/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include "arch/instruction_set.h" #include "art_method.h" #include "base/enums.h" #include "base/hex_dump.h" #include "base/logging.h" // For VLOG. #include "base/macros.h" #include "registers_arm64.h" #include "runtime_globals.h" #include "thread-current-inl.h" extern "C" void art_quick_throw_stack_overflow(); extern "C" void art_quick_throw_null_pointer_exception_from_signal(); extern "C" void art_quick_implicit_suspend(); // // ARM64 specific fault handler functions. // namespace art { uintptr_t FaultManager::GetFaultPc(siginfo_t* siginfo, void* context) { // SEGV_MTEAERR (Async MTE fault) is delivered at an arbitrary point after the actual fault. // Register contents, including PC and SP, are unrelated to the fault and can only confuse ART // signal handlers. if (siginfo->si_signo == SIGSEGV && siginfo->si_code == SEGV_MTEAERR) { VLOG(signals) << "Async MTE fault"; return 0u; } ucontext_t* uc = reinterpret_cast(context); mcontext_t* mc = reinterpret_cast(&uc->uc_mcontext); if (mc->sp == 0) { VLOG(signals) << "Missing SP"; return 0u; } return mc->pc; } uintptr_t FaultManager::GetFaultSp(void* context) { ucontext_t* uc = reinterpret_cast(context); mcontext_t* mc = reinterpret_cast(&uc->uc_mcontext); return mc->sp; } bool NullPointerHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info, void* context) { uintptr_t fault_address = reinterpret_cast(info->si_addr); if (!IsValidFaultAddress(fault_address)) { return false; } // For null checks in compiled code we insert a stack map that is immediately // after the load/store instruction that might cause the fault and we need to // pass the return PC to the handler. For null checks in Nterp, we similarly // need the return PC to recognize that this was a null check in Nterp, so // that the handler can get the needed data from the Nterp frame. ucontext_t* uc = reinterpret_cast(context); mcontext_t* mc = reinterpret_cast(&uc->uc_mcontext); ArtMethod** sp = reinterpret_cast(mc->sp); uintptr_t return_pc = mc->pc + 4u; if (!IsValidMethod(*sp) || !IsValidReturnPc(sp, return_pc)) { return false; } // Push the return PC to the stack and pass the fault address in LR. mc->sp -= sizeof(uintptr_t); *reinterpret_cast(mc->sp) = return_pc; mc->regs[30] = fault_address; // Arrange for the signal handler to return to the NPE entrypoint. mc->pc = reinterpret_cast(art_quick_throw_null_pointer_exception_from_signal); VLOG(signals) << "Generating null pointer exception"; return true; } // A suspend check is done using the following instruction: // 0x...: f94002b5 ldr x21, [x21, #0] // To check for a suspend check, we examine the instruction that caused the fault (at PC). bool SuspensionHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { constexpr uint32_t kSuspendCheckRegister = 21; constexpr uint32_t checkinst = 0xf9400000 | (kSuspendCheckRegister << 5) | (kSuspendCheckRegister << 0); ucontext_t* uc = reinterpret_cast(context); mcontext_t* mc = reinterpret_cast(&uc->uc_mcontext); uint32_t inst = *reinterpret_cast(mc->pc); VLOG(signals) << "checking suspend; inst: " << std::hex << inst << " checkinst: " << checkinst; if (inst != checkinst) { // The instruction is not good, not ours. return false; } // This is a suspend check. VLOG(signals) << "suspend check match"; // Set LR so that after the suspend check it will resume after the // `ldr x21, [x21,#0]` instruction that triggered the suspend check. mc->regs[30] = mc->pc + 4; // Arrange for the signal handler to return to `art_quick_implicit_suspend()`. mc->pc = reinterpret_cast(art_quick_implicit_suspend); // Now remove the suspend trigger that caused this fault. Thread::Current()->RemoveSuspendTrigger(); VLOG(signals) << "removed suspend trigger invoking test suspend"; return true; } bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { ucontext_t* uc = reinterpret_cast(context); mcontext_t* mc = reinterpret_cast(&uc->uc_mcontext); VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; VLOG(signals) << "sigcontext: " << std::hex << mc; uintptr_t sp = mc->sp; VLOG(signals) << "sp: " << std::hex << sp; uintptr_t fault_addr = mc->fault_address; VLOG(signals) << "fault_addr: " << std::hex << fault_addr; VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << ", fault_addr: " << fault_addr; uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kArm64); // Check that the fault address is the value expected for a stack overflow. if (fault_addr != overflow_addr) { VLOG(signals) << "Not a stack overflow"; return false; } VLOG(signals) << "Stack overflow found"; // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. // The value of LR must be the same as it was when we entered the code that // caused this fault. This will be inserted into a callee save frame by // the function to which this handler returns (art_quick_throw_stack_overflow). mc->pc = reinterpret_cast(art_quick_throw_stack_overflow); // The kernel will now return to the address in sc->pc. return true; } } // namespace art