGNED(image_header_.GetImageBitmapSection().Offset(), kPageSize); for (size_t i = 0; i < ImageHeader::ImageSections::kSectionCount; i++) { ImageHeader::ImageSections index = ImageHeader::ImageSections(i); const char* name = ImageHeader::GetImageSectionName(index); stats_.art_file_stats[name].AddBytes(image_header_.GetImageSection(index).Size()); } stats_.object_stats.AddBytes(image_header_.GetObjectsSection().Size()); stats_.Dump(os); os << "\n"; os << std::flush; return oat_dumper_->Dump(os); } private: static void PrettyObjectValue(std::ostream& os, ObjPtr type, ObjPtr value) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(type != nullptr); if (value == nullptr) { os << StringPrintf("null %s\n", type->PrettyDescriptor().c_str()); } else if (type->IsStringClass()) { ObjPtr string = value->AsString(); os << StringPrintf("%p String: %s\n", string.Ptr(), PrintableString(string->ToModifiedUtf8().c_str()).c_str()); } else if (type->IsClassClass()) { ObjPtr klass = value->AsClass(); os << StringPrintf("%p Class: %s\n", klass.Ptr(), mirror::Class::PrettyDescriptor(klass).c_str()); } else { os << StringPrintf("%p %s\n", value.Ptr(), type->PrettyDescriptor().c_str()); } } static void PrintField(std::ostream& os, ArtField* field, ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_) { os << StringPrintf("%s: ", field->GetName()); switch (field->GetTypeAsPrimitiveType()) { case Primitive::kPrimLong: os << StringPrintf("%" PRId64 " (0x%" PRIx64 ")\n", field->Get64(obj), field->Get64(obj)); break; case Primitive::kPrimDouble: os << StringPrintf("%f (%a)\n", field->GetDouble(obj), field->GetDouble(obj)); break; case Primitive::kPrimFloat: os << StringPrintf("%f (%a)\n", field->GetFloat(obj), field->GetFloat(obj)); break; case Primitive::kPrimInt: os << StringPrintf("%d (0x%x)\n", field->Get32(obj), field->Get32(obj)); break; case Primitive::kPrimChar: os << StringPrintf("%u (0x%x)\n", field->GetChar(obj), field->GetChar(obj)); break; case Primitive::kPrimShort: os << StringPrintf("%d (0x%x)\n", field->GetShort(obj), field->GetShort(obj)); break; case Primitive::kPrimBoolean: os << StringPrintf("%s (0x%x)\n", field->GetBoolean(obj) ? "true" : "false", field->GetBoolean(obj)); break; case Primitive::kPrimByte: os << StringPrintf("%d (0x%x)\n", field->GetByte(obj), field->GetByte(obj)); break; case Primitive::kPrimNot: { // Get the value, don't compute the type unless it is non-null as we don't want // to cause class loading. ObjPtr value = field->GetObj(obj); if (value == nullptr) { os << StringPrintf("null %s\n", PrettyDescriptor(field->GetTypeDescriptor()).c_str()); } else { // Grab the field type without causing resolution. ObjPtr field_type = field->LookupResolvedType(); if (field_type != nullptr) { PrettyObjectValue(os, field_type, value); } else { os << StringPrintf("%p %s\n", value.Ptr(), PrettyDescriptor(field->GetTypeDescriptor()).c_str()); } } break; } default: os << "unexpected field type: " << field->GetTypeDescriptor() << "\n"; break; } } static void DumpFields(std::ostream& os, mirror::Object* obj, ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr super = klass->GetSuperClass(); if (super != nullptr) { DumpFields(os, obj, super); } for (ArtField& field : klass->GetIFields()) { PrintField(os, &field, obj); } } bool InDumpSpace(const mirror::Object* object) { return image_space_.Contains(object); } const void* GetQuickOatCodeBegin(ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { const void* quick_code = m->GetEntryPointFromQuickCompiledCodePtrSize( image_header_.GetPointerSize()); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (class_linker->IsQuickResolutionStub(quick_code) || class_linker->IsQuickToInterpreterBridge(quick_code) || class_linker->IsNterpTrampoline(quick_code) || class_linker->IsQuickGenericJniStub(quick_code) || class_linker->IsJniDlsymLookupStub(quick_code) || class_linker->IsJniDlsymLookupCriticalStub(quick_code)) { quick_code = oat_dumper_->GetQuickOatCode(m); } if (oat_dumper_->GetInstructionSet() == InstructionSet::kThumb2) { quick_code = reinterpret_cast(reinterpret_cast(quick_code) & ~0x1); } return quick_code; } uint32_t GetQuickOatCodeSize(ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { const uint32_t* oat_code_begin = reinterpret_cast(GetQuickOatCodeBegin(m)); if (oat_code_begin == nullptr) { return 0; } OatQuickMethodHeader* method_header = reinterpret_cast( reinterpret_cast(oat_code_begin) - sizeof(OatQuickMethodHeader)); return method_header->GetCodeSize(); } const void* GetQuickOatCodeEnd(ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { const uint8_t* oat_code_begin = reinterpret_cast(GetQuickOatCodeBegin(m)); if (oat_code_begin == nullptr) { return nullptr; } return oat_code_begin + GetQuickOatCodeSize(m); } void DumpObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(obj != nullptr); if (!InDumpSpace(obj)) { return; } std::ostream& os = vios_.Stream(); ObjPtr obj_class = obj->GetClass(); if (obj_class->IsArrayClass()) { os << StringPrintf("%p: %s length:%d\n", obj, obj_class->PrettyDescriptor().c_str(), obj->AsArray()->GetLength()); } else if (obj->IsClass()) { ObjPtr klass = obj->AsClass(); os << StringPrintf("%p: java.lang.Class \"%s\" (", obj, mirror::Class::PrettyDescriptor(klass).c_str()) << klass->GetStatus() << ")\n"; } else if (obj_class->IsStringClass()) { os << StringPrintf("%p: java.lang.String %s\n", obj, PrintableString(obj->AsString()->ToModifiedUtf8().c_str()).c_str()); } else { os << StringPrintf("%p: %s\n", obj, obj_class->PrettyDescriptor().c_str()); } ScopedIndentation indent1(&vios_); DumpFields(os, obj, obj_class); if (obj->IsObjectArray()) { ObjPtr> obj_array = obj->AsObjectArray(); for (int32_t i = 0, length = obj_array->GetLength(); i < length; i++) { ObjPtr value = obj_array->Get(i); size_t run = 0; for (int32_t j = i + 1; j < length; j++) { if (value == obj_array->Get(j)) { run++; } else { break; } } if (run == 0) { os << StringPrintf("%d: ", i); } else { os << StringPrintf("%d to %zd: ", i, i + run); i = i + run; } ObjPtr value_class = (value == nullptr) ? obj_class->GetComponentType() : value->GetClass(); PrettyObjectValue(os, value_class, value); } } else if (obj->IsClass()) { ObjPtr klass = obj->AsClass(); if (kBitstringSubtypeCheckEnabled) { os << "SUBTYPE_CHECK_BITS: "; SubtypeCheck>::Dump(klass, os); os << "\n"; } if (klass->NumStaticFields() != 0) { os << "STATICS:\n"; ScopedIndentation indent2(&vios_); for (ArtField& field : klass->GetSFields()) { PrintField(os, &field, field.GetDeclaringClass()); } } } std::string temp; const char* desc = obj_class->GetDescriptor(&temp); desc = stats_.descriptors.emplace(desc).first->c_str(); // Dedup and keep alive. stats_.object_stats[desc].AddBytes(obj->SizeOf()); } void DumpMethod(ArtMethod* method, std::ostream& indent_os) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method != nullptr); const PointerSize pointer_size = image_header_.GetPointerSize(); if (method->IsNative()) { const void* quick_oat_code_begin = GetQuickOatCodeBegin(method); bool first_occurrence; uint32_t quick_oat_code_size = GetQuickOatCodeSize(method); ComputeOatSize(quick_oat_code_begin, &first_occurrence); if (first_occurrence) { stats_.oat_file_stats["native_code"].AddBytes(quick_oat_code_size); } if (quick_oat_code_begin != method->GetEntryPointFromQuickCompiledCodePtrSize( image_header_.GetPointerSize())) { indent_os << StringPrintf("OAT CODE: %p\n", quick_oat_code_begin); } } else if (method->IsAbstract() || method->IsClassInitializer()) { // Don't print information for these. } else if (method->IsRuntimeMethod()) { if (method == Runtime::Current()->GetResolutionMethod()) { const void* resolution_trampoline = method->GetEntryPointFromQuickCompiledCodePtrSize(image_header_.GetPointerSize()); indent_os << StringPrintf("Resolution trampoline: %p\n", resolution_trampoline); const void* critical_native_resolution_trampoline = method->GetEntryPointFromJniPtrSize(image_header_.GetPointerSize()); indent_os << StringPrintf("Resolution trampoline for @CriticalNative: %p\n", critical_native_resolution_trampoline); } else { ImtConflictTable* table = method->GetImtConflictTable(image_header_.GetPointerSize()); if (table != nullptr) { indent_os << "IMT conflict table " << table << " method: "; for (size_t i = 0, count = table->NumEntries(pointer_size); i < count; ++i) { indent_os << ArtMethod::PrettyMethod(table->GetImplementationMethod(i, pointer_size)) << " "; } } } } else { CodeItemDataAccessor code_item_accessor(method->DexInstructionData()); size_t dex_instruction_bytes = code_item_accessor.InsnsSizeInCodeUnits() * 2; stats_.dex_instruction_bytes += dex_instruction_bytes; const void* quick_oat_code_begin = GetQuickOatCodeBegin(method); const void* quick_oat_code_end = GetQuickOatCodeEnd(method); bool first_occurrence; size_t vmap_table_bytes = 0u; if (quick_oat_code_begin != nullptr) { OatQuickMethodHeader* method_header = reinterpret_cast( reinterpret_cast(quick_oat_code_begin) - sizeof(OatQuickMethodHeader)); vmap_table_bytes = ComputeOatSize(method_header->GetOptimizedCodeInfoPtr(), &first_occurrence); if (first_occurrence) { stats_.vmap_table_bytes += vmap_table_bytes; } } uint32_t quick_oat_code_size = GetQuickOatCodeSize(method); ComputeOatSize(quick_oat_code_begin, &first_occurrence); if (first_occurrence) { stats_.managed_code_bytes += quick_oat_code_size; art::Stats& managed_code_stats = stats_.oat_file_stats["managed_code"]; managed_code_stats.AddBytes(quick_oat_code_size); if (method->IsConstructor()) { if (method->IsStatic()) { managed_code_stats["class_initializer"].AddBytes(quick_oat_code_size); } else if (dex_instruction_bytes > kLargeConstructorDexBytes) { managed_code_stats["large_initializer"].AddBytes(quick_oat_code_size); } } else if (dex_instruction_bytes > kLargeMethodDexBytes) { managed_code_stats["large_method"].AddBytes(quick_oat_code_size); } } stats_.managed_code_bytes_ignoring_deduplication += quick_oat_code_size; uint32_t method_access_flags = method->GetAccessFlags(); indent_os << StringPrintf("OAT CODE: %p-%p\n", quick_oat_code_begin, quick_oat_code_end); indent_os << StringPrintf("SIZE: Dex Instructions=%zd StackMaps=%zd AccessFlags=0x%x\n", dex_instruction_bytes, vmap_table_bytes, method_access_flags); size_t total_size = dex_instruction_bytes + vmap_table_bytes + quick_oat_code_size + ArtMethod::Size(image_header_.GetPointerSize()); double expansion = static_cast(quick_oat_code_size) / static_cast(dex_instruction_bytes); stats_.ComputeOutliers(total_size, expansion, method); } } std::set already_seen_; // Compute the size of the given data within the oat file and whether this is the first time // this data has been requested size_t ComputeOatSize(const void* oat_data, bool* first_occurrence) { if (already_seen_.count(oat_data) == 0) { *first_occurrence = true; already_seen_.insert(oat_data); } else { *first_occurrence = false; } return oat_dumper_->ComputeSize(oat_data); } public: struct Stats { art::Stats art_file_stats; art::Stats oat_file_stats; art::Stats object_stats; std::set descriptors; size_t oat_file_bytes = 0u; size_t managed_code_bytes = 0u; size_t managed_code_bytes_ignoring_deduplication = 0u; size_t vmap_table_bytes = 0u; size_t dex_instruction_bytes = 0u; std::vector method_outlier; std::vector method_outlier_size; std::vector method_outlier_expansion; std::vector> oat_dex_file_sizes; Stats() {} double PercentOfOatBytes(size_t size) { return (static_cast(size) / static_cast(oat_file_bytes)) * 100; } void ComputeOutliers(size_t total_size, double expansion, ArtMethod* method) { method_outlier_size.push_back(total_size); method_outlier_expansion.push_back(expansion); method_outlier.push_back(method); } void DumpOutliers(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) { size_t sum_of_sizes = 0; size_t sum_of_sizes_squared = 0; size_t sum_of_expansion = 0; size_t sum_of_expansion_squared = 0; size_t n = method_outlier_size.size(); if (n <= 1) { return; } for (size_t i = 0; i < n; i++) { size_t cur_size = method_outlier_size[i]; sum_of_sizes += cur_size; sum_of_sizes_squared += cur_size * cur_size; double cur_expansion = method_outlier_expansion[i]; sum_of_expansion += cur_expansion; sum_of_expansion_squared += cur_expansion * cur_expansion; } size_t size_mean = sum_of_sizes / n; size_t size_variance = (sum_of_sizes_squared - sum_of_sizes * size_mean) / (n - 1); double expansion_mean = sum_of_expansion / n; double expansion_variance = (sum_of_expansion_squared - sum_of_expansion * expansion_mean) / (n - 1); // Dump methods whose size is a certain number of standard deviations from the mean size_t dumped_values = 0; size_t skipped_values = 0; for (size_t i = 100; i > 0; i--) { // i is the current number of standard deviations size_t cur_size_variance = i * i * size_variance; bool first = true; for (size_t j = 0; j < n; j++) { size_t cur_size = method_outlier_size[j]; if (cur_size > size_mean) { size_t cur_var = cur_size - size_mean; cur_var = cur_var * cur_var; if (cur_var > cur_size_variance) { if (dumped_values > 20) { if (i == 1) { skipped_values++; } else { i = 2; // jump to counting for 1 standard deviation break; } } else { if (first) { os << "\nBig methods (size > " << i << " standard deviations the norm):\n"; first = false; } os << ArtMethod::PrettyMethod(method_outlier[j]) << " requires storage of " << PrettySize(cur_size) << "\n"; method_outlier_size[j] = 0; // don't consider this method again dumped_values++; } } } } } if (skipped_values > 0) { os << "... skipped " << skipped_values << " methods with size > 1 standard deviation from the norm\n"; } os << std::flush; // Dump methods whose expansion is a certain number of standard deviations from the mean dumped_values = 0; skipped_values = 0; for (size_t i = 10; i > 0; i--) { // i is the current number of standard deviations double cur_expansion_variance = i * i * expansion_variance; bool first = true; for (size_t j = 0; j < n; j++) { double cur_expansion = method_outlier_expansion[j]; if (cur_expansion > expansion_mean) { size_t cur_var = cur_expansion - expansion_mean; cur_var = cur_var * cur_var; if (cur_var > cur_expansion_variance) { if (dumped_values > 20) { if (i == 1) { skipped_values++; } else { i = 2; // jump to counting for 1 standard deviation break; } } else { if (first) { os << "\nLarge expansion methods (size > " << i << " standard deviations the norm):\n"; first = false; } os << ArtMethod::PrettyMethod(method_outlier[j]) << " expanded code by " << cur_expansion << "\n"; method_outlier_expansion[j] = 0.0; // don't consider this method again dumped_values++; } } } } } if (skipped_values > 0) { os << "... skipped " << skipped_values << " methods with expansion > 1 standard deviation from the norm\n"; } os << "\n" << std::flush; } void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) { VariableIndentationOutputStream vios(&os); art_file_stats.DumpSizes(vios, "ArtFile"); os << "\n" << std::flush; object_stats.DumpSizes(vios, "Objects"); os << "\n" << std::flush; oat_file_stats.DumpSizes(vios, "OatFile"); os << "\n" << std::flush; for (const std::pair& oat_dex_file_size : oat_dex_file_sizes) { os << StringPrintf("%s = %zd (%2.0f%% of oat file bytes)\n", oat_dex_file_size.first.c_str(), oat_dex_file_size.second, PercentOfOatBytes(oat_dex_file_size.second)); } os << "\n" << StringPrintf("vmap_table_bytes = %7zd (%2.0f%% of oat file bytes)\n\n", vmap_table_bytes, PercentOfOatBytes(vmap_table_bytes)) << std::flush; os << StringPrintf("dex_instruction_bytes = %zd\n", dex_instruction_bytes) << StringPrintf("managed_code_bytes expansion = %.2f (ignoring deduplication %.2f)\n\n", static_cast(managed_code_bytes) / static_cast(dex_instruction_bytes), static_cast(managed_code_bytes_ignoring_deduplication) / static_cast(dex_instruction_bytes)) << std::flush; DumpOutliers(os); } } stats_; private: enum { // Number of bytes for a constructor to be considered large. Based on the 1000 basic block // threshold, we assume 2 bytes per instruction and 2 instructions per block. kLargeConstructorDexBytes = 4000, // Number of bytes for a method to be considered large. Based on the 4000 basic block // threshold, we assume 2 bytes per instruction and 2 instructions per block. kLargeMethodDexBytes = 16000 }; // For performance, use the *os_ directly for anything that doesn't need indentation // and prepare an indentation stream with default indentation 1. std::ostream* os_; VariableIndentationOutputStream vios_; ScopedIndentation indent1_; gc::space::ImageSpace& image_space_; const ImageHeader& image_header_; std::unique_ptr oat_dumper_; OatDumperOptions* oat_dumper_options_; DISALLOW_COPY_AND_ASSIGN(ImageDumper); }; static int DumpImage(gc::space::ImageSpace* image_space, OatDumperOptions* options, std::ostream* os) REQUIRES_SHARED(Locks::mutator_lock_) { const ImageHeader& image_header = image_space->GetImageHeader(); if (!image_header.IsValid()) { LOG(ERROR) << "Invalid image header " << image_space->GetImageLocation(); return EXIT_FAILURE; } ImageDumper image_dumper(os, *image_space, image_header, options); if (!image_dumper.Dump()) { return EXIT_FAILURE; } return EXIT_SUCCESS; } static int DumpImages(Runtime* runtime, OatDumperOptions* options, std::ostream* os) { // Dumping the image, no explicit class loader. ScopedNullHandle null_class_loader; options->class_loader_ = &null_class_loader; ScopedObjectAccess soa(Thread::Current()); if (options->app_image_ != nullptr) { if (options->app_oat_ == nullptr) { LOG(ERROR) << "Can not dump app image without app oat file"; return EXIT_FAILURE; } // We can't know if the app image is 32 bits yet, but it contains pointers into the oat file. // We need to map the oat file in the low 4gb or else the fixup wont be able to fit oat file // pointers into 32 bit pointer sized ArtMethods. std::string error_msg; std::unique_ptr oat_file(OatFile::Open(/*zip_fd=*/ -1, options->app_oat_, options->app_oat_, /*executable=*/ false, /*low_4gb=*/ true, &error_msg)); if (oat_file == nullptr) { LOG(ERROR) << "Failed to open oat file " << options->app_oat_ << " with error " << error_msg; return EXIT_FAILURE; } std::unique_ptr space( gc::space::ImageSpace::CreateFromAppImage(options->app_image_, oat_file.get(), &error_msg)); if (space == nullptr) { LOG(ERROR) << "Failed to open app image " << options->app_image_ << " with error " << error_msg; return EXIT_FAILURE; } // Open dex files for the image. std::vector> dex_files; if (!runtime->GetClassLinker()->OpenImageDexFiles(space.get(), &dex_files, &error_msg)) { LOG(ERROR) << "Failed to open app image dex files " << options->app_image_ << " with error " << error_msg; return EXIT_FAILURE; } // Dump the actual image. int result = DumpImage(space.get(), options, os); if (result != EXIT_SUCCESS) { return result; } // Fall through to dump the boot images. } gc::Heap* heap = runtime->GetHeap(); if (!heap->HasBootImageSpace()) { LOG(ERROR) << "No image spaces"; return EXIT_FAILURE; } for (gc::space::ImageSpace* image_space : heap->GetBootImageSpaces()) { int result = DumpImage(image_space, options, os); if (result != EXIT_SUCCESS) { return result; } } return EXIT_SUCCESS; } static jobject InstallOatFile(Runtime* runtime, std::unique_ptr oat_file, std::vector* class_path) REQUIRES_SHARED(Locks::mutator_lock_) { Thread* self = Thread::Current(); CHECK(self != nullptr); // Need well-known-classes. WellKnownClasses::Init(self->GetJniEnv()); // Open dex files. OatFile* oat_file_ptr = oat_file.get(); ClassLinker* class_linker = runtime->GetClassLinker(); runtime->GetOatFileManager().RegisterOatFile(std::move(oat_file)); for (const OatDexFile* odf : oat_file_ptr->GetOatDexFiles()) { std::string error_msg; const DexFile* const dex_file = OpenDexFile(odf, &error_msg); CHECK(dex_file != nullptr) << error_msg; class_path->push_back(dex_file); } // Need a class loader. Fake that we're a compiler. // Note: this will run initializers through the unstarted runtime, so make sure it's // initialized. interpreter::UnstartedRuntime::Initialize(); jobject class_loader = class_linker->CreatePathClassLoader(self, *class_path); // Need to register dex files to get a working dex cache. for (const DexFile* dex_file : *class_path) { ObjPtr dex_cache = class_linker->RegisterDexFile( *dex_file, self->DecodeJObject(class_loader)->AsClassLoader()); CHECK(dex_cache != nullptr); } return class_loader; } static int DumpOatWithRuntime(Runtime* runtime, std::unique_ptr oat_file, OatDumperOptions* options, std::ostream* os) { CHECK(runtime != nullptr && oat_file != nullptr && options != nullptr); ScopedObjectAccess soa(Thread::Current()); OatFile* oat_file_ptr = oat_file.get(); std::vector class_path; jobject class_loader = InstallOatFile(runtime, std::move(oat_file), &class_path); // Use the class loader while dumping. StackHandleScope<1> scope(soa.Self()); Handle loader_handle = scope.NewHandle( soa.Decode(class_loader)); options->class_loader_ = &loader_handle; OatDumper oat_dumper(*oat_file_ptr, *options); bool success = oat_dumper.Dump(*os); return (success) ? EXIT_SUCCESS : EXIT_FAILURE; } static int DumpOatWithoutRuntime(OatFile* oat_file, OatDumperOptions* options, std::ostream* os) { CHECK(oat_file != nullptr && options != nullptr); // No image = no class loader. ScopedNullHandle null_class_loader; options->class_loader_ = &null_class_loader; OatDumper oat_dumper(*oat_file, *options); bool success = oat_dumper.Dump(*os); return (success) ? EXIT_SUCCESS : EXIT_FAILURE; } static int DumpOat(Runtime* runtime, const char* oat_filename, const char* dex_filename, OatDumperOptions* options, std::ostream* os) { if (dex_filename == nullptr) { LOG(WARNING) << "No dex filename provided, " << "oatdump might fail if the oat file does not contain the dex code."; } std::string dex_filename_str((dex_filename != nullptr) ? dex_filename : ""); ArrayRef dex_filenames(&dex_filename_str, /*size=*/ (dex_filename != nullptr) ? 1u : 0u); std::string error_msg; std::unique_ptr oat_file(OatFile::Open(/*zip_fd=*/ -1, oat_filename, oat_filename, /*executable=*/ false, /*low_4gb=*/ false, dex_filenames, /*dex_fds=*/ ArrayRef(), /*reservation=*/ nullptr, &error_msg)); if (oat_file == nullptr) { LOG(ERROR) << "Failed to open oat file from '" << oat_filename << "': " << error_msg; return EXIT_FAILURE; } if (runtime != nullptr) { return DumpOatWithRuntime(runtime, std::move(oat_file), options, os); } else { return DumpOatWithoutRuntime(oat_file.get(), options, os); } } static int SymbolizeOat(const char* oat_filename, const char* dex_filename, std::string& output_name, bool no_bits) { std::string dex_filename_str((dex_filename != nullptr) ? dex_filename : ""); ArrayRef dex_filenames(&dex_filename_str, /*size=*/ (dex_filename != nullptr) ? 1u : 0u); std::string error_msg; std::unique_ptr oat_file(OatFile::Open(/*zip_fd=*/ -1, oat_filename, oat_filename, /*executable=*/ false, /*low_4gb=*/ false, dex_filenames, /*dex_fds=*/ ArrayRef(), /*reservation=*/ nullptr, &error_msg)); if (oat_file == nullptr) { LOG(ERROR) << "Failed to open oat file from '" << oat_filename << "': " << error_msg; return EXIT_FAILURE; } bool result; // Try to produce an ELF file of the same type. This is finicky, as we have used 32-bit ELF // files for 64-bit code in the past. if (Is64BitInstructionSet(oat_file->GetOatHeader().GetInstructionSet())) { OatSymbolizer oat_symbolizer(oat_file.get(), output_name, no_bits); result = oat_symbolizer.Symbolize(); } else { OatSymbolizer oat_symbolizer(oat_file.get(), output_name, no_bits); result = oat_symbolizer.Symbolize(); } if (!result) { LOG(ERROR) << "Failed to symbolize"; return EXIT_FAILURE; } return EXIT_SUCCESS; } class IMTDumper { public: static bool Dump(Runtime* runtime, const std::string& imt_file, bool dump_imt_stats, const char* oat_filename, const char* dex_filename) { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); StackHandleScope<1> scope(self); MutableHandle class_loader = scope.NewHandle(nullptr); std::vector class_path; if (oat_filename != nullptr) { std::string dex_filename_str((dex_filename != nullptr) ? dex_filename : ""); ArrayRef dex_filenames(&dex_filename_str, /*size=*/ (dex_filename != nullptr) ? 1u : 0u); std::string error_msg; std::unique_ptr oat_file(OatFile::Open(/*zip_fd=*/ -1, oat_filename, oat_filename, /*executable=*/ false, /*low_4gb=*/false, dex_filenames, /*dex_fds=*/ArrayRef(), /*reservation=*/ nullptr, &error_msg)); if (oat_file == nullptr) { LOG(ERROR) << "Failed to open oat file from '" << oat_filename << "': " << error_msg; return false; } class_loader.Assign(soa.Decode( InstallOatFile(runtime, std::move(oat_file), &class_path))); } else { class_loader.Assign(nullptr); // Boot classloader. Just here for explicit documentation. class_path = runtime->GetClassLinker()->GetBootClassPath(); } if (!imt_file.empty()) { return DumpImt(runtime, imt_file, class_loader); } if (dump_imt_stats) { return DumpImtStats(runtime, class_path, class_loader); } LOG(FATAL) << "Should not reach here"; UNREACHABLE(); } private: static bool DumpImt(Runtime* runtime, const std::string& imt_file, Handle h_class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { std::vector lines = ReadCommentedInputFromFile(imt_file); std::unordered_set prepared; for (const std::string& line : lines) { // A line should be either a class descriptor, in which case we will dump the complete IMT, // or a class descriptor and an interface method, in which case we will lookup the method, // determine its IMT slot, and check the class' IMT. size_t first_space = line.find(' '); if (first_space == std::string::npos) { DumpIMTForClass(runtime, line, h_class_loader, &prepared); } else { DumpIMTForMethod(runtime, line.substr(0, first_space), line.substr(first_space + 1, std::string::npos), h_class_loader, &prepared); } std::cerr << std::endl; } return true; } static bool DumpImtStats(Runtime* runtime, const std::vector& dex_files, Handle h_class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { size_t without_imt = 0; size_t with_imt = 0; std::map histogram; ClassLinker* class_linker = runtime->GetClassLinker(); const PointerSize pointer_size = class_linker->GetImagePointerSize(); std::unordered_set prepared; Thread* self = Thread::Current(); StackHandleScope<1> scope(self); MutableHandle h_klass(scope.NewHandle(nullptr)); for (const DexFile* dex_file : dex_files) { for (uint32_t class_def_index = 0; class_def_index != dex_file->NumClassDefs(); ++class_def_index) { const dex::ClassDef& class_def = dex_file->GetClassDef(class_def_index); const char* descriptor = dex_file->GetClassDescriptor(class_def); h_klass.Assign(class_linker->FindClass(self, descriptor, h_class_loader)); if (h_klass == nullptr) { std::cerr << "Warning: could not load " << descriptor << std::endl; continue; } if (HasNoIMT(runtime, h_klass, pointer_size, &prepared)) { without_imt++; continue; } ImTable* im_table = PrepareAndGetImTable(runtime, h_klass, pointer_size, &prepared); if (im_table == nullptr) { // Should not happen, but accept. without_imt++; continue; } with_imt++; for (size_t imt_index = 0; imt_index != ImTable::kSize; ++imt_index) { ArtMethod* ptr = im_table->Get(imt_index, pointer_size); if (ptr->IsRuntimeMethod()) { if (ptr->IsImtUnimplementedMethod()) { histogram[0]++; } else { ImtConflictTable* current_table = ptr->GetImtConflictTable(pointer_size); histogram[current_table->NumEntries(pointer_size)]++; } } else { histogram[1]++; } } } } std::cerr << "IMT stats:" << std::endl << std::endl; std::cerr << " " << with_imt << " classes with IMT." << std::endl << std::endl; std::cerr << " " << without_imt << " classes without IMT (or copy from Object)." << std::endl << std::endl; double sum_one = 0; size_t count_one = 0; std::cerr << " " << "IMT histogram" << std::endl; for (auto& bucket : histogram) { std::cerr << " " << bucket.first << " " << bucket.second << std::endl; if (bucket.first > 0) { sum_one += bucket.second * bucket.first; count_one += bucket.second; } } double count_zero = count_one + histogram[0]; std::cerr << " Stats:" << std::endl; std::cerr << " Average depth (including empty): " << (sum_one / count_zero) << std::endl; std::cerr << " Average depth (excluding empty): " << (sum_one / count_one) << std::endl; return true; } // Return whether the given class has no IMT (or the one shared with java.lang.Object). static bool HasNoIMT(Runtime* runtime, Handle klass, const PointerSize pointer_size, std::unordered_set* prepared) REQUIRES_SHARED(Locks::mutator_lock_) { if (klass->IsObjectClass() || !klass->ShouldHaveImt()) { return true; } if (klass->GetImt(pointer_size) == nullptr) { PrepareClass(runtime, klass, prepared); } ObjPtr object_class = GetClassRoot(); DCHECK(object_class->IsObjectClass()); bool result = klass->GetImt(pointer_size) == object_class->GetImt(pointer_size); if (klass->GetIfTable()->Count() == 0) { DCHECK(result); } return result; } static void PrintTable(ImtConflictTable* table, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { if (table == nullptr) { std::cerr << " " << std::endl; return; } size_t table_index = 0; for (;;) { ArtMethod* ptr = table->GetInterfaceMethod(table_index, pointer_size); if (ptr == nullptr) { return; } table_index++; std::cerr << " " << ptr->PrettyMethod(true) << std::endl; } } static ImTable* PrepareAndGetImTable(Runtime* runtime, Thread* self, Handle h_loader, const std::string& class_name, const PointerSize pointer_size, /*out*/ ObjPtr* klass_out, /*inout*/ std::unordered_set* prepared) REQUIRES_SHARED(Locks::mutator_lock_) { if (class_name.empty()) { return nullptr; } std::string descriptor; if (class_name[0] == 'L') { descriptor = class_name; } else { descriptor = DotToDescriptor(class_name.c_str()); } ObjPtr klass = runtime->GetClassLinker()->FindClass(self, descriptor.c_str(), h_loader); if (klass == nullptr) { self->ClearException(); std::cerr << "Did not find " << class_name << std::endl; *klass_out = nullptr; return nullptr; } StackHandleScope<1> scope(Thread::Current()); Handle h_klass = scope.NewHandle(klass); ImTable* ret = PrepareAndGetImTable(runtime, h_klass, pointer_size, prepared); *klass_out = h_klass.Get(); return ret; } static ImTable* PrepareAndGetImTable(Runtime* runtime, Handle h_klass, const PointerSize pointer_size, /*inout*/ std::unordered_set* prepared) REQUIRES_SHARED(Locks::mutator_lock_) { PrepareClass(runtime, h_klass, prepared); return h_klass->GetImt(pointer_size); } static void DumpIMTForClass(Runtime* runtime, const std::string& class_name, Handle h_loader, std::unordered_set* prepared) REQUIRES_SHARED(Locks::mutator_lock_) { const PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); ObjPtr klass; ImTable* imt = PrepareAndGetImTable(runtime, Thread::Current(), h_loader, class_name, pointer_size, &klass, prepared); if (imt == nullptr) { return; } std::cerr << class_name << std::endl << " IMT:" << std::endl; for (size_t index = 0; index < ImTable::kSize; ++index) { std::cerr << " " << index << ":" << std::endl; ArtMethod* ptr = imt->Get(index, pointer_size); if (ptr->IsRuntimeMethod()) { if (ptr->IsImtUnimplementedMethod()) { std::cerr << " " << std::endl; } else { ImtConflictTable* current_table = ptr->GetImtConflictTable(pointer_size); PrintTable(current_table, pointer_size); } } else { std::cerr << " " << ptr->PrettyMethod(true) << std::endl; } } std::cerr << " Interfaces:" << std::endl; // Run through iftable, find methods that slot here, see if they fit. ObjPtr if_table = klass->GetIfTable(); for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { ObjPtr iface = if_table->GetInterface(i); std::string iface_name; std::cerr << " " << iface->GetDescriptor(&iface_name) << std::endl; for (ArtMethod& iface_method : iface->GetVirtualMethods(pointer_size)) { uint32_t class_hash, name_hash, signature_hash; ImTable::GetImtHashComponents(&iface_method, &class_hash, &name_hash, &signature_hash); uint32_t imt_slot = ImTable::GetImtIndex(&iface_method); std::cerr << " " << iface_method.PrettyMethod(true) << " slot=" << imt_slot << std::hex << " class_hash=0x" << class_hash << " name_hash=0x" << name_hash << " signature_hash=0x" << signature_hash << std::dec << std::endl; } } } static void DumpIMTForMethod(Runtime* runtime, const std::string& class_name, const std::string& method, Handle h_loader, /*inout*/ std::unordered_set* prepared) REQUIRES_SHARED(Locks::mutator_lock_) { const PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); ObjPtr klass; ImTable* imt = PrepareAndGetImTable(runtime, Thread::Current(), h_loader, class_name, pointer_size, &klass, prepared); if (imt == nullptr) { return; } std::cerr << class_name << " <" << method << ">" << std::endl; for (size_t index = 0; index < ImTable::kSize; ++index) { ArtMethod* ptr = imt->Get(index, pointer_size); if (ptr->IsRuntimeMethod()) { if (ptr->IsImtUnimplementedMethod()) { continue; } ImtConflictTable* current_table = ptr->GetImtConflictTable(pointer_size); if (current_table == nullptr) { continue; } size_t table_index = 0; for (;;) { ArtMethod* ptr2 = current_table->GetInterfaceMethod(table_index, pointer_size); if (ptr2 == nullptr) { break; } table_index++; std::string p_name = ptr2->PrettyMethod(true); if (android::base::StartsWith(p_name, method)) { std::cerr << " Slot " << index << " (" << current_table->NumEntries(pointer_size) << ")" << std::endl; PrintTable(current_table, pointer_size); return; } } } else { std::string p_name = ptr->PrettyMethod(true); if (android::base::StartsWith(p_name, method)) { std::cerr << " Slot " << index << " (1)" << std::endl; std::cerr << " " << p_name << std::endl; } else { // Run through iftable, find methods that slot here, see if they fit. ObjPtr if_table = klass->GetIfTable(); for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) { ObjPtr iface = if_table->GetInterface(i); size_t num_methods = iface->NumDeclaredVirtualMethods(); if (num_methods > 0) { for (ArtMethod& iface_method : iface->GetMethods(pointer_size)) { if (ImTable::GetImtIndex(&iface_method) == index) { std::string i_name = iface_method.PrettyMethod(true); if (android::base::StartsWith(i_name, method)) { std::cerr << " Slot " << index << " (1)" << std::endl; std::cerr << " " << p_name << " (" << i_name << ")" << std::endl; } } } } } } } } } // Read lines from the given stream, dropping comments and empty lines static std::vector ReadCommentedInputStream(std::istream& in_stream) { std::vector output; while (in_stream.good()) { std::string dot; std::getline(in_stream, dot); if (android::base::StartsWith(dot, "#") || dot.empty()) { continue; } output.push_back(dot); } return output; } // Read lines from the given file, dropping comments and empty lines. static std::vector ReadCommentedInputFromFile(const std::string& input_filename) { std::unique_ptr input_file(new std::ifstream(input_filename, std::ifstream::in)); if (input_file.get() == nullptr) { LOG(ERROR) << "Failed to open input file " << input_filename; return std::vector(); } std::vector result = ReadCommentedInputStream(*input_file); input_file->close(); return result; } // Prepare a class, i.e., ensure it has a filled IMT. Will do so recursively for superclasses, // and note in the given set that the work was done. static void PrepareClass(Runtime* runtime, Handle h_klass, /*inout*/ std::unordered_set* done) REQUIRES_SHARED(Locks::mutator_lock_) { if (!h_klass->ShouldHaveImt()) { return; } std::string name; name = h_klass->GetDescriptor(&name); if (done->find(name) != done->end()) { return; } done->insert(name); if (h_klass->HasSuperClass()) { StackHandleScope<1> h(Thread::Current()); PrepareClass(runtime, h.NewHandle(h_klass->GetSuperClass()), done); } if (!h_klass->IsTemp()) { runtime->GetClassLinker()->FillIMTAndConflictTables(h_klass.Get()); } } }; struct OatdumpArgs : public CmdlineArgs { protected: using Base = CmdlineArgs; ParseStatus ParseCustom(const char* raw_option, size_t raw_option_length, std::string* error_msg) override { DCHECK_EQ(strlen(raw_option), raw_option_length); { ParseStatus base_parse = Base::ParseCustom(raw_option, raw_option_length, error_msg); if (base_parse != kParseUnknownArgument) { return base_parse; } } std::string_view option(raw_option, raw_option_length); if (StartsWith(option, "--oat-file=")) { oat_filename_ = raw_option + strlen("--oat-file="); } else if (StartsWith(option, "--dex-file=")) { dex_filename_ = raw_option + strlen("--dex-file="); } else if (StartsWith(option, "--image=")) { image_location_ = raw_option + strlen("--image="); } else if (option == "--no-dump:vmap") { dump_vmap_ = false; } else if (option =="--dump:code_info_stack_maps") { dump_code_info_stack_maps_ = true; } else if (option == "--no-disassemble") { disassemble_code_ = false; } else if (option =="--header-only") { dump_header_only_ = true; } else if (StartsWith(option, "--symbolize=")) { oat_filename_ = raw_option + strlen("--symbolize="); symbolize_ = true; } else if (StartsWith(option, "--only-keep-debug")) { only_keep_debug_ = true; } else if (StartsWith(option, "--class-filter=")) { class_filter_ = raw_option + strlen("--class-filter="); } else if (StartsWith(option, "--method-filter=")) { method_filter_ = raw_option + strlen("--method-filter="); } else if (StartsWith(option, "--list-classes")) { list_classes_ = true; } else if (StartsWith(option, "--list-methods")) { list_methods_ = true; } else if (StartsWith(option, "--export-dex-to=")) { export_dex_location_ = raw_option + strlen("--export-dex-to="); } else if (StartsWith(option, "--addr2instr=")) { if (!android::base::ParseUint(raw_option + strlen("--addr2instr="), &addr2instr_)) { *error_msg = "Address conversion failed"; return kParseError; } } else if (StartsWith(option, "--app-image=")) { app_image_ = raw_option + strlen("--app-image="); } else if (StartsWith(option, "--app-oat=")) { app_oat_ = raw_option + strlen("--app-oat="); } else if (StartsWith(option, "--dump-imt=")) { imt_dump_ = std::string(option.substr(strlen("--dump-imt="))); } else if (option == "--dump-imt-stats") { imt_stat_dump_ = true; } else { return kParseUnknownArgument; } return kParseOk; } ParseStatus ParseChecks(std::string* error_msg) override { // Infer boot image location from the image location if possible. if (boot_image_location_ == nullptr) { boot_image_location_ = image_location_; } // Perform the parent checks. ParseStatus parent_checks = Base::ParseChecks(error_msg); if (parent_checks != kParseOk) { return parent_checks; } // Perform our own checks. if (image_location_ == nullptr && oat_filename_ == nullptr) { *error_msg = "Either --image or --oat-file must be specified"; return kParseError; } else if (image_location_ != nullptr && oat_filename_ != nullptr) { *error_msg = "Either --image or --oat-file must be specified but not both"; return kParseError; } return kParseOk; } std::string GetUsage() const override { std::string usage; usage += "Usage: oatdump [options] ...\n" " Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art\n" " Example: adb shell oatdump --image=/system/framework/boot.art\n" "\n" // Either oat-file or image is required. " --oat-file=: specifies an input oat filename.\n" " Example: --oat-file=/system/framework/arm64/boot.oat\n" "\n" " --image=: specifies an input image location.\n" " Example: --image=/system/framework/boot.art\n" "\n" " --app-image=: specifies an input app image. Must also have a specified\n" " boot image (with --image) and app oat file (with --app-oat).\n" " Example: --app-image=app.art\n" "\n" " --app-oat=: specifies an input app oat.\n" " Example: --app-oat=app.odex\n" "\n"; usage += Base::GetUsage(); usage += // Optional. " --no-dump:vmap may be used to disable vmap dumping.\n" " Example: --no-dump:vmap\n" "\n" " --dump:code_info_stack_maps enables dumping of stack maps in CodeInfo sections.\n" " Example: --dump:code_info_stack_maps\n" "\n" " --no-disassemble may be used to disable disassembly.\n" " Example: --no-disassemble\n" "\n" " --header-only may be used to print only the oat header.\n" " Example: --header-only\n" "\n" " --list-classes may be used to list target file classes (can be used with filters).\n" " Example: --list-classes\n" " Example: --list-classes --class-filter=com.example.foo\n" "\n" " --list-methods may be used to list target file methods (can be used with filters).\n" " Example: --list-methods\n" " Example: --list-methods --class-filter=com.example --method-filter=foo\n" "\n" " --symbolize=: output a copy of file.oat with elf symbols included.\n" " Example: --symbolize=/system/framework/boot.oat\n" "\n" " --only-keep-debug: Modifies the behaviour of --symbolize so that\n" " .rodata and .text sections are omitted in the output file to save space.\n" " Example: --symbolize=/system/framework/boot.oat --only-keep-debug\n" "\n" " --class-filter=: only dumps classes that contain the filter.\n" " Example: --class-filter=com.example.foo\n" "\n" " --method-filter=: only dumps methods that contain the filter.\n" " Example: --method-filter=foo\n" "\n" " --export-dex-to=: may be used to export oat embedded dex files.\n" " Example: --export-dex-to=/data/local/tmp\n" "\n" " --addr2instr=
: output matching method disassembled code from relative\n" " address (e.g. PC from crash dump)\n" " Example: --addr2instr=0x00001a3b\n" "\n" " --dump-imt=: output IMT collisions (if any) for the given receiver\n" " types and interface methods in the given file. The file\n" " is read line-wise, where each line should either be a class\n" " name or descriptor, or a class name/descriptor and a prefix\n" " of a complete method name (separated by a whitespace).\n" " Example: --dump-imt=imt.txt\n" "\n" " --dump-imt-stats: output IMT statistics for the given boot image\n" " Example: --dump-imt-stats" "\n"; return usage; } public: const char* oat_filename_ = nullptr; const char* dex_filename_ = nullptr; const char* class_filter_ = ""; const char* method_filter_ = ""; const char* image_location_ = nullptr; std::string elf_filename_prefix_; std::string imt_dump_; bool dump_vmap_ = true; bool dump_code_info_stack_maps_ = false; bool disassemble_code_ = true; bool symbolize_ = false; bool only_keep_debug_ = false; bool list_classes_ = false; bool list_methods_ = false; bool dump_header_only_ = false; bool imt_stat_dump_ = false; uint32_t addr2instr_ = 0; const char* export_dex_location_ = nullptr; const char* app_image_ = nullptr; const char* app_oat_ = nullptr; }; struct OatdumpMain : public CmdlineMain { bool NeedsRuntime() override { CHECK(args_ != nullptr); // If we are only doing the oat file, disable absolute_addresses. Keep them for image dumping. bool absolute_addresses = (args_->oat_filename_ == nullptr); oat_dumper_options_.reset(new OatDumperOptions( args_->dump_vmap_, args_->dump_code_info_stack_maps_, args_->disassemble_code_, absolute_addresses, args_->class_filter_, args_->method_filter_, args_->list_classes_, args_->list_methods_, args_->dump_header_only_, args_->export_dex_location_, args_->app_image_, args_->app_oat_, args_->addr2instr_)); return (args_->boot_image_location_ != nullptr || args_->image_location_ != nullptr || !args_->imt_dump_.empty()) && !args_->symbolize_; } bool ExecuteWithoutRuntime() override { CHECK(args_ != nullptr); CHECK(args_->oat_filename_ != nullptr); MemMap::Init(); if (args_->symbolize_) { // ELF has special kind of section called SHT_NOBITS which allows us to create // sections which exist but their data is omitted from the ELF file to save space. // This is what "strip --only-keep-debug" does when it creates separate ELF file // with only debug data. We use it in similar way to exclude .rodata and .text. bool no_bits = args_->only_keep_debug_; return SymbolizeOat(args_->oat_filename_, args_->dex_filename_, args_->output_name_, no_bits) == EXIT_SUCCESS; } else { return DumpOat(nullptr, args_->oat_filename_, args_->dex_filename_, oat_dumper_options_.get(), args_->os_) == EXIT_SUCCESS; } } bool ExecuteWithRuntime(Runtime* runtime) override { CHECK(args_ != nullptr); if (!args_->imt_dump_.empty() || args_->imt_stat_dump_) { return IMTDumper::Dump(runtime, args_->imt_dump_, args_->imt_stat_dump_, args_->oat_filename_, args_->dex_filename_); } if (args_->oat_filename_ != nullptr) { return DumpOat(runtime, args_->oat_filename_, args_->dex_filename_, oat_dumper_options_.get(), args_->os_) == EXIT_SUCCESS; } return DumpImages(runtime, oat_dumper_options_.get(), args_->os_) == EXIT_SUCCESS; } std::unique_ptr oat_dumper_options_; }; } // namespace art int main(int argc, char** argv) { // Output all logging to stderr. android::base::SetLogger(android::base::StderrLogger); art::OatdumpMain main; return main.Main(argc, argv); }