/* * Copyright 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/gc_visited_arena_pool.h" #include #include #include #include "base/arena_allocator-inl.h" #include "base/memfd.h" #include "base/utils.h" #include "gc/collector/mark_compact-inl.h" namespace art { TrackedArena::TrackedArena(uint8_t* start, size_t size, bool pre_zygote_fork) : Arena(), first_obj_array_(nullptr), pre_zygote_fork_(pre_zygote_fork) { static_assert(ArenaAllocator::kArenaAlignment <= kPageSize, "Arena should not need stronger alignment than kPageSize."); DCHECK_ALIGNED(size, kPageSize); DCHECK_ALIGNED(start, kPageSize); memory_ = start; size_ = size; size_t arr_size = size / kPageSize; first_obj_array_.reset(new uint8_t*[arr_size]); std::fill_n(first_obj_array_.get(), arr_size, nullptr); } void TrackedArena::Release() { if (bytes_allocated_ > 0) { // Userfaultfd GC uses MAP_SHARED mappings for linear-alloc and therefore // MADV_DONTNEED will not free the pages from page cache. Therefore use // MADV_REMOVE instead, which is meant for this purpose. // Arenas allocated pre-zygote fork are private anonymous and hence must be // released using MADV_DONTNEED. if (!gUseUserfaultfd || pre_zygote_fork_ || (madvise(Begin(), Size(), MADV_REMOVE) == -1 && errno == EINVAL)) { // MADV_REMOVE fails if invoked on anonymous mapping, which could happen // if the arena is released before userfaultfd-GC starts using memfd. So // use MADV_DONTNEED. ZeroAndReleasePages(Begin(), Size()); } std::fill_n(first_obj_array_.get(), Size() / kPageSize, nullptr); bytes_allocated_ = 0; } } void TrackedArena::SetFirstObject(uint8_t* obj_begin, uint8_t* obj_end) { DCHECK_LE(static_cast(Begin()), static_cast(obj_end)); DCHECK_LT(static_cast(obj_begin), static_cast(obj_end)); size_t idx = static_cast(obj_begin - Begin()) / kPageSize; size_t last_byte_idx = static_cast(obj_end - 1 - Begin()) / kPageSize; // If the addr is at the beginning of a page, then we set it for that page too. if (IsAligned(obj_begin)) { first_obj_array_[idx] = obj_begin; } while (idx < last_byte_idx) { first_obj_array_[++idx] = obj_begin; } } uint8_t* GcVisitedArenaPool::AddMap(size_t min_size) { size_t size = std::max(min_size, kLinearAllocPoolSize); #if defined(__LP64__) // This is true only when we are running a 64-bit dex2oat to compile a 32-bit image. if (low_4gb_) { size = std::max(min_size, kLow4GBLinearAllocPoolSize); } #endif size_t alignment = BestPageTableAlignment(size); DCHECK_GE(size, kPMDSize); std::string err_msg; maps_.emplace_back(MemMap::MapAnonymousAligned( name_, size, PROT_READ | PROT_WRITE, low_4gb_, alignment, &err_msg)); MemMap& map = maps_.back(); if (!map.IsValid()) { LOG(FATAL) << "Failed to allocate " << name_ << ": " << err_msg; UNREACHABLE(); } if (gUseUserfaultfd) { // Create a shadow-map for the map being added for userfaultfd GC gc::collector::MarkCompact* mark_compact = Runtime::Current()->GetHeap()->MarkCompactCollector(); DCHECK_NE(mark_compact, nullptr); mark_compact->AddLinearAllocSpaceData(map.Begin(), map.Size()); } Chunk* chunk = new Chunk(map.Begin(), map.Size()); best_fit_allocs_.insert(chunk); free_chunks_.insert(chunk); return map.Begin(); } GcVisitedArenaPool::GcVisitedArenaPool(bool low_4gb, bool is_zygote, const char* name) : bytes_allocated_(0), name_(name), low_4gb_(low_4gb), pre_zygote_fork_(is_zygote) {} GcVisitedArenaPool::~GcVisitedArenaPool() { for (Chunk* chunk : free_chunks_) { delete chunk; } // Must not delete chunks from best_fit_allocs_ as they are shared with // free_chunks_. } size_t GcVisitedArenaPool::GetBytesAllocated() const { std::lock_guard lock(lock_); return bytes_allocated_; } uint8_t* GcVisitedArenaPool::AddPreZygoteForkMap(size_t size) { DCHECK(pre_zygote_fork_); DCHECK(Runtime::Current()->IsZygote()); std::string pre_fork_name = "Pre-zygote-"; pre_fork_name += name_; std::string err_msg; maps_.emplace_back(MemMap::MapAnonymous( pre_fork_name.c_str(), size, PROT_READ | PROT_WRITE, low_4gb_, &err_msg)); MemMap& map = maps_.back(); if (!map.IsValid()) { LOG(FATAL) << "Failed to allocate " << pre_fork_name << ": " << err_msg; UNREACHABLE(); } return map.Begin(); } Arena* GcVisitedArenaPool::AllocArena(size_t size) { // Return only page aligned sizes so that madvise can be leveraged. size = RoundUp(size, kPageSize); std::lock_guard lock(lock_); if (pre_zygote_fork_) { // The first fork out of zygote hasn't happened yet. Allocate arena in a // private-anonymous mapping to retain clean pages across fork. DCHECK(Runtime::Current()->IsZygote()); uint8_t* addr = AddPreZygoteForkMap(size); auto emplace_result = allocated_arenas_.emplace(addr, size, /*pre_zygote_fork=*/true); return const_cast(&(*emplace_result.first)); } Chunk temp_chunk(nullptr, size); auto best_fit_iter = best_fit_allocs_.lower_bound(&temp_chunk); if (UNLIKELY(best_fit_iter == best_fit_allocs_.end())) { AddMap(size); best_fit_iter = best_fit_allocs_.lower_bound(&temp_chunk); CHECK(best_fit_iter != best_fit_allocs_.end()); } auto free_chunks_iter = free_chunks_.find(*best_fit_iter); DCHECK(free_chunks_iter != free_chunks_.end()); Chunk* chunk = *best_fit_iter; DCHECK_EQ(chunk, *free_chunks_iter); // if the best-fit chunk < 2x the requested size, then give the whole chunk. if (chunk->size_ < 2 * size) { DCHECK_GE(chunk->size_, size); auto emplace_result = allocated_arenas_.emplace(chunk->addr_, chunk->size_, /*pre_zygote_fork=*/false); DCHECK(emplace_result.second); free_chunks_.erase(free_chunks_iter); best_fit_allocs_.erase(best_fit_iter); delete chunk; return const_cast(&(*emplace_result.first)); } else { auto emplace_result = allocated_arenas_.emplace(chunk->addr_, size, /*pre_zygote_fork=*/false); DCHECK(emplace_result.second); // Compute next iterators for faster insert later. auto next_best_fit_iter = best_fit_iter; next_best_fit_iter++; auto next_free_chunks_iter = free_chunks_iter; next_free_chunks_iter++; auto best_fit_nh = best_fit_allocs_.extract(best_fit_iter); auto free_chunks_nh = free_chunks_.extract(free_chunks_iter); best_fit_nh.value()->addr_ += size; best_fit_nh.value()->size_ -= size; DCHECK_EQ(free_chunks_nh.value()->addr_, chunk->addr_); best_fit_allocs_.insert(next_best_fit_iter, std::move(best_fit_nh)); free_chunks_.insert(next_free_chunks_iter, std::move(free_chunks_nh)); return const_cast(&(*emplace_result.first)); } } void GcVisitedArenaPool::FreeRangeLocked(uint8_t* range_begin, size_t range_size) { Chunk temp_chunk(range_begin, range_size); bool merge_with_next = false; bool merge_with_prev = false; auto next_iter = free_chunks_.lower_bound(&temp_chunk); auto iter_for_extract = free_chunks_.end(); // Can we merge with the previous chunk? if (next_iter != free_chunks_.begin()) { auto prev_iter = next_iter; prev_iter--; merge_with_prev = (*prev_iter)->addr_ + (*prev_iter)->size_ == range_begin; if (merge_with_prev) { range_begin = (*prev_iter)->addr_; range_size += (*prev_iter)->size_; // Hold on to the iterator for faster extract later iter_for_extract = prev_iter; } } // Can we merge with the next chunk? if (next_iter != free_chunks_.end()) { merge_with_next = range_begin + range_size == (*next_iter)->addr_; if (merge_with_next) { range_size += (*next_iter)->size_; if (merge_with_prev) { auto iter = next_iter; next_iter++; // Keep only one of the two chunks to be expanded. Chunk* chunk = *iter; size_t erase_res = best_fit_allocs_.erase(chunk); DCHECK_EQ(erase_res, 1u); free_chunks_.erase(iter); delete chunk; } else { iter_for_extract = next_iter; next_iter++; } } } // Extract-insert avoids 2/4 destroys and 2/2 creations // as compared to erase-insert, so use that when merging. if (merge_with_prev || merge_with_next) { auto free_chunks_nh = free_chunks_.extract(iter_for_extract); auto best_fit_allocs_nh = best_fit_allocs_.extract(*iter_for_extract); free_chunks_nh.value()->addr_ = range_begin; DCHECK_EQ(best_fit_allocs_nh.value()->addr_, range_begin); free_chunks_nh.value()->size_ = range_size; DCHECK_EQ(best_fit_allocs_nh.value()->size_, range_size); free_chunks_.insert(next_iter, std::move(free_chunks_nh)); // Since the chunk's size has expanded, the hint won't be useful // for best-fit set. best_fit_allocs_.insert(std::move(best_fit_allocs_nh)); } else { DCHECK(iter_for_extract == free_chunks_.end()); Chunk* chunk = new Chunk(range_begin, range_size); free_chunks_.insert(next_iter, chunk); best_fit_allocs_.insert(chunk); } } void GcVisitedArenaPool::FreeArenaChain(Arena* first) { if (kRunningOnMemoryTool) { for (Arena* arena = first; arena != nullptr; arena = arena->Next()) { MEMORY_TOOL_MAKE_UNDEFINED(arena->Begin(), arena->GetBytesAllocated()); } } // TODO: Handle the case when arena_allocator::kArenaAllocatorPreciseTracking // is true. See MemMapArenaPool::FreeArenaChain() for example. CHECK(!arena_allocator::kArenaAllocatorPreciseTracking); // madvise the arenas before acquiring lock for scalability for (Arena* temp = first; temp != nullptr; temp = temp->Next()) { temp->Release(); } std::lock_guard lock(lock_); arenas_freed_ = true; while (first != nullptr) { FreeRangeLocked(first->Begin(), first->Size()); // In other implementations of ArenaPool this is calculated when asked for, // thanks to the list of free arenas that is kept around. But in this case, // we release the freed arena back to the pool and therefore need to // calculate here. bytes_allocated_ += first->GetBytesAllocated(); TrackedArena* temp = down_cast(first); // TODO: Add logic to unmap the maps corresponding to pre-zygote-fork // arenas, which are expected to be released only during shutdown. first = first->Next(); size_t erase_count = allocated_arenas_.erase(*temp); DCHECK_EQ(erase_count, 1u); } } } // namespace art