/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "class_linker.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "barrier.h" #include "base/arena_allocator.h" #include "base/arena_bit_vector.h" #include "base/casts.h" #include "base/file_utils.h" #include "base/hash_map.h" #include "base/hash_set.h" #include "base/leb128.h" #include "base/logging.h" #include "base/mem_map_arena_pool.h" #include "base/metrics/metrics.h" #include "base/mutex-inl.h" #include "base/os.h" #include "base/quasi_atomic.h" #include "base/scoped_arena_containers.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/string_view_cpp20.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "base/value_object.h" #include "cha.h" #include "class_linker-inl.h" #include "class_loader_utils.h" #include "class_root-inl.h" #include "class_table-inl.h" #include "compiler_callbacks.h" #include "debug_print.h" #include "debugger.h" #include "dex/class_accessor-inl.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_annotations.h" #include "dex/dex_file_exception_helpers.h" #include "dex/dex_file_loader.h" #include "dex/signature-inl.h" #include "dex/utf.h" #include "entrypoints/entrypoint_utils-inl.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "experimental_flags.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap-visit-objects-inl.h" #include "gc/heap.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc_root-inl.h" #include "handle_scope-inl.h" #include "hidden_api.h" #include "image-inl.h" #include "imt_conflict_table.h" #include "imtable-inl.h" #include "intern_table-inl.h" #include "interpreter/interpreter.h" #include "interpreter/mterp/nterp.h" #include "jit/debugger_interface.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jni/java_vm_ext.h" #include "jni/jni_internal.h" #include "linear_alloc-inl.h" #include "mirror/array-alloc-inl.h" #include "mirror/array-inl.h" #include "mirror/call_site.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/class.h" #include "mirror/class_ext.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/dex_cache.h" #include "mirror/emulated_stack_frame.h" #include "mirror/field.h" #include "mirror/iftable-inl.h" #include "mirror/method.h" #include "mirror/method_handle_impl.h" #include "mirror/method_handles_lookup.h" #include "mirror/method_type.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "mirror/object.h" #include "mirror/object_array-alloc-inl.h" #include "mirror/object_array-inl.h" #include "mirror/object_array.h" #include "mirror/object_reference-inl.h" #include "mirror/object_reference.h" #include "mirror/proxy.h" #include "mirror/reference-inl.h" #include "mirror/stack_trace_element.h" #include "mirror/string-inl.h" #include "mirror/throwable.h" #include "mirror/var_handle.h" #include "native/dalvik_system_DexFile.h" #include "nativehelper/scoped_local_ref.h" #include "nterp_helpers.h" #include "oat.h" #include "oat_file-inl.h" #include "oat_file.h" #include "oat_file_assistant.h" #include "oat_file_manager.h" #include "object_lock.h" #include "profile/profile_compilation_info.h" #include "runtime.h" #include "runtime_callbacks.h" #include "scoped_thread_state_change-inl.h" #include "startup_completed_task.h" #include "thread-inl.h" #include "thread.h" #include "thread_list.h" #include "trace.h" #include "transaction.h" #include "vdex_file.h" #include "verifier/class_verifier.h" #include "verifier/verifier_deps.h" #include "well_known_classes.h" namespace art { using android::base::StringPrintf; static constexpr bool kCheckImageObjects = kIsDebugBuild; static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild; static void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))) REQUIRES_SHARED(Locks::mutator_lock_); static void ThrowNoClassDefFoundError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread* self = Thread::Current(); self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args); va_end(args); } static ObjPtr GetErroneousStateError(ObjPtr c) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr ext(c->GetExtData()); if (ext == nullptr) { return nullptr; } else { return ext->GetErroneousStateError(); } } static bool IsVerifyError(ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_) { // This is slow, but we only use it for rethrowing an error, and for DCHECK. return obj->GetClass()->DescriptorEquals("Ljava/lang/VerifyError;"); } // Helper for ThrowEarlierClassFailure. Throws the stored error. static void HandleEarlierErroneousStateError(Thread* self, ClassLinker* class_linker, ObjPtr c) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr obj = GetErroneousStateError(c); DCHECK(obj != nullptr); self->AssertNoPendingException(); DCHECK(!obj->IsClass()); ObjPtr throwable_class = GetClassRoot(class_linker); ObjPtr error_class = obj->GetClass(); CHECK(throwable_class->IsAssignableFrom(error_class)); self->SetException(obj->AsThrowable()); self->AssertPendingException(); } static void UpdateClassAfterVerification(Handle klass, PointerSize pointer_size, verifier::FailureKind failure_kind) REQUIRES_SHARED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); if (klass->IsVerified() && (failure_kind == verifier::FailureKind::kNoFailure)) { klass->SetSkipAccessChecksFlagOnAllMethods(pointer_size); } // Now that the class has passed verification, try to set nterp entrypoints // to methods that currently use the switch interpreter. if (interpreter::CanRuntimeUseNterp()) { for (ArtMethod& m : klass->GetMethods(pointer_size)) { if (class_linker->IsQuickToInterpreterBridge(m.GetEntryPointFromQuickCompiledCode())) { runtime->GetInstrumentation()->InitializeMethodsCode(&m, /*aot_code=*/nullptr); } } } } // Callback responsible for making a batch of classes visibly initialized // after all threads have called it from a checkpoint, ensuring visibility. class ClassLinker::VisiblyInitializedCallback final : public Closure, public IntrusiveForwardListNode { public: explicit VisiblyInitializedCallback(ClassLinker* class_linker) : class_linker_(class_linker), num_classes_(0u), thread_visibility_counter_(0), barriers_() { std::fill_n(classes_, kMaxClasses, nullptr); } bool IsEmpty() const { DCHECK_LE(num_classes_, kMaxClasses); return num_classes_ == 0u; } bool IsFull() const { DCHECK_LE(num_classes_, kMaxClasses); return num_classes_ == kMaxClasses; } void AddClass(Thread* self, ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(klass->GetStatus(), ClassStatus::kInitialized); DCHECK(!IsFull()); classes_[num_classes_] = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, klass); ++num_classes_; } void AddBarrier(Barrier* barrier) { barriers_.push_front(barrier); } std::forward_list GetAndClearBarriers() { std::forward_list result; result.swap(barriers_); result.reverse(); // Return barriers in insertion order. return result; } void MakeVisible(Thread* self) { DCHECK_EQ(thread_visibility_counter_.load(std::memory_order_relaxed), 0); size_t count = Runtime::Current()->GetThreadList()->RunCheckpoint(this); AdjustThreadVisibilityCounter(self, count); } void Run(Thread* self) override { AdjustThreadVisibilityCounter(self, -1); } private: void AdjustThreadVisibilityCounter(Thread* self, ssize_t adjustment) { ssize_t old = thread_visibility_counter_.fetch_add(adjustment, std::memory_order_relaxed); if (old + adjustment == 0) { // All threads passed the checkpoint. Mark classes as visibly initialized. { ScopedObjectAccess soa(self); StackHandleScope<1u> hs(self); MutableHandle klass = hs.NewHandle(nullptr); JavaVMExt* vm = self->GetJniEnv()->GetVm(); for (size_t i = 0, num = num_classes_; i != num; ++i) { klass.Assign(ObjPtr::DownCast(self->DecodeJObject(classes_[i]))); vm->DeleteWeakGlobalRef(self, classes_[i]); if (klass != nullptr) { mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self); class_linker_->FixupStaticTrampolines(self, klass.Get()); } } num_classes_ = 0u; } class_linker_->VisiblyInitializedCallbackDone(self, this); } } // Making classes initialized in bigger batches helps with app startup for // apps that initialize a lot of classes by running fewer checkpoints. // (On the other hand, bigger batches make class initialization checks more // likely to take a slow path but that is mitigated by making partially // filled buffers visibly initialized if we take the slow path many times. // See `Thread::kMakeVisiblyInitializedCounterTriggerCount`.) static constexpr size_t kMaxClasses = 48; ClassLinker* const class_linker_; size_t num_classes_; jweak classes_[kMaxClasses]; // The thread visibility counter starts at 0 and it is incremented by the number of // threads that need to run this callback (by the thread that request the callback // to be run) and decremented once for each `Run()` execution. When it reaches 0, // whether after the increment or after a decrement, we know that `Run()` was executed // for all threads and therefore we can mark the classes as visibly initialized. std::atomic thread_visibility_counter_; // List of barries to `Pass()` for threads that wait for the callback to complete. std::forward_list barriers_; }; void ClassLinker::MakeInitializedClassesVisiblyInitialized(Thread* self, bool wait) { if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) { return; // Nothing to do. Thanks to the x86 memory model classes skip the initialized status. } std::optional maybe_barrier; // Avoid constructing the Barrier for `wait == false`. if (wait) { Locks::mutator_lock_->AssertNotHeld(self); maybe_barrier.emplace(0); } int wait_count = 0; VisiblyInitializedCallback* callback = nullptr; { MutexLock lock(self, visibly_initialized_callback_lock_); if (visibly_initialized_callback_ != nullptr && !visibly_initialized_callback_->IsEmpty()) { callback = visibly_initialized_callback_.release(); running_visibly_initialized_callbacks_.push_front(*callback); } if (wait) { DCHECK(maybe_barrier.has_value()); Barrier* barrier = std::addressof(*maybe_barrier); for (VisiblyInitializedCallback& cb : running_visibly_initialized_callbacks_) { cb.AddBarrier(barrier); ++wait_count; } } } if (callback != nullptr) { callback->MakeVisible(self); } if (wait_count != 0) { DCHECK(maybe_barrier.has_value()); maybe_barrier->Increment(self, wait_count); } } void ClassLinker::VisiblyInitializedCallbackDone(Thread* self, VisiblyInitializedCallback* callback) { MutexLock lock(self, visibly_initialized_callback_lock_); // Pass the barriers if requested. for (Barrier* barrier : callback->GetAndClearBarriers()) { barrier->Pass(self); } // Remove the callback from the list of running callbacks. auto before = running_visibly_initialized_callbacks_.before_begin(); auto it = running_visibly_initialized_callbacks_.begin(); DCHECK(it != running_visibly_initialized_callbacks_.end()); while (std::addressof(*it) != callback) { before = it; ++it; DCHECK(it != running_visibly_initialized_callbacks_.end()); } running_visibly_initialized_callbacks_.erase_after(before); // Reuse or destroy the callback object. if (visibly_initialized_callback_ == nullptr) { visibly_initialized_callback_.reset(callback); } else { delete callback; } } void ClassLinker::ForceClassInitialized(Thread* self, Handle klass) { ClassLinker::VisiblyInitializedCallback* cb = MarkClassInitialized(self, klass); if (cb != nullptr) { cb->MakeVisible(self); } ScopedThreadSuspension sts(self, ThreadState::kSuspended); MakeInitializedClassesVisiblyInitialized(self, /*wait=*/true); } ClassLinker::VisiblyInitializedCallback* ClassLinker::MarkClassInitialized( Thread* self, Handle klass) { if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) { // Thanks to the x86 memory model, we do not need any memory fences and // we can immediately mark the class as visibly initialized. mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self); FixupStaticTrampolines(self, klass.Get()); return nullptr; } if (Runtime::Current()->IsActiveTransaction()) { // Transactions are single-threaded, so we can mark the class as visibly intialized. // (Otherwise we'd need to track the callback's entry in the transaction for rollback.) mirror::Class::SetStatus(klass, ClassStatus::kVisiblyInitialized, self); FixupStaticTrampolines(self, klass.Get()); return nullptr; } mirror::Class::SetStatus(klass, ClassStatus::kInitialized, self); MutexLock lock(self, visibly_initialized_callback_lock_); if (visibly_initialized_callback_ == nullptr) { visibly_initialized_callback_.reset(new VisiblyInitializedCallback(this)); } DCHECK(!visibly_initialized_callback_->IsFull()); visibly_initialized_callback_->AddClass(self, klass.Get()); if (visibly_initialized_callback_->IsFull()) { VisiblyInitializedCallback* callback = visibly_initialized_callback_.release(); running_visibly_initialized_callbacks_.push_front(*callback); return callback; } else { return nullptr; } } const void* ClassLinker::RegisterNative( Thread* self, ArtMethod* method, const void* native_method) { CHECK(method->IsNative()) << method->PrettyMethod(); CHECK(native_method != nullptr) << method->PrettyMethod(); void* new_native_method = nullptr; Runtime* runtime = Runtime::Current(); runtime->GetRuntimeCallbacks()->RegisterNativeMethod(method, native_method, /*out*/&new_native_method); if (method->IsCriticalNative()) { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); // Remove old registered method if any. auto it = critical_native_code_with_clinit_check_.find(method); if (it != critical_native_code_with_clinit_check_.end()) { critical_native_code_with_clinit_check_.erase(it); } // To ensure correct memory visibility, we need the class to be visibly // initialized before we can set the JNI entrypoint. if (method->GetDeclaringClass()->IsVisiblyInitialized()) { method->SetEntryPointFromJni(new_native_method); } else { critical_native_code_with_clinit_check_.emplace(method, new_native_method); } } else { method->SetEntryPointFromJni(new_native_method); } return new_native_method; } void ClassLinker::UnregisterNative(Thread* self, ArtMethod* method) { CHECK(method->IsNative()) << method->PrettyMethod(); // Restore stub to lookup native pointer via dlsym. if (method->IsCriticalNative()) { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto it = critical_native_code_with_clinit_check_.find(method); if (it != critical_native_code_with_clinit_check_.end()) { critical_native_code_with_clinit_check_.erase(it); } method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub()); } else { method->SetEntryPointFromJni(GetJniDlsymLookupStub()); } } const void* ClassLinker::GetRegisteredNative(Thread* self, ArtMethod* method) { if (method->IsCriticalNative()) { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto it = critical_native_code_with_clinit_check_.find(method); if (it != critical_native_code_with_clinit_check_.end()) { return it->second; } const void* native_code = method->GetEntryPointFromJni(); return IsJniDlsymLookupCriticalStub(native_code) ? nullptr : native_code; } else { const void* native_code = method->GetEntryPointFromJni(); return IsJniDlsymLookupStub(native_code) ? nullptr : native_code; } } void ClassLinker::ThrowEarlierClassFailure(ObjPtr c, bool wrap_in_no_class_def, bool log) { // The class failed to initialize on a previous attempt, so we want to throw // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we // failed in verification, in which case v2 5.4.1 says we need to re-throw // the previous error. Runtime* const runtime = Runtime::Current(); if (!runtime->IsAotCompiler()) { // Give info if this occurs at runtime. std::string extra; ObjPtr verify_error = GetErroneousStateError(c); if (verify_error != nullptr) { DCHECK(!verify_error->IsClass()); extra = verify_error->AsThrowable()->Dump(); } if (log) { LOG(INFO) << "Rejecting re-init on previously-failed class " << c->PrettyClass() << ": " << extra; } } CHECK(c->IsErroneous()) << c->PrettyClass() << " " << c->GetStatus(); Thread* self = Thread::Current(); if (runtime->IsAotCompiler()) { // At compile time, accurate errors and NCDFE are disabled to speed compilation. ObjPtr pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); } else { ObjPtr erroneous_state_error = GetErroneousStateError(c); if (erroneous_state_error != nullptr) { // Rethrow stored error. HandleEarlierErroneousStateError(self, this, c); } // TODO This might be wrong if we hit an OOME while allocating the ClassExt. In that case we // might have meant to go down the earlier if statement with the original error but it got // swallowed by the OOM so we end up here. if (erroneous_state_error == nullptr || (wrap_in_no_class_def && !IsVerifyError(erroneous_state_error))) { // If there isn't a recorded earlier error, or this is a repeat throw from initialization, // the top-level exception must be a NoClassDefFoundError. The potentially already pending // exception will be a cause. self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;", c->PrettyDescriptor().c_str()); } } } static void VlogClassInitializationFailure(Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump(); } } static void WrapExceptionInInitializer(Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) { Thread* self = Thread::Current(); ObjPtr cause = self->GetException(); CHECK(cause != nullptr); // Boot classpath classes should not fail initialization. This is a consistency debug check. // This cannot in general be guaranteed, but in all likelihood leads to breakage down the line. if (klass->GetClassLoader() == nullptr && !Runtime::Current()->IsAotCompiler()) { std::string tmp; // We want to LOG(FATAL) on debug builds since this really shouldn't be happening but we need to // make sure to only do it if we don't have AsyncExceptions being thrown around since those // could have caused the error. bool known_impossible = kIsDebugBuild && !Runtime::Current()->AreAsyncExceptionsThrown(); LOG(known_impossible ? FATAL : WARNING) << klass->GetDescriptor(&tmp) << " failed initialization: " << self->GetException()->Dump(); } // We only wrap non-Error exceptions; an Error can just be used as-is. if (!cause->IsError()) { self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr); } VlogClassInitializationFailure(klass); } ClassLinker::ClassLinker(InternTable* intern_table, bool fast_class_not_found_exceptions) : boot_class_table_(new ClassTable()), failed_dex_cache_class_lookups_(0), class_roots_(nullptr), find_array_class_cache_next_victim_(0), init_done_(false), log_new_roots_(false), intern_table_(intern_table), fast_class_not_found_exceptions_(fast_class_not_found_exceptions), jni_dlsym_lookup_trampoline_(nullptr), jni_dlsym_lookup_critical_trampoline_(nullptr), quick_resolution_trampoline_(nullptr), quick_imt_conflict_trampoline_(nullptr), quick_generic_jni_trampoline_(nullptr), quick_to_interpreter_bridge_trampoline_(nullptr), nterp_trampoline_(nullptr), image_pointer_size_(kRuntimePointerSize), visibly_initialized_callback_lock_("visibly initialized callback lock"), visibly_initialized_callback_(nullptr), critical_native_code_with_clinit_check_lock_("critical native code with clinit check lock"), critical_native_code_with_clinit_check_(), cha_(Runtime::Current()->IsAotCompiler() ? nullptr : new ClassHierarchyAnalysis()) { // For CHA disabled during Aot, see b/34193647. CHECK(intern_table_ != nullptr); static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_), "Array cache size wrong."); std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot(nullptr)); } void ClassLinker::CheckSystemClass(Thread* self, Handle c1, const char* descriptor) { ObjPtr c2 = FindSystemClass(self, descriptor); if (c2 == nullptr) { LOG(FATAL) << "Could not find class " << descriptor; UNREACHABLE(); } if (c1.Get() != c2) { std::ostringstream os1, os2; c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail); c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail); LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor << ". This is most likely the result of a broken build. Make sure that " << "libcore and art projects match.\n\n" << os1.str() << "\n\n" << os2.str(); UNREACHABLE(); } } ObjPtr AllocIfTable(Thread* self, size_t ifcount, ObjPtr iftable_class) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(iftable_class->IsArrayClass()); DCHECK(iftable_class->GetComponentType()->IsObjectClass()); return ObjPtr::DownCast(ObjPtr>( mirror::IfTable::Alloc(self, iftable_class, ifcount * mirror::IfTable::kMax))); } bool ClassLinker::InitWithoutImage(std::vector> boot_class_path, std::string* error_msg) { VLOG(startup) << "ClassLinker::Init"; Thread* const self = Thread::Current(); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it."; CHECK(!init_done_); // Use the pointer size from the runtime since we are probably creating the image. image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet()); // java_lang_Class comes first, it's needed for AllocClass // The GC can't handle an object with a null class since we can't get the size of this object. heap->IncrementDisableMovingGC(self); StackHandleScope<64> hs(self); // 64 is picked arbitrarily. auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_); // Allocate the object as non-movable so that there are no cases where Object::IsClass returns // the incorrect result when comparing to-space vs from-space. Handle java_lang_Class(hs.NewHandle(ObjPtr::DownCast( heap->AllocNonMovableObject(self, nullptr, class_class_size, VoidFunctor())))); CHECK(java_lang_Class != nullptr); java_lang_Class->SetClassFlags(mirror::kClassFlagClass); java_lang_Class->SetClass(java_lang_Class.Get()); if (kUseBakerReadBarrier) { java_lang_Class->AssertReadBarrierState(); } java_lang_Class->SetClassSize(class_class_size); java_lang_Class->SetPrimitiveType(Primitive::kPrimNot); heap->DecrementDisableMovingGC(self); // AllocClass(ObjPtr) can now be used // Class[] is used for reflection support. auto class_array_class_size = mirror::ObjectArray::ClassSize(image_pointer_size_); Handle class_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), class_array_class_size))); class_array_class->SetComponentType(java_lang_Class.Get()); // java_lang_Object comes next so that object_array_class can be created. Handle java_lang_Object(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_)))); CHECK(java_lang_Object != nullptr); // backfill Object as the super class of Class. java_lang_Class->SetSuperClass(java_lang_Object.Get()); mirror::Class::SetStatus(java_lang_Object, ClassStatus::kLoaded, self); java_lang_Object->SetObjectSize(sizeof(mirror::Object)); // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been // cleared without triggering the read barrier and unintentionally mark the sentinel alive. runtime->SetSentinel(heap->AllocNonMovableObject(self, java_lang_Object.Get(), java_lang_Object->GetObjectSize(), VoidFunctor())); // Initialize the SubtypeCheck bitstring for java.lang.Object and java.lang.Class. if (kBitstringSubtypeCheckEnabled) { // It might seem the lock here is unnecessary, however all the SubtypeCheck // functions are annotated to require locks all the way down. // // We take the lock here to avoid using NO_THREAD_SAFETY_ANALYSIS. MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck>::EnsureInitialized(java_lang_Object.Get()); SubtypeCheck>::EnsureInitialized(java_lang_Class.Get()); } // Object[] next to hold class roots. Handle object_array_class(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize(image_pointer_size_)))); object_array_class->SetComponentType(java_lang_Object.Get()); // Setup java.lang.String. // // We make this class non-movable for the unlikely case where it were to be // moved by a sticky-bit (minor) collection when using the Generational // Concurrent Copying (CC) collector, potentially creating a stale reference // in the `klass_` field of one of its instances allocated in the Large-Object // Space (LOS) -- see the comment about the dirty card scanning logic in // art::gc::collector::ConcurrentCopying::MarkingPhase. Handle java_lang_String(hs.NewHandle( AllocClass( self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_)))); java_lang_String->SetStringClass(); mirror::Class::SetStatus(java_lang_String, ClassStatus::kResolved, self); // Setup java.lang.ref.Reference. Handle java_lang_ref_Reference(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_)))); java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize()); mirror::Class::SetStatus(java_lang_ref_Reference, ClassStatus::kResolved, self); // Create storage for root classes, save away our work so far (requires descriptors). class_roots_ = GcRoot>( mirror::ObjectArray::Alloc(self, object_array_class.Get(), static_cast(ClassRoot::kMax))); CHECK(!class_roots_.IsNull()); SetClassRoot(ClassRoot::kJavaLangClass, java_lang_Class.Get()); SetClassRoot(ClassRoot::kJavaLangObject, java_lang_Object.Get()); SetClassRoot(ClassRoot::kClassArrayClass, class_array_class.Get()); SetClassRoot(ClassRoot::kObjectArrayClass, object_array_class.Get()); SetClassRoot(ClassRoot::kJavaLangString, java_lang_String.Get()); SetClassRoot(ClassRoot::kJavaLangRefReference, java_lang_ref_Reference.Get()); // Fill in the empty iftable. Needs to be done after the kObjectArrayClass root is set. java_lang_Object->SetIfTable(AllocIfTable(self, 0, object_array_class.Get())); // Create array interface entries to populate once we can load system classes. object_array_class->SetIfTable(AllocIfTable(self, 2, object_array_class.Get())); DCHECK_EQ(GetArrayIfTable(), object_array_class->GetIfTable()); // Setup the primitive type classes. CreatePrimitiveClass(self, Primitive::kPrimBoolean, ClassRoot::kPrimitiveBoolean); CreatePrimitiveClass(self, Primitive::kPrimByte, ClassRoot::kPrimitiveByte); CreatePrimitiveClass(self, Primitive::kPrimChar, ClassRoot::kPrimitiveChar); CreatePrimitiveClass(self, Primitive::kPrimShort, ClassRoot::kPrimitiveShort); CreatePrimitiveClass(self, Primitive::kPrimInt, ClassRoot::kPrimitiveInt); CreatePrimitiveClass(self, Primitive::kPrimLong, ClassRoot::kPrimitiveLong); CreatePrimitiveClass(self, Primitive::kPrimFloat, ClassRoot::kPrimitiveFloat); CreatePrimitiveClass(self, Primitive::kPrimDouble, ClassRoot::kPrimitiveDouble); CreatePrimitiveClass(self, Primitive::kPrimVoid, ClassRoot::kPrimitiveVoid); // Allocate the primitive array classes. We need only the native pointer // array at this point (int[] or long[], depending on architecture) but // we shall perform the same setup steps for all primitive array classes. AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveBoolean, ClassRoot::kBooleanArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveByte, ClassRoot::kByteArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveChar, ClassRoot::kCharArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveShort, ClassRoot::kShortArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveInt, ClassRoot::kIntArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveLong, ClassRoot::kLongArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveFloat, ClassRoot::kFloatArrayClass); AllocPrimitiveArrayClass(self, ClassRoot::kPrimitiveDouble, ClassRoot::kDoubleArrayClass); // now that these are registered, we can use AllocClass() and AllocObjectArray // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache. Handle java_lang_DexCache(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_)))); SetClassRoot(ClassRoot::kJavaLangDexCache, java_lang_DexCache.Get()); java_lang_DexCache->SetDexCacheClass(); java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize()); mirror::Class::SetStatus(java_lang_DexCache, ClassStatus::kResolved, self); // Setup dalvik.system.ClassExt Handle dalvik_system_ClassExt(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ClassExt::ClassSize(image_pointer_size_)))); SetClassRoot(ClassRoot::kDalvikSystemClassExt, dalvik_system_ClassExt.Get()); mirror::Class::SetStatus(dalvik_system_ClassExt, ClassStatus::kResolved, self); // Set up array classes for string, field, method Handle object_array_string(hs.NewHandle( AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray::ClassSize(image_pointer_size_)))); object_array_string->SetComponentType(java_lang_String.Get()); SetClassRoot(ClassRoot::kJavaLangStringArrayClass, object_array_string.Get()); LinearAlloc* linear_alloc = runtime->GetLinearAlloc(); // Create runtime resolution and imt conflict methods. runtime->SetResolutionMethod(runtime->CreateResolutionMethod()); runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc)); runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc)); // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses // these roots. if (boot_class_path.empty()) { *error_msg = "Boot classpath is empty."; return false; } for (auto& dex_file : boot_class_path) { if (dex_file == nullptr) { *error_msg = "Null dex file."; return false; } AppendToBootClassPath(self, dex_file.get()); boot_dex_files_.push_back(std::move(dex_file)); } // now we can use FindSystemClass // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that // we do not need friend classes or a publicly exposed setter. quick_generic_jni_trampoline_ = GetQuickGenericJniStub(); if (!runtime->IsAotCompiler()) { // We need to set up the generic trampolines since we don't have an image. jni_dlsym_lookup_trampoline_ = GetJniDlsymLookupStub(); jni_dlsym_lookup_critical_trampoline_ = GetJniDlsymLookupCriticalStub(); quick_resolution_trampoline_ = GetQuickResolutionStub(); quick_imt_conflict_trampoline_ = GetQuickImtConflictStub(); quick_generic_jni_trampoline_ = GetQuickGenericJniStub(); quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge(); nterp_trampoline_ = interpreter::GetNterpEntryPoint(); } // Object, String, ClassExt and DexCache need to be rerun through FindSystemClass to finish init mirror::Class::SetStatus(java_lang_Object, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;"); CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize()); mirror::Class::SetStatus(java_lang_String, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_String, "Ljava/lang/String;"); mirror::Class::SetStatus(java_lang_DexCache, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;"); CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize()); mirror::Class::SetStatus(dalvik_system_ClassExt, ClassStatus::kNotReady, self); CheckSystemClass(self, dalvik_system_ClassExt, "Ldalvik/system/ClassExt;"); CHECK_EQ(dalvik_system_ClassExt->GetObjectSize(), mirror::ClassExt::InstanceSize()); // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it // in class_table_. CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;"); // Setup core array classes, i.e. Object[], String[] and Class[] and primitive // arrays - can't be done until Object has a vtable and component classes are loaded. FinishCoreArrayClassSetup(ClassRoot::kObjectArrayClass); FinishCoreArrayClassSetup(ClassRoot::kClassArrayClass); FinishCoreArrayClassSetup(ClassRoot::kJavaLangStringArrayClass); FinishCoreArrayClassSetup(ClassRoot::kBooleanArrayClass); FinishCoreArrayClassSetup(ClassRoot::kByteArrayClass); FinishCoreArrayClassSetup(ClassRoot::kCharArrayClass); FinishCoreArrayClassSetup(ClassRoot::kShortArrayClass); FinishCoreArrayClassSetup(ClassRoot::kIntArrayClass); FinishCoreArrayClassSetup(ClassRoot::kLongArrayClass); FinishCoreArrayClassSetup(ClassRoot::kFloatArrayClass); FinishCoreArrayClassSetup(ClassRoot::kDoubleArrayClass); // Setup the single, global copy of "iftable". auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;")); CHECK(java_lang_Cloneable != nullptr); auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;")); CHECK(java_io_Serializable != nullptr); // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to // crawl up and explicitly list all of the supers as well. object_array_class->GetIfTable()->SetInterface(0, java_lang_Cloneable.Get()); object_array_class->GetIfTable()->SetInterface(1, java_io_Serializable.Get()); // Check Class[] and Object[]'s interfaces. CHECK_EQ(java_lang_Cloneable.Get(), class_array_class->GetDirectInterface(0)); CHECK_EQ(java_io_Serializable.Get(), class_array_class->GetDirectInterface(1)); CHECK_EQ(java_lang_Cloneable.Get(), object_array_class->GetDirectInterface(0)); CHECK_EQ(java_io_Serializable.Get(), object_array_class->GetDirectInterface(1)); CHECK_EQ(object_array_string.Get(), FindSystemClass(self, GetClassRootDescriptor(ClassRoot::kJavaLangStringArrayClass))); // End of special init trickery, all subsequent classes may be loaded via FindSystemClass. // Create java.lang.reflect.Proxy root. SetClassRoot(ClassRoot::kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;")); // Create java.lang.reflect.Field.class root. ObjPtr class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectField, class_root); // Create java.lang.reflect.Field array root. class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectFieldArrayClass, class_root); // Create java.lang.reflect.Constructor.class root and array root. class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectConstructor, class_root); class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectConstructorArrayClass, class_root); // Create java.lang.reflect.Method.class root and array root. class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectMethod, class_root); class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangReflectMethodArrayClass, class_root); // Create java.lang.invoke.CallSite.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/CallSite;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeCallSite, class_root); // Create java.lang.invoke.MethodType.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodType;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeMethodType, class_root); // Create java.lang.invoke.MethodHandleImpl.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandleImpl;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandleImpl, class_root); SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandle, class_root->GetSuperClass()); // Create java.lang.invoke.MethodHandles.Lookup.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandles$Lookup;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeMethodHandlesLookup, class_root); // Create java.lang.invoke.VarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/VarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeVarHandle, class_root); // Create java.lang.invoke.FieldVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/FieldVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeFieldVarHandle, class_root); // Create java.lang.invoke.StaticFieldVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/StaticFieldVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeStaticFieldVarHandle, class_root); // Create java.lang.invoke.ArrayElementVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/ArrayElementVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeArrayElementVarHandle, class_root); // Create java.lang.invoke.ByteArrayViewVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/ByteArrayViewVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeByteArrayViewVarHandle, class_root); // Create java.lang.invoke.ByteBufferViewVarHandle.class root class_root = FindSystemClass(self, "Ljava/lang/invoke/ByteBufferViewVarHandle;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kJavaLangInvokeByteBufferViewVarHandle, class_root); class_root = FindSystemClass(self, "Ldalvik/system/EmulatedStackFrame;"); CHECK(class_root != nullptr); SetClassRoot(ClassRoot::kDalvikSystemEmulatedStackFrame, class_root); // java.lang.ref classes need to be specially flagged, but otherwise are normal classes // finish initializing Reference class mirror::Class::SetStatus(java_lang_ref_Reference, ClassStatus::kNotReady, self); CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;"); CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize()); CHECK_EQ(java_lang_ref_Reference->GetClassSize(), mirror::Reference::ClassSize(image_pointer_size_)); class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference); class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference); class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference); class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;"); CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference); // Setup the ClassLoader, verifying the object_size_. class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;"); class_root->SetClassLoaderClass(); CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize()); SetClassRoot(ClassRoot::kJavaLangClassLoader, class_root); // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and // java.lang.StackTraceElement as a convenience. SetClassRoot(ClassRoot::kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;")); SetClassRoot(ClassRoot::kJavaLangClassNotFoundException, FindSystemClass(self, "Ljava/lang/ClassNotFoundException;")); SetClassRoot(ClassRoot::kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;")); SetClassRoot(ClassRoot::kJavaLangStackTraceElementArrayClass, FindSystemClass(self, "[Ljava/lang/StackTraceElement;")); SetClassRoot(ClassRoot::kJavaLangClassLoaderArrayClass, FindSystemClass(self, "[Ljava/lang/ClassLoader;")); // Create conflict tables that depend on the class linker. runtime->FixupConflictTables(); FinishInit(self); VLOG(startup) << "ClassLinker::InitFromCompiler exiting"; return true; } static void CreateStringInitBindings(Thread* self, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { // Find String. -> StringFactory bindings. ObjPtr string_factory_class = class_linker->FindSystemClass(self, "Ljava/lang/StringFactory;"); CHECK(string_factory_class != nullptr); ObjPtr string_class = GetClassRoot(class_linker); WellKnownClasses::InitStringInit(string_class, string_factory_class); // Update the primordial thread. self->InitStringEntryPoints(); } void ClassLinker::FinishInit(Thread* self) { VLOG(startup) << "ClassLinker::FinishInit entering"; CreateStringInitBindings(self, this); // Let the heap know some key offsets into java.lang.ref instances // Note: we hard code the field indexes here rather than using FindInstanceField // as the types of the field can't be resolved prior to the runtime being // fully initialized StackHandleScope<3> hs(self); Handle java_lang_ref_Reference = hs.NewHandle(GetClassRoot(this)); Handle java_lang_ref_FinalizerReference = hs.NewHandle(FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;")); ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0); CHECK_STREQ(pendingNext->GetName(), "pendingNext"); CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); ArtField* queue = java_lang_ref_Reference->GetInstanceField(1); CHECK_STREQ(queue->GetName(), "queue"); CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;"); ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2); CHECK_STREQ(queueNext->GetName(), "queueNext"); CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); ArtField* referent = java_lang_ref_Reference->GetInstanceField(3); CHECK_STREQ(referent->GetName(), "referent"); CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;"); ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); CHECK_STREQ(zombie->GetName(), "zombie"); CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;"); // ensure all class_roots_ are initialized for (size_t i = 0; i < static_cast(ClassRoot::kMax); i++) { ClassRoot class_root = static_cast(i); ObjPtr klass = GetClassRoot(class_root); CHECK(klass != nullptr); DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr); // note SetClassRoot does additional validation. // if possible add new checks there to catch errors early } CHECK(GetArrayIfTable() != nullptr); // disable the slow paths in FindClass and CreatePrimitiveClass now // that Object, Class, and Object[] are setup init_done_ = true; // Under sanitization, the small carve-out to handle stack overflow might not be enough to // initialize the StackOverflowError class (as it might require running the verifier). Instead, // ensure that the class will be initialized. if (kMemoryToolIsAvailable && !Runtime::Current()->IsAotCompiler()) { verifier::ClassVerifier::Init(this); // Need to prepare the verifier. ObjPtr soe_klass = FindSystemClass(self, "Ljava/lang/StackOverflowError;"); if (soe_klass == nullptr || !EnsureInitialized(self, hs.NewHandle(soe_klass), true, true)) { // Strange, but don't crash. LOG(WARNING) << "Could not prepare StackOverflowError."; self->ClearException(); } } VLOG(startup) << "ClassLinker::FinishInit exiting"; } static void EnsureRootInitialized(ClassLinker* class_linker, Thread* self, ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (!klass->IsVisiblyInitialized()) { DCHECK(!klass->IsArrayClass()); DCHECK(!klass->IsPrimitive()); StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(klass)); if (!class_linker->EnsureInitialized( self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true)) { LOG(FATAL) << "Exception when initializing " << h_class->PrettyClass() << ": " << self->GetException()->Dump(); } } } void ClassLinker::RunEarlyRootClinits(Thread* self) { StackHandleScope<1u> hs(self); Handle> class_roots = hs.NewHandle(GetClassRoots()); EnsureRootInitialized(this, self, GetClassRoot(class_roots.Get())); EnsureRootInitialized(this, self, GetClassRoot(class_roots.Get())); // `Field` class is needed for register_java_net_InetAddress in libcore, b/28153851. EnsureRootInitialized(this, self, GetClassRoot(class_roots.Get())); WellKnownClasses::Init(self->GetJniEnv()); // `FinalizerReference` class is needed for initialization of `java.net.InetAddress`. // (Indirectly by constructing a `ObjectStreamField` which uses a `StringBuilder` // and, when resizing, initializes the `System` class for `System.arraycopy()` // and `System. creates a finalizable object.) EnsureRootInitialized( this, self, WellKnownClasses::java_lang_ref_FinalizerReference_add->GetDeclaringClass()); } void ClassLinker::RunRootClinits(Thread* self) { StackHandleScope<1u> hs(self); Handle> class_roots = hs.NewHandle(GetClassRoots()); for (size_t i = 0; i < static_cast(ClassRoot::kMax); ++i) { EnsureRootInitialized(this, self, GetClassRoot(ClassRoot(i), class_roots.Get())); } // Make sure certain well-known classes are initialized. Note that well-known // classes are always in the boot image, so this code is primarily intended // for running without boot image but may be needed for boot image if the // AOT-initialization fails due to introduction of new code to ``. ArtMethod* methods_of_classes_to_initialize[] = { // Initialize primitive boxing classes (avoid check at runtime). WellKnownClasses::java_lang_Boolean_valueOf, WellKnownClasses::java_lang_Byte_valueOf, WellKnownClasses::java_lang_Character_valueOf, WellKnownClasses::java_lang_Double_valueOf, WellKnownClasses::java_lang_Float_valueOf, WellKnownClasses::java_lang_Integer_valueOf, WellKnownClasses::java_lang_Long_valueOf, WellKnownClasses::java_lang_Short_valueOf, // Initialize `StackOverflowError`. WellKnownClasses::java_lang_StackOverflowError_init, // Ensure class loader classes are initialized (avoid check at runtime). // Superclass `ClassLoader` is a class root and already initialized above. // Superclass `BaseDexClassLoader` is initialized implicitly. WellKnownClasses::dalvik_system_DelegateLastClassLoader_init, WellKnownClasses::dalvik_system_DexClassLoader_init, WellKnownClasses::dalvik_system_InMemoryDexClassLoader_init, WellKnownClasses::dalvik_system_PathClassLoader_init, WellKnownClasses::java_lang_BootClassLoader_init, // Ensure `Daemons` class is initialized (avoid check at runtime). WellKnownClasses::java_lang_Daemons_start, // Ensure `Thread` and `ThreadGroup` classes are initialized (avoid check at runtime). WellKnownClasses::java_lang_Thread_init, WellKnownClasses::java_lang_ThreadGroup_add, // Ensure reference classes are initialized (avoid check at runtime). // The `FinalizerReference` class was initialized in `RunEarlyRootClinits()`. WellKnownClasses::java_lang_ref_ReferenceQueue_add, // Ensure `InvocationTargetException` class is initialized (avoid check at runtime). WellKnownClasses::java_lang_reflect_InvocationTargetException_init, // Ensure `Parameter` class is initialized (avoid check at runtime). WellKnownClasses::java_lang_reflect_Parameter_init, // Ensure `MethodHandles` class is initialized (avoid check at runtime). WellKnownClasses::java_lang_invoke_MethodHandles_lookup, // Ensure `DirectByteBuffer` class is initialized (avoid check at runtime). WellKnownClasses::java_nio_DirectByteBuffer_init, // Ensure `FloatingDecimal` class is initialized (avoid check at runtime). WellKnownClasses::jdk_internal_math_FloatingDecimal_getBinaryToASCIIConverter_D, // Ensure reflection annotation classes are initialized (avoid check at runtime). WellKnownClasses::libcore_reflect_AnnotationFactory_createAnnotation, WellKnownClasses::libcore_reflect_AnnotationMember_init, // We're suppressing exceptions from `DdmServer` and we do not want to repeatedly // suppress class initialization error (say, due to OOM), so initialize it early. WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch, }; for (ArtMethod* method : methods_of_classes_to_initialize) { EnsureRootInitialized(this, self, method->GetDeclaringClass()); } ArtField* fields_of_classes_to_initialize[] = { // Ensure classes used by class loaders are initialized (avoid check at runtime). WellKnownClasses::dalvik_system_DexFile_cookie, WellKnownClasses::dalvik_system_DexPathList_dexElements, WellKnownClasses::dalvik_system_DexPathList__Element_dexFile, // Ensure `VMRuntime` is initialized (avoid check at runtime). WellKnownClasses::dalvik_system_VMRuntime_nonSdkApiUsageConsumer, // Initialize empty arrays needed by `StackOverflowError`. WellKnownClasses::java_util_Collections_EMPTY_LIST, WellKnownClasses::libcore_util_EmptyArray_STACK_TRACE_ELEMENT, }; for (ArtField* field : fields_of_classes_to_initialize) { EnsureRootInitialized(this, self, field->GetDeclaringClass()); } } ALWAYS_INLINE static uint32_t ComputeMethodHash(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!method->IsRuntimeMethod()); DCHECK(!method->IsProxyMethod()); DCHECK(!method->IsObsolete()); // Do not use `ArtMethod::GetNameView()` to avoid unnecessary runtime/proxy/obsolete method // checks. It is safe to avoid the read barrier here, see `ArtMethod::GetDexFile()`. const DexFile& dex_file = method->GetDeclaringClass()->GetDexFile(); const dex::MethodId& method_id = dex_file.GetMethodId(method->GetDexMethodIndex()); std::string_view name = dex_file.GetMethodNameView(method_id); return ComputeModifiedUtf8Hash(name); } ALWAYS_INLINE static bool MethodSignatureEquals(ArtMethod* lhs, ArtMethod* rhs) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!lhs->IsRuntimeMethod()); DCHECK(!lhs->IsProxyMethod()); DCHECK(!lhs->IsObsolete()); DCHECK(!rhs->IsRuntimeMethod()); DCHECK(!rhs->IsProxyMethod()); DCHECK(!rhs->IsObsolete()); // Do not use `ArtMethod::GetDexFile()` to avoid unnecessary obsolete method checks. // It is safe to avoid the read barrier here, see `ArtMethod::GetDexFile()`. const DexFile& lhs_dex_file = lhs->GetDeclaringClass()->GetDexFile(); const DexFile& rhs_dex_file = rhs->GetDeclaringClass()->GetDexFile(); const dex::MethodId& lhs_mid = lhs_dex_file.GetMethodId(lhs->GetDexMethodIndex()); const dex::MethodId& rhs_mid = rhs_dex_file.GetMethodId(rhs->GetDexMethodIndex()); if (&lhs_dex_file == &rhs_dex_file) { return lhs_mid.name_idx_ == rhs_mid.name_idx_ && lhs_mid.proto_idx_ == rhs_mid.proto_idx_; } else { return lhs_dex_file.GetMethodNameView(lhs_mid) == rhs_dex_file.GetMethodNameView(rhs_mid) && lhs_dex_file.GetMethodSignature(lhs_mid) == rhs_dex_file.GetMethodSignature(rhs_mid); } } static void InitializeObjectVirtualMethodHashes(ObjPtr java_lang_Object, PointerSize pointer_size, /*out*/ ArrayRef virtual_method_hashes) REQUIRES_SHARED(Locks::mutator_lock_) { ArraySlice virtual_methods = java_lang_Object->GetVirtualMethods(pointer_size); DCHECK_EQ(virtual_method_hashes.size(), virtual_methods.size()); for (size_t i = 0; i != virtual_method_hashes.size(); ++i) { virtual_method_hashes[i] = ComputeMethodHash(&virtual_methods[i]); } } struct TrampolineCheckData { const void* quick_resolution_trampoline; const void* quick_imt_conflict_trampoline; const void* quick_generic_jni_trampoline; const void* quick_to_interpreter_bridge_trampoline; const void* nterp_trampoline; PointerSize pointer_size; ArtMethod* m; bool error; }; bool ClassLinker::InitFromBootImage(std::string* error_msg) { VLOG(startup) << __FUNCTION__ << " entering"; CHECK(!init_done_); Runtime* const runtime = Runtime::Current(); Thread* const self = Thread::Current(); gc::Heap* const heap = runtime->GetHeap(); std::vector spaces = heap->GetBootImageSpaces(); CHECK(!spaces.empty()); const ImageHeader& image_header = spaces[0]->GetImageHeader(); uint32_t pointer_size_unchecked = image_header.GetPointerSizeUnchecked(); if (!ValidPointerSize(pointer_size_unchecked)) { *error_msg = StringPrintf("Invalid image pointer size: %u", pointer_size_unchecked); return false; } image_pointer_size_ = image_header.GetPointerSize(); if (!runtime->IsAotCompiler()) { // Only the Aot compiler supports having an image with a different pointer size than the // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps. if (image_pointer_size_ != kRuntimePointerSize) { *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu", static_cast(image_pointer_size_), sizeof(void*)); return false; } } DCHECK(!runtime->HasResolutionMethod()); runtime->SetResolutionMethod(image_header.GetImageMethod(ImageHeader::kResolutionMethod)); runtime->SetImtConflictMethod(image_header.GetImageMethod(ImageHeader::kImtConflictMethod)); runtime->SetImtUnimplementedMethod( image_header.GetImageMethod(ImageHeader::kImtUnimplementedMethod)); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod), CalleeSaveType::kSaveAllCalleeSaves); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), CalleeSaveType::kSaveRefsOnly); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod), CalleeSaveType::kSaveRefsAndArgs); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveEverythingMethod), CalleeSaveType::kSaveEverything); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit), CalleeSaveType::kSaveEverythingForClinit); runtime->SetCalleeSaveMethod( image_header.GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck), CalleeSaveType::kSaveEverythingForSuspendCheck); std::vector oat_files = runtime->GetOatFileManager().RegisterImageOatFiles(spaces); DCHECK(!oat_files.empty()); const OatHeader& default_oat_header = oat_files[0]->GetOatHeader(); jni_dlsym_lookup_trampoline_ = default_oat_header.GetJniDlsymLookupTrampoline(); jni_dlsym_lookup_critical_trampoline_ = default_oat_header.GetJniDlsymLookupCriticalTrampoline(); quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline(); quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline(); quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline(); quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge(); nterp_trampoline_ = default_oat_header.GetNterpTrampoline(); if (kIsDebugBuild) { // Check that the other images use the same trampoline. for (size_t i = 1; i < oat_files.size(); ++i) { const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader(); const void* ith_jni_dlsym_lookup_trampoline_ = ith_oat_header.GetJniDlsymLookupTrampoline(); const void* ith_jni_dlsym_lookup_critical_trampoline_ = ith_oat_header.GetJniDlsymLookupCriticalTrampoline(); const void* ith_quick_resolution_trampoline = ith_oat_header.GetQuickResolutionTrampoline(); const void* ith_quick_imt_conflict_trampoline = ith_oat_header.GetQuickImtConflictTrampoline(); const void* ith_quick_generic_jni_trampoline = ith_oat_header.GetQuickGenericJniTrampoline(); const void* ith_quick_to_interpreter_bridge_trampoline = ith_oat_header.GetQuickToInterpreterBridge(); const void* ith_nterp_trampoline = ith_oat_header.GetNterpTrampoline(); if (ith_jni_dlsym_lookup_trampoline_ != jni_dlsym_lookup_trampoline_ || ith_jni_dlsym_lookup_critical_trampoline_ != jni_dlsym_lookup_critical_trampoline_ || ith_quick_resolution_trampoline != quick_resolution_trampoline_ || ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ || ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ || ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_ || ith_nterp_trampoline != nterp_trampoline_) { // Make sure that all methods in this image do not contain those trampolines as // entrypoints. Otherwise the class-linker won't be able to work with a single set. TrampolineCheckData data; data.error = false; data.pointer_size = GetImagePointerSize(); data.quick_resolution_trampoline = ith_quick_resolution_trampoline; data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline; data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline; data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline; data.nterp_trampoline = ith_nterp_trampoline; ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (obj->IsClass()) { ObjPtr klass = obj->AsClass(); for (ArtMethod& m : klass->GetMethods(data.pointer_size)) { const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(data.pointer_size); if (entrypoint == data.quick_resolution_trampoline || entrypoint == data.quick_imt_conflict_trampoline || entrypoint == data.quick_generic_jni_trampoline || entrypoint == data.quick_to_interpreter_bridge_trampoline) { data.m = &m; data.error = true; return; } } } }; spaces[i]->GetLiveBitmap()->Walk(visitor); if (data.error) { ArtMethod* m = data.m; LOG(ERROR) << "Found a broken ArtMethod: " << ArtMethod::PrettyMethod(m); *error_msg = "Found an ArtMethod with a bad entrypoint"; return false; } } } } class_roots_ = GcRoot>( ObjPtr>::DownCast( image_header.GetImageRoot(ImageHeader::kClassRoots))); DCHECK_EQ(GetClassRoot(this)->GetClassFlags(), mirror::kClassFlagClass); DCHECK_EQ(GetClassRoot(this)->GetObjectSize(), sizeof(mirror::Object)); ObjPtr> boot_image_live_objects = ObjPtr>::DownCast( image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects)); runtime->SetSentinel(boot_image_live_objects->Get(ImageHeader::kClearedJniWeakSentinel)); DCHECK(runtime->GetSentinel().Read()->GetClass() == GetClassRoot(this)); // Boot class loader, use a null handle. if (!AddImageSpaces(ArrayRef(spaces), ScopedNullHandle(), /*context=*/nullptr, &boot_dex_files_, error_msg)) { return false; } InitializeObjectVirtualMethodHashes(GetClassRoot(this), image_pointer_size_, ArrayRef(object_virtual_method_hashes_)); FinishInit(self); VLOG(startup) << __FUNCTION__ << " exiting"; return true; } void ClassLinker::AddExtraBootDexFiles( Thread* self, std::vector>&& additional_dex_files) { for (std::unique_ptr& dex_file : additional_dex_files) { AppendToBootClassPath(self, dex_file.get()); if (kIsDebugBuild) { for (const auto& boot_dex_file : boot_dex_files_) { DCHECK_NE(boot_dex_file->GetLocation(), dex_file->GetLocation()); } } boot_dex_files_.push_back(std::move(dex_file)); } } bool ClassLinker::IsBootClassLoader(ObjPtr class_loader) { return class_loader == nullptr || WellKnownClasses::java_lang_BootClassLoader == class_loader->GetClass(); } class CHAOnDeleteUpdateClassVisitor { public: explicit CHAOnDeleteUpdateClassVisitor(LinearAlloc* alloc) : allocator_(alloc), cha_(Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis()), pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()), self_(Thread::Current()) {} bool operator()(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { // This class is going to be unloaded. Tell CHA about it. cha_->ResetSingleImplementationInHierarchy(klass, allocator_, pointer_size_); return true; } private: const LinearAlloc* allocator_; const ClassHierarchyAnalysis* cha_; const PointerSize pointer_size_; const Thread* self_; }; /* * A class used to ensure that all references to strings interned in an AppImage have been * properly recorded in the interned references list, and is only ever run in debug mode. */ class CountInternedStringReferencesVisitor { public: CountInternedStringReferencesVisitor(const gc::space::ImageSpace& space, const InternTable::UnorderedSet& image_interns) : space_(space), image_interns_(image_interns), count_(0u) {} void TestObject(ObjPtr referred_obj) const REQUIRES_SHARED(Locks::mutator_lock_) { if (referred_obj != nullptr && space_.HasAddress(referred_obj.Ptr()) && referred_obj->IsString()) { ObjPtr referred_str = referred_obj->AsString(); uint32_t hash = static_cast(referred_str->GetStoredHashCode()); // All image strings have the hash code calculated, even if they are not interned. DCHECK_EQ(hash, static_cast(referred_str->ComputeHashCode())); auto it = image_interns_.FindWithHash(GcRoot(referred_str), hash); if (it != image_interns_.end() && it->Read() == referred_str) { ++count_; } } } void VisitRootIfNonNull( mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { TestObject(root->AsMirrorPtr()); } // Visit Class Fields void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // References within image or across images don't need a read barrier. ObjPtr referred_obj = obj->GetFieldObject(offset); TestObject(referred_obj); } void operator()(ObjPtr klass ATTRIBUTE_UNUSED, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); } size_t GetCount() const { return count_; } private: const gc::space::ImageSpace& space_; const InternTable::UnorderedSet& image_interns_; mutable size_t count_; // Modified from the `const` callbacks. }; /* * This function counts references to strings interned in the AppImage. * This is used in debug build to check against the number of the recorded references. */ size_t CountInternedStringReferences(gc::space::ImageSpace& space, const InternTable::UnorderedSet& image_interns) REQUIRES_SHARED(Locks::mutator_lock_) { const gc::accounting::ContinuousSpaceBitmap* bitmap = space.GetMarkBitmap(); const ImageHeader& image_header = space.GetImageHeader(); const uint8_t* target_base = space.GetMemMap()->Begin(); const ImageSection& objects_section = image_header.GetObjectsSection(); auto objects_begin = reinterpret_cast(target_base + objects_section.Offset()); auto objects_end = reinterpret_cast(target_base + objects_section.End()); CountInternedStringReferencesVisitor visitor(space, image_interns); bitmap->VisitMarkedRange(objects_begin, objects_end, [&space, &visitor](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (space.HasAddress(obj)) { if (obj->IsDexCache()) { obj->VisitReferences(visitor, visitor); } else { // Don't visit native roots for non-dex-cache as they can't contain // native references to strings. This is verified during compilation // by ImageWriter::VerifyNativeGCRootInvariants. obj->VisitReferences(visitor, visitor); } } }); return visitor.GetCount(); } template static void VisitInternedStringReferences( gc::space::ImageSpace* space, const Visitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_) { const uint8_t* target_base = space->Begin(); const ImageSection& sro_section = space->GetImageHeader().GetImageStringReferenceOffsetsSection(); const size_t num_string_offsets = sro_section.Size() / sizeof(AppImageReferenceOffsetInfo); VLOG(image) << "ClassLinker:AppImage:InternStrings:imageStringReferenceOffsetCount = " << num_string_offsets; const auto* sro_base = reinterpret_cast(target_base + sro_section.Offset()); for (size_t offset_index = 0; offset_index < num_string_offsets; ++offset_index) { uint32_t base_offset = sro_base[offset_index].first; uint32_t raw_member_offset = sro_base[offset_index].second; DCHECK_ALIGNED(base_offset, 2); ObjPtr obj_ptr = reinterpret_cast(space->Begin() + base_offset); if (obj_ptr->IsDexCache() && raw_member_offset >= sizeof(mirror::DexCache)) { // Special case for strings referenced from dex cache array: the offset is // actually decoded as an index into the dex cache string array. uint32_t index = raw_member_offset - sizeof(mirror::DexCache); mirror::GcRootArray* array = obj_ptr->AsDexCache()->GetStringsArray(); // The array could be concurrently set to null. See `StartupCompletedTask`. if (array != nullptr) { ObjPtr referred_string = array->Get(index); DCHECK(referred_string != nullptr); ObjPtr visited = visitor(referred_string); if (visited != referred_string) { array->Set(index, visited.Ptr()); } } } else { DCHECK_ALIGNED(raw_member_offset, 2); MemberOffset member_offset(raw_member_offset); ObjPtr referred_string = obj_ptr->GetFieldObject(member_offset); DCHECK(referred_string != nullptr); ObjPtr visited = visitor(referred_string); if (visited != referred_string) { obj_ptr->SetFieldObject(member_offset, visited); } } } } static void VerifyInternedStringReferences(gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { InternTable::UnorderedSet image_interns; const ImageSection& section = space->GetImageHeader().GetInternedStringsSection(); if (section.Size() > 0) { size_t read_count; const uint8_t* data = space->Begin() + section.Offset(); InternTable::UnorderedSet image_set(data, /*make_copy_of_data=*/ false, &read_count); image_set.swap(image_interns); } size_t num_recorded_refs = 0u; VisitInternedStringReferences( space, [&image_interns, &num_recorded_refs](ObjPtr str) REQUIRES_SHARED(Locks::mutator_lock_) { auto it = image_interns.find(GcRoot(str)); CHECK(it != image_interns.end()); CHECK(it->Read() == str); ++num_recorded_refs; return str; }); size_t num_found_refs = CountInternedStringReferences(*space, image_interns); CHECK_EQ(num_recorded_refs, num_found_refs); } // new_class_set is the set of classes that were read from the class table section in the image. // If there was no class table section, it is null. // Note: using a class here to avoid having to make ClassLinker internals public. class AppImageLoadingHelper { public: static void Update( ClassLinker* class_linker, gc::space::ImageSpace* space, Handle class_loader, Handle> dex_caches) REQUIRES(!Locks::dex_lock_) REQUIRES_SHARED(Locks::mutator_lock_); static void HandleAppImageStrings(gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_); }; void AppImageLoadingHelper::Update( ClassLinker* class_linker, gc::space::ImageSpace* space, Handle class_loader, Handle> dex_caches) REQUIRES(!Locks::dex_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedTrace app_image_timing("AppImage:Updating"); if (kIsDebugBuild && ClassLinker::kAppImageMayContainStrings) { // In debug build, verify the string references before applying // the Runtime::LoadAppImageStartupCache() option. VerifyInternedStringReferences(space); } Thread* const self = Thread::Current(); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); const ImageHeader& header = space->GetImageHeader(); int32_t number_of_dex_cache_arrays_cleared = 0; { // Register dex caches with the class loader. WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); for (auto dex_cache : dex_caches.Iterate()) { const DexFile* const dex_file = dex_cache->GetDexFile(); { WriterMutexLock mu2(self, *Locks::dex_lock_); CHECK(class_linker->FindDexCacheDataLocked(*dex_file) == nullptr); if (runtime->GetStartupCompleted()) { number_of_dex_cache_arrays_cleared++; // Free up dex cache arrays that we would only allocate at startup. // We do this here before registering and within the lock to be // consistent with `StartupCompletedTask`. dex_cache->UnlinkStartupCaches(); } class_linker->RegisterDexFileLocked(*dex_file, dex_cache, class_loader.Get()); } } } if (number_of_dex_cache_arrays_cleared == dex_caches->GetLength()) { // Free up dex cache arrays that we would only allocate at startup. // If `number_of_dex_cache_arrays_cleared` isn't the number of dex caches in // the image, then there is a race with the `StartupCompletedTask`, which // will release the space instead. space->ReleaseMetadata(); } if (ClassLinker::kAppImageMayContainStrings) { HandleAppImageStrings(space); } if (kVerifyArtMethodDeclaringClasses) { ScopedTrace timing("AppImage:VerifyDeclaringClasses"); ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_); gc::accounting::HeapBitmap* live_bitmap = heap->GetLiveBitmap(); header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { ObjPtr klass = method.GetDeclaringClassUnchecked(); if (klass != nullptr) { CHECK(live_bitmap->Test(klass.Ptr())) << "Image method has unmarked declaring class"; } }, space->Begin(), kRuntimePointerSize); } } void AppImageLoadingHelper::HandleAppImageStrings(gc::space::ImageSpace* space) { // Iterate over the string reference offsets stored in the image and intern // the strings they point to. ScopedTrace timing("AppImage:InternString"); Runtime* const runtime = Runtime::Current(); InternTable* const intern_table = runtime->GetInternTable(); // Add the intern table, removing any conflicts. For conflicts, store the new address in a map // for faster lookup. // TODO: Optimize with a bitmap or bloom filter SafeMap intern_remap; auto func = [&](InternTable::UnorderedSet& interns) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::intern_table_lock_) { const size_t non_boot_image_strings = intern_table->CountInterns( /*visit_boot_images=*/false, /*visit_non_boot_images=*/true); VLOG(image) << "AppImage:stringsInInternTableSize = " << interns.size(); VLOG(image) << "AppImage:nonBootImageInternStrings = " << non_boot_image_strings; // Visit the smaller of the two sets to compute the intersection. if (interns.size() < non_boot_image_strings) { for (auto it = interns.begin(); it != interns.end(); ) { ObjPtr string = it->Read(); ObjPtr existing = intern_table->LookupWeakLocked(string); if (existing == nullptr) { existing = intern_table->LookupStrongLocked(string); } if (existing != nullptr) { intern_remap.Put(string.Ptr(), existing.Ptr()); it = interns.erase(it); } else { ++it; } } } else { intern_table->VisitInterns([&](const GcRoot& root) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::intern_table_lock_) { auto it = interns.find(root); if (it != interns.end()) { ObjPtr existing = root.Read(); intern_remap.Put(it->Read(), existing.Ptr()); it = interns.erase(it); } }, /*visit_boot_images=*/false, /*visit_non_boot_images=*/true); } // Consistency check to ensure correctness. if (kIsDebugBuild) { for (GcRoot& root : interns) { ObjPtr string = root.Read(); CHECK(intern_table->LookupWeakLocked(string) == nullptr) << string->ToModifiedUtf8(); CHECK(intern_table->LookupStrongLocked(string) == nullptr) << string->ToModifiedUtf8(); } } }; intern_table->AddImageStringsToTable(space, func); if (!intern_remap.empty()) { VLOG(image) << "AppImage:conflictingInternStrings = " << intern_remap.size(); VisitInternedStringReferences( space, [&intern_remap](ObjPtr str) REQUIRES_SHARED(Locks::mutator_lock_) { auto it = intern_remap.find(str.Ptr()); if (it != intern_remap.end()) { return ObjPtr(it->second); } return str; }); } } static std::unique_ptr OpenOatDexFile(const OatFile* oat_file, const char* location, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(error_msg != nullptr); std::unique_ptr dex_file; const OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr, error_msg); if (oat_dex_file == nullptr) { return std::unique_ptr(); } std::string inner_error_msg; dex_file = oat_dex_file->OpenDexFile(&inner_error_msg); if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'", location, oat_file->GetLocation().c_str(), inner_error_msg.c_str()); return std::unique_ptr(); } if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x", location, dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum()); return std::unique_ptr(); } return dex_file; } bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space, std::vector>* out_dex_files, std::string* error_msg) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); const ImageHeader& header = space->GetImageHeader(); ObjPtr dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); ObjPtr> dex_caches = dex_caches_object->AsObjectArray(); const OatFile* oat_file = space->GetOatFile(); for (auto dex_cache : dex_caches->Iterate()) { std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); std::unique_ptr dex_file = OpenOatDexFile(oat_file, dex_file_location.c_str(), error_msg); if (dex_file == nullptr) { return false; } dex_cache->SetDexFile(dex_file.get()); out_dex_files->push_back(std::move(dex_file)); } return true; } bool ClassLinker::OpenAndInitImageDexFiles( const gc::space::ImageSpace* space, Handle class_loader, std::vector>* out_dex_files, std::string* error_msg) { DCHECK(out_dex_files != nullptr); const bool app_image = class_loader != nullptr; const ImageHeader& header = space->GetImageHeader(); ObjPtr dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); Thread* const self = Thread::Current(); StackHandleScope<3> hs(self); Handle> dex_caches( hs.NewHandle(dex_caches_object->AsObjectArray())); const OatFile* oat_file = space->GetOatFile(); if (oat_file->GetOatHeader().GetDexFileCount() != static_cast(dex_caches->GetLength())) { *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from image"; return false; } for (auto dex_cache : dex_caches.Iterate()) { std::string dex_file_location = dex_cache->GetLocation()->ToModifiedUtf8(); std::unique_ptr dex_file = OpenOatDexFile(oat_file, dex_file_location.c_str(), error_msg); if (dex_file == nullptr) { return false; } { // Native fields are all null. Initialize them. WriterMutexLock mu(self, *Locks::dex_lock_); dex_cache->Initialize(dex_file.get(), class_loader.Get()); } if (!app_image) { // Register dex files, keep track of existing ones that are conflicts. AppendToBootClassPath(dex_file.get(), dex_cache); } out_dex_files->push_back(std::move(dex_file)); } return true; } // Helper class for ArtMethod checks when adding an image. Keeps all required functionality // together and caches some intermediate results. template class ImageChecker final { public: static void CheckObjects(gc::Heap* heap, gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { // There can be no GC during boot image initialization, so we do not need read barriers. ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); CHECK_EQ(kPointerSize, space->GetImageHeader().GetPointerSize()); const ImageSection& objects_section = space->GetImageHeader().GetObjectsSection(); uintptr_t space_begin = reinterpret_cast(space->Begin()); uintptr_t objects_begin = space_begin + objects_section.Offset(); uintptr_t objects_end = objects_begin + objects_section.Size(); ImageChecker ic(heap); auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(obj != nullptr); mirror::Class* obj_klass = obj->GetClass(); CHECK(obj_klass != nullptr) << "Null class in object " << obj; mirror::Class* class_class = obj_klass->GetClass(); CHECK(class_class != nullptr) << "Null class class " << obj; if (obj_klass == class_class) { auto klass = obj->AsClass(); for (ArtField& field : klass->GetIFields()) { CHECK_EQ(field.GetDeclaringClass(), klass); } for (ArtField& field : klass->GetSFields()) { CHECK_EQ(field.GetDeclaringClass(), klass); } for (ArtMethod& m : klass->GetMethods(kPointerSize)) { ic.CheckArtMethod(&m, klass); } ObjPtr vtable = klass->GetVTable(); if (vtable != nullptr) { ic.CheckArtMethodPointerArray(vtable); } if (klass->ShouldHaveImt()) { ImTable* imt = klass->GetImt(kPointerSize); for (size_t i = 0; i < ImTable::kSize; ++i) { ic.CheckArtMethod(imt->Get(i, kPointerSize), /*expected_class=*/ nullptr); } } if (klass->ShouldHaveEmbeddedVTable()) { for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) { ic.CheckArtMethod(klass->GetEmbeddedVTableEntry(i, kPointerSize), /*expected_class=*/ nullptr); } } ObjPtr iftable = klass->GetIfTable(); int32_t iftable_count = (iftable != nullptr) ? iftable->Count() : 0; for (int32_t i = 0; i < iftable_count; ++i) { ObjPtr method_array = iftable->GetMethodArrayOrNull(i); if (method_array != nullptr) { ic.CheckArtMethodPointerArray(method_array); } } } }; space->GetLiveBitmap()->VisitMarkedRange(objects_begin, objects_end, visitor); } private: explicit ImageChecker(gc::Heap* heap) { ArrayRef spaces(heap->GetBootImageSpaces()); space_begin_.reserve(spaces.size()); for (gc::space::ImageSpace* space : spaces) { CHECK_EQ(static_cast(space->Begin()), &space->GetImageHeader()); space_begin_.push_back(space->Begin()); } } void CheckArtMethod(ArtMethod* m, ObjPtr expected_class) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr declaring_class = m->GetDeclaringClassUnchecked(); if (m->IsRuntimeMethod()) { CHECK(declaring_class == nullptr) << declaring_class << " " << m->PrettyMethod(); } else if (m->IsCopied()) { CHECK(declaring_class != nullptr) << m->PrettyMethod(); } else if (expected_class != nullptr) { CHECK_EQ(declaring_class, expected_class) << m->PrettyMethod(); } bool contains = false; for (const uint8_t* begin : space_begin_) { const size_t offset = reinterpret_cast(m) - begin; const ImageHeader* header = reinterpret_cast(begin); if (header->GetMethodsSection().Contains(offset) || header->GetRuntimeMethodsSection().Contains(offset)) { contains = true; break; } } CHECK(contains) << m << " not found"; } void CheckArtMethodPointerArray(ObjPtr arr) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(arr != nullptr); for (int32_t j = 0; j < arr->GetLength(); ++j) { auto* method = arr->GetElementPtrSize(j, kPointerSize); CHECK(method != nullptr); CheckArtMethod(method, /*expected_class=*/ nullptr); } } std::vector space_begin_; }; static void VerifyAppImage(const ImageHeader& header, const Handle& class_loader, ClassTable* class_table, gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr klass = method.GetDeclaringClass(); if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { CHECK_EQ(class_table->LookupByDescriptor(klass), klass) << mirror::Class::PrettyClass(klass); } }, space->Begin(), kRuntimePointerSize); { // Verify that all direct interfaces of classes in the class table are also resolved. std::vector> classes; auto verify_direct_interfaces_in_table = [&](ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (!klass->IsPrimitive() && klass->GetClassLoader() == class_loader.Get()) { classes.push_back(klass); } return true; }; class_table->Visit(verify_direct_interfaces_in_table); for (ObjPtr klass : classes) { for (uint32_t i = 0, num = klass->NumDirectInterfaces(); i != num; ++i) { CHECK(klass->GetDirectInterface(i) != nullptr) << klass->PrettyDescriptor() << " iface #" << i; } } } } bool ClassLinker::AddImageSpace(gc::space::ImageSpace* space, Handle class_loader, ClassLoaderContext* context, const std::vector>& dex_files, std::string* error_msg) { DCHECK(error_msg != nullptr); const uint64_t start_time = NanoTime(); const bool app_image = class_loader != nullptr; const ImageHeader& header = space->GetImageHeader(); ObjPtr dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); DCHECK(dex_caches_object != nullptr); Runtime* const runtime = Runtime::Current(); gc::Heap* const heap = runtime->GetHeap(); Thread* const self = Thread::Current(); // Check that the image is what we are expecting. if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) { *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu", static_cast(space->GetImageHeader().GetPointerSize()), image_pointer_size_); return false; } size_t expected_image_roots = ImageHeader::NumberOfImageRoots(app_image); if (static_cast(header.GetImageRoots()->GetLength()) != expected_image_roots) { *error_msg = StringPrintf("Expected %zu image roots but got %d", expected_image_roots, header.GetImageRoots()->GetLength()); return false; } StackHandleScope<3> hs(self); Handle> dex_caches( hs.NewHandle(dex_caches_object->AsObjectArray())); Handle> class_roots(hs.NewHandle( header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray())); MutableHandle special_root(hs.NewHandle( app_image ? header.GetImageRoot(ImageHeader::kSpecialRoots) : nullptr)); DCHECK(class_roots != nullptr); if (class_roots->GetLength() != static_cast(ClassRoot::kMax)) { *error_msg = StringPrintf("Expected %d class roots but got %d", class_roots->GetLength(), static_cast(ClassRoot::kMax)); return false; } // Check against existing class roots to make sure they match the ones in the boot image. ObjPtr> existing_class_roots = GetClassRoots(); for (size_t i = 0; i < static_cast(ClassRoot::kMax); i++) { if (class_roots->Get(i) != GetClassRoot(static_cast(i), existing_class_roots)) { *error_msg = "App image class roots must have pointer equality with runtime ones."; return false; } } const OatFile* oat_file = space->GetOatFile(); if (app_image) { ScopedAssertNoThreadSuspension sants("Checking app image"); if (special_root == nullptr) { *error_msg = "Unexpected null special root in app image"; return false; } else if (special_root->IsByteArray()) { OatHeader* oat_header = reinterpret_cast(special_root->AsByteArray()->GetData()); if (!oat_header->IsValid()) { *error_msg = "Invalid oat header in special root"; return false; } if (oat_file->GetVdexFile()->GetNumberOfDexFiles() != oat_header->GetDexFileCount()) { *error_msg = "Checksums count does not match"; return false; } if (oat_header->IsConcurrentCopying() != gUseReadBarrier) { *error_msg = "GCs do not match"; return false; } // Check if the dex checksums match the dex files that we just loaded. uint32_t* checksums = reinterpret_cast( reinterpret_cast(oat_header) + oat_header->GetHeaderSize()); for (uint32_t i = 0; i < oat_header->GetDexFileCount(); ++i) { uint32_t dex_checksum = dex_files.at(i)->GetHeader().checksum_; if (checksums[i] != dex_checksum) { *error_msg = StringPrintf( "Image and dex file checksums did not match for %s: image has %d, dex file has %d", dex_files.at(i)->GetLocation().c_str(), checksums[i], dex_checksum); return false; } } // Validate the class loader context. const char* stored_context = oat_header->GetStoreValueByKey(OatHeader::kClassPathKey); if (stored_context == nullptr) { *error_msg = "Missing class loader context in special root"; return false; } if (context->VerifyClassLoaderContextMatch(stored_context) == ClassLoaderContext::VerificationResult::kMismatch) { *error_msg = StringPrintf("Class loader contexts don't match: %s", stored_context); return false; } // Validate the apex versions. if (!gc::space::ImageSpace::ValidateApexVersions(*oat_header, runtime->GetApexVersions(), space->GetImageLocation(), error_msg)) { return false; } // Validate the boot classpath. const char* bcp = oat_header->GetStoreValueByKey(OatHeader::kBootClassPathKey); if (bcp == nullptr) { *error_msg = "Missing boot classpath in special root"; return false; } std::string runtime_bcp = android::base::Join(runtime->GetBootClassPathLocations(), ':'); if (strcmp(bcp, runtime_bcp.c_str()) != 0) { *error_msg = StringPrintf("Mismatch boot classpath: image has %s, runtime has %s", bcp, runtime_bcp.c_str()); return false; } // Validate the dex checksums of the boot classpath. const char* bcp_checksums = oat_header->GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey); if (bcp_checksums == nullptr) { *error_msg = "Missing boot classpath checksums in special root"; return false; } if (strcmp(bcp_checksums, runtime->GetBootClassPathChecksums().c_str()) != 0) { *error_msg = StringPrintf("Mismatch boot classpath checksums: image has %s, runtime has %s", bcp_checksums, runtime->GetBootClassPathChecksums().c_str()); return false; } } else if (IsBootClassLoader(special_root.Get())) { *error_msg = "Unexpected BootClassLoader in app image"; return false; } else if (!special_root->IsClassLoader()) { *error_msg = "Unexpected special root in app image"; return false; } } if (kCheckImageObjects) { if (!app_image) { if (image_pointer_size_ == PointerSize::k64) { ImageChecker::CheckObjects(heap, space); } else { ImageChecker::CheckObjects(heap, space); } } } // Set entry point to interpreter if in InterpretOnly mode. if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) { // Set image methods' entry point to interpreter. header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { if (!method.IsRuntimeMethod()) { DCHECK(method.GetDeclaringClass() != nullptr); if (!method.IsNative() && !method.IsResolutionMethod()) { method.SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(), image_pointer_size_); } } }, space->Begin(), image_pointer_size_); } if (!runtime->IsAotCompiler()) { // If we are profiling the boot classpath, disable the shared memory for // boot image method optimization. We need to disable it before doing // ResetCounter below, as counters of shared memory method always hold the // "hot" value. if (runtime->GetJITOptions()->GetProfileSaverOptions().GetProfileBootClassPath()) { header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { method.ClearMemorySharedMethod(); }, space->Begin(), image_pointer_size_); } ScopedTrace trace("AppImage:UpdateCodeItemAndNterp"); bool can_use_nterp = interpreter::CanRuntimeUseNterp(); uint16_t hotness_threshold = runtime->GetJITOptions()->GetWarmupThreshold(); header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { // In the image, the `data` pointer field of the ArtMethod contains the code // item offset. Change this to the actual pointer to the code item. if (method.HasCodeItem()) { const dex::CodeItem* code_item = method.GetDexFile()->GetCodeItem( reinterpret_cast32(method.GetDataPtrSize(image_pointer_size_))); method.SetCodeItem(code_item, method.GetDexFile()->IsCompactDexFile()); // The hotness counter may have changed since we compiled the image, so // reset it with the runtime value. method.ResetCounter(hotness_threshold); } if (method.GetEntryPointFromQuickCompiledCode() == nterp_trampoline_) { if (can_use_nterp) { // Set image methods' entry point that point to the nterp trampoline to the // nterp entry point. This allows taking the fast path when doing a // nterp->nterp call. DCHECK(!method.StillNeedsClinitCheck()); method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpEntryPoint()); } else { method.SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } } }, space->Begin(), image_pointer_size_); } if (runtime->IsVerificationSoftFail()) { header.VisitPackedArtMethods([&](ArtMethod& method) REQUIRES_SHARED(Locks::mutator_lock_) { if (method.IsManagedAndInvokable()) { method.ClearSkipAccessChecks(); } }, space->Begin(), image_pointer_size_); } ClassTable* class_table = nullptr; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); class_table = InsertClassTableForClassLoader(class_loader.Get()); } // If we have a class table section, read it and use it for verification in // UpdateAppImageClassLoadersAndDexCaches. ClassTable::ClassSet temp_set; const ImageSection& class_table_section = header.GetClassTableSection(); const bool added_class_table = class_table_section.Size() > 0u; if (added_class_table) { const uint64_t start_time2 = NanoTime(); size_t read_count = 0; temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(), /*make copy*/false, &read_count); VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2); } if (app_image) { AppImageLoadingHelper::Update(this, space, class_loader, dex_caches); { ScopedTrace trace("AppImage:UpdateClassLoaders"); // Update class loader and resolved strings. If added_class_table is false, the resolved // strings were forwarded UpdateAppImageClassLoadersAndDexCaches. ObjPtr loader(class_loader.Get()); for (const ClassTable::TableSlot& root : temp_set) { // Note: We probably don't need the read barrier unless we copy the app image objects into // the region space. ObjPtr klass(root.Read()); // Do not update class loader for boot image classes where the app image // class loader is only the initiating loader but not the defining loader. if (space->HasAddress(klass.Ptr())) { klass->SetClassLoader(loader); } else { DCHECK(klass->IsBootStrapClassLoaded()); DCHECK(Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass.Ptr())); } } } if (kBitstringSubtypeCheckEnabled) { // Every class in the app image has initially SubtypeCheckInfo in the // Uninitialized state. // // The SubtypeCheck invariants imply that a SubtypeCheckInfo is at least Initialized // after class initialization is complete. The app image ClassStatus as-is // are almost all ClassStatus::Initialized, and being in the // SubtypeCheckInfo::kUninitialized state is violating that invariant. // // Force every app image class's SubtypeCheck to be at least kIninitialized. // // See also ImageWriter::FixupClass. ScopedTrace trace("AppImage:RecacluateSubtypeCheckBitstrings"); MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); for (const ClassTable::TableSlot& root : temp_set) { SubtypeCheck>::EnsureInitialized(root.Read()); } } } if (!oat_file->GetBssGcRoots().empty()) { // Insert oat file to class table for visiting .bss GC roots. class_table->InsertOatFile(oat_file); } if (added_class_table) { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); class_table->AddClassSet(std::move(temp_set)); } if (kIsDebugBuild && app_image) { // This verification needs to happen after the classes have been added to the class loader. // Since it ensures classes are in the class table. ScopedTrace trace("AppImage:Verify"); VerifyAppImage(header, class_loader, class_table, space); } VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time); return true; } bool ClassLinker::AddImageSpaces(ArrayRef spaces, Handle class_loader, ClassLoaderContext* context, /*out*/ std::vector>* dex_files, /*out*/ std::string* error_msg) { std::vector>> dex_files_by_space_index; for (const gc::space::ImageSpace* space : spaces) { std::vector> space_dex_files; if (!OpenAndInitImageDexFiles(space, class_loader, /*out*/ &space_dex_files, error_msg)) { return false; } dex_files_by_space_index.push_back(std::move(space_dex_files)); } // This must be done in a separate loop after all dex files are initialized because there can be // references from an image space to another image space that comes after it. for (size_t i = 0u, size = spaces.size(); i != size; ++i) { std::vector>& space_dex_files = dex_files_by_space_index[i]; if (!AddImageSpace(spaces[i], class_loader, context, space_dex_files, error_msg)) { return false; } // Append opened dex files at the end. std::move(space_dex_files.begin(), space_dex_files.end(), std::back_inserter(*dex_files)); } return true; } void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) { // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since // enabling tracing requires the mutator lock, there are no race conditions here. const bool tracing_enabled = Trace::IsTracingEnabled(); Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); if (gUseReadBarrier) { // We do not track new roots for CC. DCHECK_EQ(0, flags & (kVisitRootFlagNewRoots | kVisitRootFlagClearRootLog | kVisitRootFlagStartLoggingNewRoots | kVisitRootFlagStopLoggingNewRoots)); } if ((flags & kVisitRootFlagAllRoots) != 0) { // Argument for how root visiting deals with ArtField and ArtMethod roots. // There is 3 GC cases to handle: // Non moving concurrent: // This case is easy to handle since the reference members of ArtMethod and ArtFields are held // live by the class and class roots. // // Moving non-concurrent: // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move. // To prevent missing roots, this case needs to ensure that there is no // suspend points between the point which we allocate ArtMethod arrays and place them in a // class which is in the class table. // // Moving concurrent: // Need to make sure to not copy ArtMethods without doing read barriers since the roots are // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy. // // Use an unbuffered visitor since the class table uses a temporary GcRoot for holding decoded // ClassTable::TableSlot. The buffered root visiting would access a stale stack location for // these objects. UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass)); boot_class_table_->VisitRoots(root_visitor); // If tracing is enabled, then mark all the class loaders to prevent unloading. if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) { gc::Heap* const heap = Runtime::Current()->GetHeap(); // Don't visit class-loaders if compacting with userfaultfd GC as these // weaks are updated using Runtime::SweepSystemWeaks() and the GC doesn't // tolerate double updates. if (!heap->IsPerformingUffdCompaction()) { for (const ClassLoaderData& data : class_loaders_) { GcRoot root(GcRoot(self->DecodeJObject(data.weak_root))); root.VisitRoot(visitor, RootInfo(kRootVMInternal)); } } else { DCHECK_EQ(heap->CurrentCollectorType(), gc::CollectorType::kCollectorTypeCMC); } } } else if (!gUseReadBarrier && (flags & kVisitRootFlagNewRoots) != 0) { for (auto& root : new_class_roots_) { ObjPtr old_ref = root.Read(); root.VisitRoot(visitor, RootInfo(kRootStickyClass)); ObjPtr new_ref = root.Read(); // Concurrent moving GC marked new roots through the to-space invariant. CHECK_EQ(new_ref, old_ref); } for (const OatFile* oat_file : new_bss_roots_boot_oat_files_) { for (GcRoot& root : oat_file->GetBssGcRoots()) { ObjPtr old_ref = root.Read(); if (old_ref != nullptr) { DCHECK(old_ref->IsClass()); root.VisitRoot(visitor, RootInfo(kRootStickyClass)); ObjPtr new_ref = root.Read(); // Concurrent moving GC marked new roots through the to-space invariant. CHECK_EQ(new_ref, old_ref); } } } } if (!gUseReadBarrier && (flags & kVisitRootFlagClearRootLog) != 0) { new_class_roots_.clear(); new_bss_roots_boot_oat_files_.clear(); } if (!gUseReadBarrier && (flags & kVisitRootFlagStartLoggingNewRoots) != 0) { log_new_roots_ = true; } else if (!gUseReadBarrier && (flags & kVisitRootFlagStopLoggingNewRoots) != 0) { log_new_roots_ = false; } // We deliberately ignore the class roots in the image since we // handle image roots by using the MS/CMS rescanning of dirty cards. } // Keep in sync with InitCallback. Anything we visit, we need to // reinit references to when reinitializing a ClassLinker from a // mapped image. void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); VisitClassRoots(visitor, flags); // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class // unloading if we are marking roots. DropFindArrayClassCache(); } class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor { public: explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor) : visitor_(visitor), done_(false) {} void Visit(ObjPtr class_loader) REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); if (!done_ && class_table != nullptr) { DefiningClassLoaderFilterVisitor visitor(class_loader, visitor_); if (!class_table->Visit(visitor)) { // If the visitor ClassTable returns false it means that we don't need to continue. done_ = true; } } } private: // Class visitor that limits the class visits from a ClassTable to the classes with // the provided defining class loader. This filter is used to avoid multiple visits // of the same class which can be recorded for multiple initiating class loaders. class DefiningClassLoaderFilterVisitor : public ClassVisitor { public: DefiningClassLoaderFilterVisitor(ObjPtr defining_class_loader, ClassVisitor* visitor) : defining_class_loader_(defining_class_loader), visitor_(visitor) { } bool operator()(ObjPtr klass) override REQUIRES_SHARED(Locks::mutator_lock_) { if (klass->GetClassLoader() != defining_class_loader_) { return true; } return (*visitor_)(klass); } const ObjPtr defining_class_loader_; ClassVisitor* const visitor_; }; ClassVisitor* const visitor_; // If done is true then we don't need to do any more visiting. bool done_; }; void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) { if (boot_class_table_->Visit(*visitor)) { VisitClassLoaderClassesVisitor loader_visitor(visitor); VisitClassLoaders(&loader_visitor); } } void ClassLinker::VisitClasses(ClassVisitor* visitor) { Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // Not safe to have thread suspension when we are holding a lock. if (self != nullptr) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); VisitClassesInternal(visitor); } else { VisitClassesInternal(visitor); } } class GetClassesInToVector : public ClassVisitor { public: bool operator()(ObjPtr klass) override { classes_.push_back(klass); return true; } std::vector> classes_; }; class GetClassInToObjectArray : public ClassVisitor { public: explicit GetClassInToObjectArray(mirror::ObjectArray* arr) : arr_(arr), index_(0) {} bool operator()(ObjPtr klass) override REQUIRES_SHARED(Locks::mutator_lock_) { ++index_; if (index_ <= arr_->GetLength()) { arr_->Set(index_ - 1, klass); return true; } return false; } bool Succeeded() const REQUIRES_SHARED(Locks::mutator_lock_) { return index_ <= arr_->GetLength(); } private: mirror::ObjectArray* const arr_; int32_t index_; }; void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) { // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem // is avoiding duplicates. if (!kMovingClasses) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); GetClassesInToVector accumulator; VisitClasses(&accumulator); for (ObjPtr klass : accumulator.classes_) { if (!visitor->operator()(klass)) { return; } } } else { Thread* const self = Thread::Current(); StackHandleScope<1> hs(self); auto classes = hs.NewHandle>(nullptr); // We size the array assuming classes won't be added to the class table during the visit. // If this assumption fails we iterate again. while (true) { size_t class_table_size; { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // Add 100 in case new classes get loaded when we are filling in the object array. class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100; } ObjPtr array_of_class = GetClassRoot>(this); classes.Assign( mirror::ObjectArray::Alloc(self, array_of_class, class_table_size)); CHECK(classes != nullptr); // OOME. GetClassInToObjectArray accumulator(classes.Get()); VisitClasses(&accumulator); if (accumulator.Succeeded()) { break; } } for (int32_t i = 0; i < classes->GetLength(); ++i) { // If the class table shrank during creation of the clases array we expect null elements. If // the class table grew then the loop repeats. If classes are created after the loop has // finished then we don't visit. ObjPtr klass = classes->Get(i); if (klass != nullptr && !visitor->operator()(klass)) { return; } } } } ClassLinker::~ClassLinker() { Thread* const self = Thread::Current(); for (const ClassLoaderData& data : class_loaders_) { // CHA unloading analysis is not needed. No negative consequences are expected because // all the classloaders are deleted at the same time. DeleteClassLoader(self, data, /*cleanup_cha=*/ false); } class_loaders_.clear(); while (!running_visibly_initialized_callbacks_.empty()) { std::unique_ptr callback( std::addressof(running_visibly_initialized_callbacks_.front())); running_visibly_initialized_callbacks_.pop_front(); } } void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data, bool cleanup_cha) { Runtime* const runtime = Runtime::Current(); JavaVMExt* const vm = runtime->GetJavaVM(); vm->DeleteWeakGlobalRef(self, data.weak_root); // Notify the JIT that we need to remove the methods and/or profiling info. if (runtime->GetJit() != nullptr) { jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache(); if (code_cache != nullptr) { // For the JIT case, RemoveMethodsIn removes the CHA dependencies. code_cache->RemoveMethodsIn(self, *data.allocator); } } else if (cha_ != nullptr) { // If we don't have a JIT, we need to manually remove the CHA dependencies manually. cha_->RemoveDependenciesForLinearAlloc(self, data.allocator); } // Cleanup references to single implementation ArtMethods that will be deleted. if (cleanup_cha) { CHAOnDeleteUpdateClassVisitor visitor(data.allocator); data.class_table->Visit(visitor); } { MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto end = critical_native_code_with_clinit_check_.end(); for (auto it = critical_native_code_with_clinit_check_.begin(); it != end; ) { if (data.allocator->ContainsUnsafe(it->first)) { it = critical_native_code_with_clinit_check_.erase(it); } else { ++it; } } } delete data.allocator; delete data.class_table; } ObjPtr ClassLinker::AllocPointerArray(Thread* self, size_t length) { return ObjPtr::DownCast( image_pointer_size_ == PointerSize::k64 ? ObjPtr(mirror::LongArray::Alloc(self, length)) : ObjPtr(mirror::IntArray::Alloc(self, length))); } ObjPtr ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file) { StackHandleScope<1> hs(self); auto dex_cache(hs.NewHandle(ObjPtr::DownCast( GetClassRoot(this)->AllocObject(self)))); if (dex_cache == nullptr) { self->AssertPendingOOMException(); return nullptr; } // Use InternWeak() so that the location String can be collected when the ClassLoader // with this DexCache is collected. ObjPtr location = intern_table_->InternWeak(dex_file.GetLocation().c_str()); if (location == nullptr) { self->AssertPendingOOMException(); return nullptr; } dex_cache->SetLocation(location); return dex_cache.Get(); } ObjPtr ClassLinker::AllocAndInitializeDexCache( Thread* self, const DexFile& dex_file, ObjPtr class_loader) { StackHandleScope<1> hs(self); Handle h_class_loader(hs.NewHandle(class_loader)); ObjPtr dex_cache = AllocDexCache(self, dex_file); if (dex_cache != nullptr) { WriterMutexLock mu(self, *Locks::dex_lock_); dex_cache->Initialize(&dex_file, h_class_loader.Get()); } return dex_cache; } template ObjPtr ClassLinker::AllocClass(Thread* self, ObjPtr java_lang_Class, uint32_t class_size, const PreFenceVisitor& pre_fence_visitor) { DCHECK_GE(class_size, sizeof(mirror::Class)); gc::Heap* heap = Runtime::Current()->GetHeap(); ObjPtr k = (kMovingClasses && kMovable) ? heap->AllocObject(self, java_lang_Class, class_size, pre_fence_visitor) : heap->AllocNonMovableObject(self, java_lang_Class, class_size, pre_fence_visitor); if (UNLIKELY(k == nullptr)) { self->AssertPendingOOMException(); return nullptr; } return k->AsClass(); } template ObjPtr ClassLinker::AllocClass(Thread* self, ObjPtr java_lang_Class, uint32_t class_size) { mirror::Class::InitializeClassVisitor visitor(class_size); return AllocClass(self, java_lang_Class, class_size, visitor); } ObjPtr ClassLinker::AllocClass(Thread* self, uint32_t class_size) { return AllocClass(self, GetClassRoot(this), class_size); } void ClassLinker::AllocPrimitiveArrayClass(Thread* self, ClassRoot primitive_root, ClassRoot array_root) { // We make this class non-movable for the unlikely case where it were to be // moved by a sticky-bit (minor) collection when using the Generational // Concurrent Copying (CC) collector, potentially creating a stale reference // in the `klass_` field of one of its instances allocated in the Large-Object // Space (LOS) -- see the comment about the dirty card scanning logic in // art::gc::collector::ConcurrentCopying::MarkingPhase. ObjPtr array_class = AllocClass( self, GetClassRoot(this), mirror::Array::ClassSize(image_pointer_size_)); ObjPtr component_type = GetClassRoot(primitive_root, this); DCHECK(component_type->IsPrimitive()); array_class->SetComponentType(component_type); SetClassRoot(array_root, array_class); } void ClassLinker::FinishArrayClassSetup(ObjPtr array_class) { ObjPtr java_lang_Object = GetClassRoot(this); array_class->SetSuperClass(java_lang_Object); array_class->SetVTable(java_lang_Object->GetVTable()); array_class->SetPrimitiveType(Primitive::kPrimNot); ObjPtr component_type = array_class->GetComponentType(); array_class->SetClassFlags(component_type->IsPrimitive() ? mirror::kClassFlagNoReferenceFields : mirror::kClassFlagObjectArray); array_class->SetClassLoader(component_type->GetClassLoader()); array_class->SetStatusForPrimitiveOrArray(ClassStatus::kLoaded); array_class->PopulateEmbeddedVTable(image_pointer_size_); ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_); array_class->SetImt(object_imt, image_pointer_size_); DCHECK_EQ(array_class->NumMethods(), 0u); // don't need to set new_class->SetObjectSize(..) // because Object::SizeOf delegates to Array::SizeOf // All arrays have java/lang/Cloneable and java/io/Serializable as // interfaces. We need to set that up here, so that stuff like // "instanceof" works right. // Use the single, global copies of "interfaces" and "iftable" // (remember not to free them for arrays). { ObjPtr array_iftable = GetArrayIfTable(); CHECK(array_iftable != nullptr); array_class->SetIfTable(array_iftable); } // Inherit access flags from the component type. int access_flags = component_type->GetAccessFlags(); // Lose any implementation detail flags; in particular, arrays aren't finalizable. access_flags &= kAccJavaFlagsMask; // Arrays can't be used as a superclass or interface, so we want to add "abstract final" // and remove "interface". access_flags |= kAccAbstract | kAccFinal; access_flags &= ~kAccInterface; array_class->SetAccessFlagsDuringLinking(access_flags); // Array classes are fully initialized either during single threaded startup, // or from a pre-fence visitor, so visibly initialized. array_class->SetStatusForPrimitiveOrArray(ClassStatus::kVisiblyInitialized); } void ClassLinker::FinishCoreArrayClassSetup(ClassRoot array_root) { // Do not hold lock on the array class object, the initialization of // core array classes is done while the process is still single threaded. ObjPtr array_class = GetClassRoot(array_root, this); FinishArrayClassSetup(array_class); std::string temp; const char* descriptor = array_class->GetDescriptor(&temp); size_t hash = ComputeModifiedUtf8Hash(descriptor); ObjPtr existing = InsertClass(descriptor, array_class, hash); CHECK(existing == nullptr); } ObjPtr> ClassLinker::AllocStackTraceElementArray( Thread* self, size_t length) { return mirror::ObjectArray::Alloc( self, GetClassRoot>(this), length); } ObjPtr ClassLinker::EnsureResolved(Thread* self, const char* descriptor, ObjPtr klass) { DCHECK(klass != nullptr); if (kIsDebugBuild) { StackHandleScope<1> hs(self); HandleWrapperObjPtr h = hs.NewHandleWrapper(&klass); Thread::PoisonObjectPointersIfDebug(); } // For temporary classes we must wait for them to be retired. if (init_done_ && klass->IsTemp()) { CHECK(!klass->IsResolved()); if (klass->IsErroneousUnresolved()) { ThrowEarlierClassFailure(klass); return nullptr; } StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(klass)); ObjectLock lock(self, h_class); // Loop and wait for the resolving thread to retire this class. while (!h_class->IsRetired() && !h_class->IsErroneousUnresolved()) { lock.WaitIgnoringInterrupts(); } if (h_class->IsErroneousUnresolved()) { ThrowEarlierClassFailure(h_class.Get()); return nullptr; } CHECK(h_class->IsRetired()); // Get the updated class from class table. klass = LookupClass(self, descriptor, h_class.Get()->GetClassLoader()); } // Wait for the class if it has not already been linked. size_t index = 0; // Maximum number of yield iterations until we start sleeping. static const size_t kNumYieldIterations = 1000; // How long each sleep is in us. static const size_t kSleepDurationUS = 1000; // 1 ms. while (!klass->IsResolved() && !klass->IsErroneousUnresolved()) { StackHandleScope<1> hs(self); HandleWrapperObjPtr h_class(hs.NewHandleWrapper(&klass)); { ObjectTryLock lock(self, h_class); // Can not use a monitor wait here since it may block when returning and deadlock if another // thread has locked klass. if (lock.Acquired()) { // Check for circular dependencies between classes, the lock is required for SetStatus. if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) { ThrowClassCircularityError(h_class.Get()); mirror::Class::SetStatus(h_class, ClassStatus::kErrorUnresolved, self); return nullptr; } } } { // Handle wrapper deals with klass moving. ScopedThreadSuspension sts(self, ThreadState::kSuspended); if (index < kNumYieldIterations) { sched_yield(); } else { usleep(kSleepDurationUS); } } ++index; } if (klass->IsErroneousUnresolved()) { ThrowEarlierClassFailure(klass); return nullptr; } // Return the loaded class. No exceptions should be pending. CHECK(klass->IsResolved()) << klass->PrettyClass(); self->AssertNoPendingException(); return klass; } using ClassPathEntry = std::pair; // Search a collection of DexFiles for a descriptor ClassPathEntry FindInClassPath(const char* descriptor, size_t hash, const std::vector& class_path) { for (const DexFile* dex_file : class_path) { DCHECK(dex_file != nullptr); const dex::ClassDef* dex_class_def = OatDexFile::FindClassDef(*dex_file, descriptor, hash); if (dex_class_def != nullptr) { return ClassPathEntry(dex_file, dex_class_def); } } return ClassPathEntry(nullptr, nullptr); } // Helper macro to make sure each class loader lookup call handles the case the // class loader is not recognized, or the lookup threw an exception. #define RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION(call_, result_, thread_) \ do { \ auto local_call = call_; \ if (!local_call) { \ return false; \ } \ auto local_result = result_; \ if (local_result != nullptr) { \ return true; \ } \ auto local_thread = thread_; \ if (local_thread->IsExceptionPending()) { \ /* Pending exception means there was an error other than */ \ /* ClassNotFound that must be returned to the caller. */ \ return false; \ } \ } while (0) bool ClassLinker::FindClassInSharedLibraries(Thread* self, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { ArtField* field = WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders; return FindClassInSharedLibrariesHelper(self, descriptor, hash, class_loader, field, result); } bool ClassLinker::FindClassInSharedLibrariesHelper(Thread* self, const char* descriptor, size_t hash, Handle class_loader, ArtField* field, /*out*/ ObjPtr* result) { ObjPtr raw_shared_libraries = field->GetObject(class_loader.Get()); if (raw_shared_libraries == nullptr) { return true; } StackHandleScope<2> hs(self); Handle> shared_libraries( hs.NewHandle(raw_shared_libraries->AsObjectArray())); MutableHandle temp_loader = hs.NewHandle(nullptr); for (auto loader : shared_libraries.Iterate()) { temp_loader.Assign(loader); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoader(self, descriptor, hash, temp_loader, result), *result, self); } return true; } bool ClassLinker::FindClassInSharedLibrariesAfter(Thread* self, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { ArtField* field = WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoadersAfter; return FindClassInSharedLibrariesHelper(self, descriptor, hash, class_loader, field, result); } bool ClassLinker::FindClassInBaseDexClassLoader(Thread* self, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { // Termination case: boot class loader. if (IsBootClassLoader(class_loader.Get())) { RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBootClassLoaderClassPath(self, descriptor, hash, result), *result, self); return true; } if (IsPathOrDexClassLoader(class_loader) || IsInMemoryDexClassLoader(class_loader)) { // For regular path or dex class loader the search order is: // - parent // - shared libraries // - class loader dex files // Create a handle as RegisterDexFile may allocate dex caches (and cause thread suspension). StackHandleScope<1> hs(self); Handle h_parent(hs.NewHandle(class_loader->GetParent())); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoader(self, descriptor, hash, h_parent, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInSharedLibraries(self, descriptor, hash, class_loader, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoaderClassPath(self, descriptor, hash, class_loader, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInSharedLibrariesAfter(self, descriptor, hash, class_loader, result), *result, self); // We did not find a class, but the class loader chain was recognized, so we // return true. return true; } if (IsDelegateLastClassLoader(class_loader)) { // For delegate last, the search order is: // - boot class path // - shared libraries // - class loader dex files // - parent RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBootClassLoaderClassPath(self, descriptor, hash, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInSharedLibraries(self, descriptor, hash, class_loader, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoaderClassPath(self, descriptor, hash, class_loader, result), *result, self); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInSharedLibrariesAfter(self, descriptor, hash, class_loader, result), *result, self); // Create a handle as RegisterDexFile may allocate dex caches (and cause thread suspension). StackHandleScope<1> hs(self); Handle h_parent(hs.NewHandle(class_loader->GetParent())); RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION( FindClassInBaseDexClassLoader(self, descriptor, hash, h_parent, result), *result, self); // We did not find a class, but the class loader chain was recognized, so we // return true. return true; } // Unsupported class loader. *result = nullptr; return false; } #undef RETURN_IF_UNRECOGNIZED_OR_FOUND_OR_EXCEPTION namespace { // Matches exceptions caught in DexFile.defineClass. ALWAYS_INLINE bool MatchesDexFileCaughtExceptions(ObjPtr throwable, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { return // ClassNotFoundException. throwable->InstanceOf(GetClassRoot(ClassRoot::kJavaLangClassNotFoundException, class_linker)) || // NoClassDefFoundError. TODO: Reconsider this. b/130746382. throwable->InstanceOf(Runtime::Current()->GetPreAllocatedNoClassDefFoundError()->GetClass()); } // Clear exceptions caught in DexFile.defineClass. ALWAYS_INLINE void FilterDexFileCaughtExceptions(Thread* self, ClassLinker* class_linker) REQUIRES_SHARED(Locks::mutator_lock_) { if (MatchesDexFileCaughtExceptions(self->GetException(), class_linker)) { self->ClearException(); } } } // namespace // Finds the class in the boot class loader. // If the class is found the method returns the resolved class. Otherwise it returns null. bool ClassLinker::FindClassInBootClassLoaderClassPath(Thread* self, const char* descriptor, size_t hash, /*out*/ ObjPtr* result) { ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { ObjPtr klass = LookupClass(self, descriptor, hash, nullptr); if (klass != nullptr) { *result = EnsureResolved(self, descriptor, klass); } else { *result = DefineClass(self, descriptor, hash, ScopedNullHandle(), *pair.first, *pair.second); } if (*result == nullptr) { CHECK(self->IsExceptionPending()) << descriptor; FilterDexFileCaughtExceptions(self, this); } } // The boot classloader is always a known lookup. return true; } bool ClassLinker::FindClassInBaseDexClassLoaderClassPath( Thread* self, const char* descriptor, size_t hash, Handle class_loader, /*out*/ ObjPtr* result) { DCHECK(IsPathOrDexClassLoader(class_loader) || IsInMemoryDexClassLoader(class_loader) || IsDelegateLastClassLoader(class_loader)) << "Unexpected class loader for descriptor " << descriptor; const DexFile* dex_file = nullptr; const dex::ClassDef* class_def = nullptr; ObjPtr ret; auto find_class_def = [&](const DexFile* cp_dex_file) REQUIRES_SHARED(Locks::mutator_lock_) { const dex::ClassDef* cp_class_def = OatDexFile::FindClassDef(*cp_dex_file, descriptor, hash); if (cp_class_def != nullptr) { dex_file = cp_dex_file; class_def = cp_class_def; return false; // Found a class definition, stop visit. } return true; // Continue with the next DexFile. }; VisitClassLoaderDexFiles(self, class_loader, find_class_def); if (class_def != nullptr) { *result = DefineClass(self, descriptor, hash, class_loader, *dex_file, *class_def); if (UNLIKELY(*result == nullptr)) { CHECK(self->IsExceptionPending()) << descriptor; FilterDexFileCaughtExceptions(self, this); } else { DCHECK(!self->IsExceptionPending()); } } // A BaseDexClassLoader is always a known lookup. return true; } ObjPtr ClassLinker::FindClass(Thread* self, const char* descriptor, Handle class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; DCHECK(self != nullptr); self->AssertNoPendingException(); self->PoisonObjectPointers(); // For DefineClass, CreateArrayClass, etc... if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. return FindPrimitiveClass(descriptor[0]); } const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Find the class in the loaded classes table. ObjPtr klass = LookupClass(self, descriptor, hash, class_loader.Get()); if (klass != nullptr) { return EnsureResolved(self, descriptor, klass); } // Class is not yet loaded. if (descriptor[0] != '[' && class_loader == nullptr) { // Non-array class and the boot class loader, search the boot class path. ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); if (pair.second != nullptr) { return DefineClass(self, descriptor, hash, ScopedNullHandle(), *pair.first, *pair.second); } else { // The boot class loader is searched ahead of the application class loader, failures are // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to // trigger the chaining with a proper stack trace. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } } ObjPtr result_ptr; bool descriptor_equals; if (descriptor[0] == '[') { result_ptr = CreateArrayClass(self, descriptor, hash, class_loader); DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending()); DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor)); descriptor_equals = true; } else { ScopedObjectAccessUnchecked soa(self); bool known_hierarchy = FindClassInBaseDexClassLoader(self, descriptor, hash, class_loader, &result_ptr); if (result_ptr != nullptr) { // The chain was understood and we found the class. We still need to add the class to // the class table to protect from racy programs that can try and redefine the path list // which would change the Class returned for subsequent evaluation of const-class. DCHECK(known_hierarchy); DCHECK(result_ptr->DescriptorEquals(descriptor)); descriptor_equals = true; } else if (!self->IsExceptionPending()) { // Either the chain wasn't understood or the class wasn't found. // If there is a pending exception we didn't clear, it is a not a ClassNotFoundException and // we should return it instead of silently clearing and retrying. // // If the chain was understood but we did not find the class, let the Java-side // rediscover all this and throw the exception with the right stack trace. Note that // the Java-side could still succeed for racy programs if another thread is actively // modifying the class loader's path list. // The runtime is not allowed to call into java from a runtime-thread so just abort. if (self->IsRuntimeThread()) { // Oops, we can't call into java so we can't run actual class-loader code. // This is true for e.g. for the compiler (jit or aot). ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } // Inlined DescriptorToDot(descriptor) with extra validation. // // Throw NoClassDefFoundError early rather than potentially load a class only to fail // the DescriptorEquals() check below and give a confusing error message. For example, // when native code erroneously calls JNI GetFieldId() with signature "java/lang/String" // instead of "Ljava/lang/String;", the message below using the "dot" names would be // "class loader [...] returned class java.lang.String instead of java.lang.String". size_t descriptor_length = strlen(descriptor); if (UNLIKELY(descriptor[0] != 'L') || UNLIKELY(descriptor[descriptor_length - 1] != ';') || UNLIKELY(memchr(descriptor + 1, '.', descriptor_length - 2) != nullptr)) { ThrowNoClassDefFoundError("Invalid descriptor: %s.", descriptor); return nullptr; } std::string class_name_string(descriptor + 1, descriptor_length - 2); std::replace(class_name_string.begin(), class_name_string.end(), '/', '.'); if (known_hierarchy && fast_class_not_found_exceptions_ && !Runtime::Current()->IsJavaDebuggable()) { // For known hierarchy, we know that the class is going to throw an exception. If we aren't // debuggable, optimize this path by throwing directly here without going back to Java // language. This reduces how many ClassNotFoundExceptions happen. self->ThrowNewExceptionF("Ljava/lang/ClassNotFoundException;", "%s", class_name_string.c_str()); } else { StackHandleScope<1u> hs(self); Handle class_name_object = hs.NewHandle( mirror::String::AllocFromModifiedUtf8(self, class_name_string.c_str())); if (class_name_object == nullptr) { DCHECK(self->IsExceptionPending()); // OOME. return nullptr; } DCHECK(class_loader != nullptr); result_ptr = ObjPtr::DownCast( WellKnownClasses::java_lang_ClassLoader_loadClass->InvokeVirtual<'L', 'L'>( self, class_loader.Get(), class_name_object.Get())); if (result_ptr == nullptr && !self->IsExceptionPending()) { // broken loader - throw NPE to be compatible with Dalvik ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s", class_name_string.c_str()).c_str()); return nullptr; } // Check the name of the returned class. descriptor_equals = (result_ptr != nullptr) && result_ptr->DescriptorEquals(descriptor); } } else { DCHECK(!MatchesDexFileCaughtExceptions(self->GetException(), this)); } } if (self->IsExceptionPending()) { // If the ClassLoader threw or array class allocation failed, pass that exception up. // However, to comply with the RI behavior, first check if another thread succeeded. result_ptr = LookupClass(self, descriptor, hash, class_loader.Get()); if (result_ptr != nullptr && !result_ptr->IsErroneous()) { self->ClearException(); return EnsureResolved(self, descriptor, result_ptr); } return nullptr; } // Try to insert the class to the class table, checking for mismatch. ObjPtr old; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const class_table = InsertClassTableForClassLoader(class_loader.Get()); old = class_table->Lookup(descriptor, hash); if (old == nullptr) { old = result_ptr; // For the comparison below, after releasing the lock. if (descriptor_equals) { class_table->InsertWithHash(result_ptr, hash); WriteBarrier::ForEveryFieldWrite(class_loader.Get()); } // else throw below, after releasing the lock. } } if (UNLIKELY(old != result_ptr)) { // Return `old` (even if `!descriptor_equals`) to mimic the RI behavior for parallel // capable class loaders. (All class loaders are considered parallel capable on Android.) ObjPtr loader_class = class_loader->GetClass(); const char* loader_class_name = loader_class->GetDexFile().StringByTypeIdx(loader_class->GetDexTypeIndex()); LOG(WARNING) << "Initiating class loader of type " << DescriptorToDot(loader_class_name) << " is not well-behaved; it returned a different Class for racing loadClass(\"" << DescriptorToDot(descriptor) << "\")."; return EnsureResolved(self, descriptor, old); } if (UNLIKELY(!descriptor_equals)) { std::string result_storage; const char* result_name = result_ptr->GetDescriptor(&result_storage); std::string loader_storage; const char* loader_class_name = class_loader->GetClass()->GetDescriptor(&loader_storage); ThrowNoClassDefFoundError( "Initiating class loader of type %s returned class %s instead of %s.", DescriptorToDot(loader_class_name).c_str(), DescriptorToDot(result_name).c_str(), DescriptorToDot(descriptor).c_str()); return nullptr; } // Success. return result_ptr; } // Helper for maintaining DefineClass counting. We need to notify callbacks when we start/end a // define-class and how many recursive DefineClasses we are at in order to allow for doing things // like pausing class definition. struct ScopedDefiningClass { public: explicit ScopedDefiningClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) : self_(self), returned_(false) { Locks::mutator_lock_->AssertSharedHeld(self_); Runtime::Current()->GetRuntimeCallbacks()->BeginDefineClass(); self_->IncrDefineClassCount(); } ~ScopedDefiningClass() REQUIRES_SHARED(Locks::mutator_lock_) { Locks::mutator_lock_->AssertSharedHeld(self_); CHECK(returned_); } ObjPtr Finish(Handle h_klass) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(!returned_); self_->DecrDefineClassCount(); Runtime::Current()->GetRuntimeCallbacks()->EndDefineClass(); Thread::PoisonObjectPointersIfDebug(); returned_ = true; return h_klass.Get(); } ObjPtr Finish(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self_); Handle h_klass(hs.NewHandle(klass)); return Finish(h_klass); } ObjPtr Finish(nullptr_t np ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedNullHandle snh; return Finish(snh); } private: Thread* self_; bool returned_; }; ObjPtr ClassLinker::DefineClass(Thread* self, const char* descriptor, size_t hash, Handle class_loader, const DexFile& dex_file, const dex::ClassDef& dex_class_def) { ScopedDefiningClass sdc(self); StackHandleScope<3> hs(self); metrics::AutoTimer timer{GetMetrics()->ClassLoadingTotalTime()}; metrics::AutoTimer timeDelta{GetMetrics()->ClassLoadingTotalTimeDelta()}; auto klass = hs.NewHandle(nullptr); // Load the class from the dex file. if (UNLIKELY(!init_done_)) { // finish up init of hand crafted class_roots_ if (strcmp(descriptor, "Ljava/lang/Object;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) { klass.Assign(GetClassRoot(this)); } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) { klass.Assign(GetClassRoot(this)); } } // For AOT-compilation of an app, we may use only a public SDK to resolve symbols. If the SDK // checks are configured (a non null SdkChecker) and the descriptor is not in the provided // public class path then we prevent the definition of the class. // // NOTE that we only do the checks for the boot classpath APIs. Anything else, like the app // classpath is not checked. if (class_loader == nullptr && Runtime::Current()->IsAotCompiler() && DenyAccessBasedOnPublicSdk(descriptor)) { ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return sdc.Finish(nullptr); } // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied // code to be executed. We put it up here so we can avoid all the allocations associated with // creating the class. This can happen with (eg) jit threads. if (!self->CanLoadClasses()) { // Make sure we don't try to load anything, potentially causing an infinite loop. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return sdc.Finish(nullptr); } if (klass == nullptr) { // Allocate a class with the status of not ready. // Interface object should get the right size here. Regular class will // figure out the right size later and be replaced with one of the right // size when the class becomes resolved. if (CanAllocClass()) { klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def))); } else { return sdc.Finish(nullptr); } } if (UNLIKELY(klass == nullptr)) { self->AssertPendingOOMException(); return sdc.Finish(nullptr); } // Get the real dex file. This will return the input if there aren't any callbacks or they do // nothing. DexFile const* new_dex_file = nullptr; dex::ClassDef const* new_class_def = nullptr; // TODO We should ideally figure out some way to move this after we get a lock on the klass so it // will only be called once. Runtime::Current()->GetRuntimeCallbacks()->ClassPreDefine(descriptor, klass, class_loader, dex_file, dex_class_def, &new_dex_file, &new_class_def); // Check to see if an exception happened during runtime callbacks. Return if so. if (self->IsExceptionPending()) { return sdc.Finish(nullptr); } ObjPtr dex_cache = RegisterDexFile(*new_dex_file, class_loader.Get()); if (dex_cache == nullptr) { self->AssertPendingException(); return sdc.Finish(nullptr); } klass->SetDexCache(dex_cache); SetupClass(*new_dex_file, *new_class_def, klass, class_loader.Get()); // Mark the string class by setting its access flag. if (UNLIKELY(!init_done_)) { if (strcmp(descriptor, "Ljava/lang/String;") == 0) { klass->SetStringClass(); } } ObjectLock lock(self, klass); klass->SetClinitThreadId(self->GetTid()); // Make sure we have a valid empty iftable even if there are errors. klass->SetIfTable(GetClassRoot(this)->GetIfTable()); // Add the newly loaded class to the loaded classes table. ObjPtr existing = InsertClass(descriptor, klass.Get(), hash); if (existing != nullptr) { // We failed to insert because we raced with another thread. Calling EnsureResolved may cause // this thread to block. return sdc.Finish(EnsureResolved(self, descriptor, existing)); } // Load the fields and other things after we are inserted in the table. This is so that we don't // end up allocating unfree-able linear alloc resources and then lose the race condition. The // other reason is that the field roots are only visited from the class table. So we need to be // inserted before we allocate / fill in these fields. LoadClass(self, *new_dex_file, *new_class_def, klass); if (self->IsExceptionPending()) { VLOG(class_linker) << self->GetException()->Dump(); // An exception occured during load, set status to erroneous while holding klass' lock in case // notification is necessary. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); } return sdc.Finish(nullptr); } // Finish loading (if necessary) by finding parents CHECK(!klass->IsLoaded()); if (!LoadSuperAndInterfaces(klass, *new_dex_file)) { // Loading failed. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); } return sdc.Finish(nullptr); } CHECK(klass->IsLoaded()); // At this point the class is loaded. Publish a ClassLoad event. // Note: this may be a temporary class. It is a listener's responsibility to handle this. Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(klass); // Link the class (if necessary) CHECK(!klass->IsResolved()); // TODO: Use fast jobjects? auto interfaces = hs.NewHandle>(nullptr); MutableHandle h_new_class = hs.NewHandle(nullptr); if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) { // Linking failed. if (!klass->IsErroneous()) { mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); } return sdc.Finish(nullptr); } self->AssertNoPendingException(); CHECK(h_new_class != nullptr) << descriptor; CHECK(h_new_class->IsResolved()) << descriptor << " " << h_new_class->GetStatus(); // Instrumentation may have updated entrypoints for all methods of all // classes. However it could not update methods of this class while we // were loading it. Now the class is resolved, we can update entrypoints // as required by instrumentation. if (Runtime::Current()->GetInstrumentation()->EntryExitStubsInstalled()) { // We must be in the kRunnable state to prevent instrumentation from // suspending all threads to update entrypoints while we are doing it // for this class. DCHECK_EQ(self->GetState(), ThreadState::kRunnable); Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get()); } /* * We send CLASS_PREPARE events to the debugger from here. The * definition of "preparation" is creating the static fields for a * class and initializing them to the standard default values, but not * executing any code (that comes later, during "initialization"). * * We did the static preparation in LinkClass. * * The class has been prepared and resolved but possibly not yet verified * at this point. */ Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(klass, h_new_class); // Notify native debugger of the new class and its layout. jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get()); return sdc.Finish(h_new_class); } uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file, const dex::ClassDef& dex_class_def) { size_t num_ref = 0; size_t num_8 = 0; size_t num_16 = 0; size_t num_32 = 0; size_t num_64 = 0; ClassAccessor accessor(dex_file, dex_class_def); // We allow duplicate definitions of the same field in a class_data_item // but ignore the repeated indexes here, b/21868015. uint32_t last_field_idx = dex::kDexNoIndex; for (const ClassAccessor::Field& field : accessor.GetStaticFields()) { uint32_t field_idx = field.GetIndex(); // Ordering enforced by DexFileVerifier. DCHECK(last_field_idx == dex::kDexNoIndex || last_field_idx <= field_idx); if (UNLIKELY(field_idx == last_field_idx)) { continue; } last_field_idx = field_idx; const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id); char c = descriptor[0]; switch (c) { case 'L': case '[': num_ref++; break; case 'J': case 'D': num_64++; break; case 'I': case 'F': num_32++; break; case 'S': case 'C': num_16++; break; case 'B': case 'Z': num_8++; break; default: LOG(FATAL) << "Unknown descriptor: " << c; UNREACHABLE(); } } return mirror::Class::ComputeClassSize(false, 0, num_8, num_16, num_32, num_64, num_ref, image_pointer_size_); } void ClassLinker::FixupStaticTrampolines(Thread* self, ObjPtr klass) { ScopedAssertNoThreadSuspension sants(__FUNCTION__); DCHECK(klass->IsVisiblyInitialized()) << klass->PrettyDescriptor(); size_t num_direct_methods = klass->NumDirectMethods(); if (num_direct_methods == 0) { return; // No direct methods => no static methods. } if (UNLIKELY(klass->IsProxyClass())) { return; } PointerSize pointer_size = image_pointer_size_; if (std::any_of(klass->GetDirectMethods(pointer_size).begin(), klass->GetDirectMethods(pointer_size).end(), [](const ArtMethod& m) { return m.IsCriticalNative(); })) { // Store registered @CriticalNative methods, if any, to JNI entrypoints. // Direct methods are a contiguous chunk of memory, so use the ordering of the map. ArtMethod* first_method = klass->GetDirectMethod(0u, pointer_size); ArtMethod* last_method = klass->GetDirectMethod(num_direct_methods - 1u, pointer_size); MutexLock lock(self, critical_native_code_with_clinit_check_lock_); auto lb = critical_native_code_with_clinit_check_.lower_bound(first_method); while (lb != critical_native_code_with_clinit_check_.end() && lb->first <= last_method) { lb->first->SetEntryPointFromJni(lb->second); lb = critical_native_code_with_clinit_check_.erase(lb); } } Runtime* runtime = Runtime::Current(); if (runtime->IsAotCompiler()) { // We should not update entrypoints when running the transactional // interpreter. return; } instrumentation::Instrumentation* instrumentation = runtime->GetInstrumentation(); for (size_t method_index = 0; method_index < num_direct_methods; ++method_index) { ArtMethod* method = klass->GetDirectMethod(method_index, pointer_size); if (method->NeedsClinitCheckBeforeCall()) { instrumentation->UpdateMethodsCode(method, instrumentation->GetCodeForInvoke(method)); } } // Ignore virtual methods on the iterator. } // Does anything needed to make sure that the compiler will not generate a direct invoke to this // method. Should only be called on non-invokable methods. inline void EnsureThrowsInvocationError(ClassLinker* class_linker, ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method != nullptr); DCHECK(!method->IsInvokable()); method->SetEntryPointFromQuickCompiledCodePtrSize( class_linker->GetQuickToInterpreterBridgeTrampoline(), class_linker->GetImagePointerSize()); } static void LinkCode(ClassLinker* class_linker, ArtMethod* method, const OatFile::OatClass* oat_class, uint32_t class_def_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension sants(__FUNCTION__); Runtime* const runtime = Runtime::Current(); if (runtime->IsAotCompiler()) { // The following code only applies to a non-compiler runtime. return; } // Method shouldn't have already been linked. DCHECK_EQ(method->GetEntryPointFromQuickCompiledCode(), nullptr); DCHECK(!method->GetDeclaringClass()->IsVisiblyInitialized()); // Actually ClassStatus::Idx. if (!method->IsInvokable()) { EnsureThrowsInvocationError(class_linker, method); return; } const void* quick_code = nullptr; if (oat_class != nullptr) { // Every kind of method should at least get an invoke stub from the oat_method. // non-abstract methods also get their code pointers. const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index); quick_code = oat_method.GetQuickCode(); } runtime->GetInstrumentation()->InitializeMethodsCode(method, quick_code); if (method->IsNative()) { // Set up the dlsym lookup stub. Do not go through `UnregisterNative()` // as the extra processing for @CriticalNative is not needed yet. method->SetEntryPointFromJni( method->IsCriticalNative() ? GetJniDlsymLookupCriticalStub() : GetJniDlsymLookupStub()); } } void ClassLinker::SetupClass(const DexFile& dex_file, const dex::ClassDef& dex_class_def, Handle klass, ObjPtr class_loader) { CHECK(klass != nullptr); CHECK(klass->GetDexCache() != nullptr); CHECK_EQ(ClassStatus::kNotReady, klass->GetStatus()); const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); CHECK(descriptor != nullptr); klass->SetClass(GetClassRoot(this)); uint32_t access_flags = dex_class_def.GetJavaAccessFlags(); CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U); klass->SetAccessFlagsDuringLinking(access_flags); klass->SetClassLoader(class_loader); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); mirror::Class::SetStatus(klass, ClassStatus::kIdx, nullptr); klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def)); klass->SetDexTypeIndex(dex_class_def.class_idx_); } LengthPrefixedArray* ClassLinker::AllocArtFieldArray(Thread* self, LinearAlloc* allocator, size_t length) { if (length == 0) { return nullptr; } // If the ArtField alignment changes, review all uses of LengthPrefixedArray. static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4."); size_t storage_size = LengthPrefixedArray::ComputeSize(length); void* array_storage = allocator->Alloc(self, storage_size, LinearAllocKind::kArtFieldArray); auto* ret = new(array_storage) LengthPrefixedArray(length); CHECK(ret != nullptr); std::uninitialized_fill_n(&ret->At(0), length, ArtField()); return ret; } LengthPrefixedArray* ClassLinker::AllocArtMethodArray(Thread* self, LinearAlloc* allocator, size_t length) { if (length == 0) { return nullptr; } const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_); const size_t method_size = ArtMethod::Size(image_pointer_size_); const size_t storage_size = LengthPrefixedArray::ComputeSize(length, method_size, method_alignment); void* array_storage = allocator->Alloc(self, storage_size, LinearAllocKind::kArtMethodArray); auto* ret = new (array_storage) LengthPrefixedArray(length); CHECK(ret != nullptr); for (size_t i = 0; i < length; ++i) { new(reinterpret_cast(&ret->At(i, method_size, method_alignment))) ArtMethod; } return ret; } LinearAlloc* ClassLinker::GetAllocatorForClassLoader(ObjPtr class_loader) { if (class_loader == nullptr) { return Runtime::Current()->GetLinearAlloc(); } LinearAlloc* allocator = class_loader->GetAllocator(); DCHECK(allocator != nullptr); return allocator; } LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(ObjPtr class_loader) { if (class_loader == nullptr) { return Runtime::Current()->GetLinearAlloc(); } WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); LinearAlloc* allocator = class_loader->GetAllocator(); if (allocator == nullptr) { RegisterClassLoader(class_loader); allocator = class_loader->GetAllocator(); CHECK(allocator != nullptr); } return allocator; } void ClassLinker::LoadClass(Thread* self, const DexFile& dex_file, const dex::ClassDef& dex_class_def, Handle klass) { ClassAccessor accessor(dex_file, dex_class_def, /* parse_hiddenapi_class_data= */ klass->IsBootStrapClassLoaded()); if (!accessor.HasClassData()) { return; } Runtime* const runtime = Runtime::Current(); { // Note: We cannot have thread suspension until the field and method arrays are setup or else // Class::VisitFieldRoots may miss some fields or methods. ScopedAssertNoThreadSuspension nts(__FUNCTION__); // Load static fields. // We allow duplicate definitions of the same field in a class_data_item // but ignore the repeated indexes here, b/21868015. LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); LengthPrefixedArray* sfields = AllocArtFieldArray(self, allocator, accessor.NumStaticFields()); LengthPrefixedArray* ifields = AllocArtFieldArray(self, allocator, accessor.NumInstanceFields()); size_t num_sfields = 0u; size_t num_ifields = 0u; uint32_t last_static_field_idx = 0u; uint32_t last_instance_field_idx = 0u; // Methods bool has_oat_class = false; const OatFile::OatClass oat_class = (runtime->IsStarted() && !runtime->IsAotCompiler()) ? OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class) : OatFile::OatClass::Invalid(); const OatFile::OatClass* oat_class_ptr = has_oat_class ? &oat_class : nullptr; klass->SetMethodsPtr( AllocArtMethodArray(self, allocator, accessor.NumMethods()), accessor.NumDirectMethods(), accessor.NumVirtualMethods()); size_t class_def_method_index = 0; uint32_t last_dex_method_index = dex::kDexNoIndex; size_t last_class_def_method_index = 0; uint16_t hotness_threshold = runtime->GetJITOptions()->GetWarmupThreshold(); // Use the visitor since the ranged based loops are bit slower from seeking. Seeking to the // methods needs to decode all of the fields. accessor.VisitFieldsAndMethods([&]( const ClassAccessor::Field& field) REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t field_idx = field.GetIndex(); DCHECK_GE(field_idx, last_static_field_idx); // Ordering enforced by DexFileVerifier. if (num_sfields == 0 || LIKELY(field_idx > last_static_field_idx)) { LoadField(field, klass, &sfields->At(num_sfields)); ++num_sfields; last_static_field_idx = field_idx; } }, [&](const ClassAccessor::Field& field) REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t field_idx = field.GetIndex(); DCHECK_GE(field_idx, last_instance_field_idx); // Ordering enforced by DexFileVerifier. if (num_ifields == 0 || LIKELY(field_idx > last_instance_field_idx)) { LoadField(field, klass, &ifields->At(num_ifields)); ++num_ifields; last_instance_field_idx = field_idx; } }, [&](const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* art_method = klass->GetDirectMethodUnchecked(class_def_method_index, image_pointer_size_); LoadMethod(dex_file, method, klass.Get(), art_method); LinkCode(this, art_method, oat_class_ptr, class_def_method_index); uint32_t it_method_index = method.GetIndex(); if (last_dex_method_index == it_method_index) { // duplicate case art_method->SetMethodIndex(last_class_def_method_index); } else { art_method->SetMethodIndex(class_def_method_index); last_dex_method_index = it_method_index; last_class_def_method_index = class_def_method_index; } art_method->ResetCounter(hotness_threshold); ++class_def_method_index; }, [&](const ClassAccessor::Method& method) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* art_method = klass->GetVirtualMethodUnchecked( class_def_method_index - accessor.NumDirectMethods(), image_pointer_size_); art_method->ResetCounter(hotness_threshold); LoadMethod(dex_file, method, klass.Get(), art_method); LinkCode(this, art_method, oat_class_ptr, class_def_method_index); ++class_def_method_index; }); if (UNLIKELY(num_ifields + num_sfields != accessor.NumFields())) { LOG(WARNING) << "Duplicate fields in class " << klass->PrettyDescriptor() << " (unique static fields: " << num_sfields << "/" << accessor.NumStaticFields() << ", unique instance fields: " << num_ifields << "/" << accessor.NumInstanceFields() << ")"; // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size. if (sfields != nullptr) { sfields->SetSize(num_sfields); } if (ifields != nullptr) { ifields->SetSize(num_ifields); } } // Set the field arrays. klass->SetSFieldsPtr(sfields); DCHECK_EQ(klass->NumStaticFields(), num_sfields); klass->SetIFieldsPtr(ifields); DCHECK_EQ(klass->NumInstanceFields(), num_ifields); } // Ensure that the card is marked so that remembered sets pick up native roots. WriteBarrier::ForEveryFieldWrite(klass.Get()); self->AllowThreadSuspension(); } void ClassLinker::LoadField(const ClassAccessor::Field& field, Handle klass, ArtField* dst) { const uint32_t field_idx = field.GetIndex(); dst->SetDexFieldIndex(field_idx); dst->SetDeclaringClass(klass.Get()); // Get access flags from the DexFile and set hiddenapi runtime access flags. dst->SetAccessFlags(field.GetAccessFlags() | hiddenapi::CreateRuntimeFlags(field)); } void ClassLinker::LoadMethod(const DexFile& dex_file, const ClassAccessor::Method& method, ObjPtr klass, ArtMethod* dst) { ScopedAssertNoThreadSuspension sants(__FUNCTION__); const uint32_t dex_method_idx = method.GetIndex(); const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); uint32_t name_utf16_length; const char* method_name = dex_file.StringDataAndUtf16LengthByIdx(method_id.name_idx_, &name_utf16_length); std::string_view shorty = dex_file.GetShortyView(dex_file.GetProtoId(method_id.proto_idx_)); dst->SetDexMethodIndex(dex_method_idx); dst->SetDeclaringClass(klass); // Get access flags from the DexFile and set hiddenapi runtime access flags. uint32_t access_flags = method.GetAccessFlags() | hiddenapi::CreateRuntimeFlags(method); auto has_ascii_name = [method_name, name_utf16_length](const char* ascii_name, size_t length) ALWAYS_INLINE { DCHECK_EQ(strlen(ascii_name), length); return length == name_utf16_length && method_name[length] == 0 && // Is `method_name` an ASCII string? memcmp(ascii_name, method_name, length) == 0; }; if (UNLIKELY(has_ascii_name("finalize", sizeof("finalize") - 1u))) { // Set finalizable flag on declaring class. if (shorty == "V") { // Void return type. if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged. klass->SetFinalizable(); } else { std::string_view klass_descriptor = dex_file.GetTypeDescriptorView(dex_file.GetTypeId(klass->GetDexTypeIndex())); // The Enum class declares a "final" finalize() method to prevent subclasses from // introducing a finalizer. We don't want to set the finalizable flag for Enum or its // subclasses, so we exclude it here. // We also want to avoid setting the flag on Object, where we know that finalize() is // empty. if (klass_descriptor != "Ljava/lang/Object;" && klass_descriptor != "Ljava/lang/Enum;") { klass->SetFinalizable(); } } } } else if (method_name[0] == '<') { // Fix broken access flags for initializers. Bug 11157540. bool is_init = has_ascii_name("", sizeof("") - 1u); bool is_clinit = has_ascii_name("", sizeof("") - 1u); if (UNLIKELY(!is_init && !is_clinit)) { LOG(WARNING) << "Unexpected '<' at start of method name " << method_name; } else { if (UNLIKELY((access_flags & kAccConstructor) == 0)) { LOG(WARNING) << method_name << " didn't have expected constructor access flag in class " << klass->PrettyDescriptor() << " in dex file " << dex_file.GetLocation(); access_flags |= kAccConstructor; } } } // Check for nterp invoke fast-path based on shorty. bool all_parameters_are_reference = true; bool all_parameters_are_reference_or_int = true; for (size_t i = 1; i < shorty.length(); ++i) { if (shorty[i] != 'L') { all_parameters_are_reference = false; if (shorty[i] == 'F' || shorty[i] == 'D' || shorty[i] == 'J') { all_parameters_are_reference_or_int = false; break; } } } if (all_parameters_are_reference_or_int && shorty[0] != 'F' && shorty[0] != 'D') { access_flags |= kAccNterpInvokeFastPathFlag; } if (UNLIKELY((access_flags & kAccNative) != 0u)) { // Check if the native method is annotated with @FastNative or @CriticalNative. const dex::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); access_flags |= annotations::GetNativeMethodAnnotationAccessFlags(dex_file, class_def, dex_method_idx); dst->SetAccessFlags(access_flags); DCHECK(!dst->IsAbstract()); DCHECK(!dst->HasCodeItem()); DCHECK_EQ(method.GetCodeItemOffset(), 0u); dst->SetDataPtrSize(nullptr, image_pointer_size_); // JNI stub/trampoline not linked yet. } else if ((access_flags & kAccAbstract) != 0u) { dst->SetAccessFlags(access_flags); // Must be done after SetAccessFlags since IsAbstract depends on it. DCHECK(dst->IsAbstract()); if (klass->IsInterface()) { dst->CalculateAndSetImtIndex(); } DCHECK(!dst->HasCodeItem()); DCHECK_EQ(method.GetCodeItemOffset(), 0u); dst->SetDataPtrSize(nullptr, image_pointer_size_); // Single implementation not set yet. } else { // Check for nterp entry fast-path based on shorty. if (all_parameters_are_reference) { access_flags |= kAccNterpEntryPointFastPathFlag; } const dex::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); if (annotations::MethodIsNeverCompile(dex_file, class_def, dex_method_idx)) { access_flags |= kAccCompileDontBother; } dst->SetAccessFlags(access_flags); DCHECK(!dst->IsAbstract()); DCHECK(dst->HasCodeItem()); uint32_t code_item_offset = method.GetCodeItemOffset(); DCHECK_NE(code_item_offset, 0u); if (Runtime::Current()->IsAotCompiler()) { dst->SetDataPtrSize(reinterpret_cast32(code_item_offset), image_pointer_size_); } else { dst->SetCodeItem(dex_file.GetCodeItem(code_item_offset), dex_file.IsCompactDexFile()); } } if (Runtime::Current()->IsZygote() && !Runtime::Current()->GetJITOptions()->GetProfileSaverOptions().GetProfileBootClassPath()) { dst->SetMemorySharedMethod(); } } void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile* dex_file) { ObjPtr dex_cache = AllocAndInitializeDexCache(self, *dex_file, /* class_loader= */ nullptr); CHECK(dex_cache != nullptr) << "Failed to allocate dex cache for " << dex_file->GetLocation(); AppendToBootClassPath(dex_file, dex_cache); } void ClassLinker::AppendToBootClassPath(const DexFile* dex_file, ObjPtr dex_cache) { CHECK(dex_file != nullptr); CHECK(dex_cache != nullptr) << dex_file->GetLocation(); CHECK_EQ(dex_cache->GetDexFile(), dex_file) << dex_file->GetLocation(); boot_class_path_.push_back(dex_file); WriterMutexLock mu(Thread::Current(), *Locks::dex_lock_); RegisterDexFileLocked(*dex_file, dex_cache, /* class_loader= */ nullptr); } void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, ObjPtr dex_cache, ObjPtr class_loader) { Thread* const self = Thread::Current(); Locks::dex_lock_->AssertExclusiveHeld(self); CHECK(dex_cache != nullptr) << dex_file.GetLocation(); CHECK_EQ(dex_cache->GetDexFile(), &dex_file) << dex_file.GetLocation(); // For app images, the dex cache location may be a suffix of the dex file location since the // dex file location is an absolute path. const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8(); const size_t dex_cache_length = dex_cache_location.length(); CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation(); std::string dex_file_location = dex_file.GetLocation(); // The following paths checks don't work on preopt when using boot dex files, where the dex // cache location is the one on device, and the dex_file's location is the one on host. Runtime* runtime = Runtime::Current(); if (!(runtime->IsAotCompiler() && class_loader == nullptr && !kIsTargetBuild)) { CHECK_GE(dex_file_location.length(), dex_cache_length) << dex_cache_location << " " << dex_file.GetLocation(); const std::string dex_file_suffix = dex_file_location.substr( dex_file_location.length() - dex_cache_length, dex_cache_length); // Example dex_cache location is SettingsProvider.apk and // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk CHECK_EQ(dex_cache_location, dex_file_suffix); } // Check if we need to initialize OatFile data (.data.bimg.rel.ro and .bss // sections) needed for code execution and register the oat code range. const OatFile* oat_file = (dex_file.GetOatDexFile() != nullptr) ? dex_file.GetOatDexFile()->GetOatFile() : nullptr; bool initialize_oat_file_data = (oat_file != nullptr) && oat_file->IsExecutable(); if (initialize_oat_file_data) { for (const auto& entry : dex_caches_) { if (!self->IsJWeakCleared(entry.second.weak_root) && entry.first->GetOatDexFile() != nullptr && entry.first->GetOatDexFile()->GetOatFile() == oat_file) { initialize_oat_file_data = false; // Already initialized. break; } } } if (initialize_oat_file_data) { oat_file->InitializeRelocations(); // Notify the fault handler about the new executable code range if needed. size_t exec_offset = oat_file->GetOatHeader().GetExecutableOffset(); DCHECK_LE(exec_offset, oat_file->Size()); size_t exec_size = oat_file->Size() - exec_offset; if (exec_size != 0u) { runtime->AddGeneratedCodeRange(oat_file->Begin() + exec_offset, exec_size); } } // Let hiddenapi assign a domain to the newly registered dex file. hiddenapi::InitializeDexFileDomain(dex_file, class_loader); jweak dex_cache_jweak = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, dex_cache); DexCacheData data; data.weak_root = dex_cache_jweak; data.class_table = ClassTableForClassLoader(class_loader); AddNativeDebugInfoForDex(self, &dex_file); DCHECK(data.class_table != nullptr); // Make sure to hold the dex cache live in the class table. This case happens for the boot class // path dex caches without an image. data.class_table->InsertStrongRoot(dex_cache); // Make sure that the dex cache holds the classloader live. dex_cache->SetClassLoader(class_loader); if (class_loader != nullptr) { // Since we added a strong root to the class table, do the write barrier as required for // remembered sets and generational GCs. WriteBarrier::ForEveryFieldWrite(class_loader); } bool inserted = dex_caches_.emplace(&dex_file, std::move(data)).second; CHECK(inserted); } ObjPtr ClassLinker::DecodeDexCacheLocked(Thread* self, const DexCacheData* data) { return data != nullptr ? ObjPtr::DownCast(self->DecodeJObject(data->weak_root)) : nullptr; } bool ClassLinker::IsSameClassLoader( ObjPtr dex_cache, const DexCacheData* data, ObjPtr class_loader) { CHECK(data != nullptr); DCHECK_EQ(FindDexCacheDataLocked(*dex_cache->GetDexFile()), data); return data->class_table == ClassTableForClassLoader(class_loader); } void ClassLinker::RegisterExistingDexCache(ObjPtr dex_cache, ObjPtr class_loader) { SCOPED_TRACE << __FUNCTION__ << " " << dex_cache->GetDexFile()->GetLocation(); Thread* self = Thread::Current(); StackHandleScope<2> hs(self); Handle h_dex_cache(hs.NewHandle(dex_cache)); Handle h_class_loader(hs.NewHandle(class_loader)); const DexFile* dex_file = dex_cache->GetDexFile(); DCHECK(dex_file != nullptr) << "Attempt to register uninitialized dex_cache object!"; if (kIsDebugBuild) { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* old_data = FindDexCacheDataLocked(*dex_file); ObjPtr old_dex_cache = DecodeDexCacheLocked(self, old_data); DCHECK(old_dex_cache.IsNull()) << "Attempt to manually register a dex cache thats already " << "been registered on dex file " << dex_file->GetLocation(); } ClassTable* table; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); table = InsertClassTableForClassLoader(h_class_loader.Get()); } // Avoid a deadlock between a garbage collecting thread running a checkpoint, // a thread holding the dex lock and blocking on a condition variable regarding // weak references access, and a thread blocking on the dex lock. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); WriterMutexLock mu(self, *Locks::dex_lock_); RegisterDexFileLocked(*dex_file, h_dex_cache.Get(), h_class_loader.Get()); table->InsertStrongRoot(h_dex_cache.Get()); if (h_class_loader.Get() != nullptr) { // Since we added a strong root to the class table, do the write barrier as required for // remembered sets and generational GCs. WriteBarrier::ForEveryFieldWrite(h_class_loader.Get()); } } static void ThrowDexFileAlreadyRegisteredError(Thread* self, const DexFile& dex_file) REQUIRES_SHARED(Locks::mutator_lock_) { self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Attempt to register dex file %s with multiple class loaders", dex_file.GetLocation().c_str()); } ObjPtr ClassLinker::RegisterDexFile(const DexFile& dex_file, ObjPtr class_loader) { Thread* self = Thread::Current(); ObjPtr old_dex_cache; bool registered_with_another_class_loader = false; { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* old_data = FindDexCacheDataLocked(dex_file); old_dex_cache = DecodeDexCacheLocked(self, old_data); if (old_dex_cache != nullptr) { if (IsSameClassLoader(old_dex_cache, old_data, class_loader)) { return old_dex_cache; } else { // TODO This is not very clean looking. Should maybe try to make a way to request exceptions // be thrown when it's safe to do so to simplify this. registered_with_another_class_loader = true; } } } // We need to have released the dex_lock_ to allocate safely. if (registered_with_another_class_loader) { ThrowDexFileAlreadyRegisteredError(self, dex_file); return nullptr; } SCOPED_TRACE << __FUNCTION__ << " " << dex_file.GetLocation(); LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader); DCHECK(linear_alloc != nullptr); ClassTable* table; { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); table = InsertClassTableForClassLoader(class_loader); } // Don't alloc while holding the lock, since allocation may need to // suspend all threads and another thread may need the dex_lock_ to // get to a suspend point. StackHandleScope<3> hs(self); Handle h_class_loader(hs.NewHandle(class_loader)); Handle h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file))); { // Avoid a deadlock between a garbage collecting thread running a checkpoint, // a thread holding the dex lock and blocking on a condition variable regarding // weak references access, and a thread blocking on the dex lock. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); WriterMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* old_data = FindDexCacheDataLocked(dex_file); old_dex_cache = DecodeDexCacheLocked(self, old_data); if (old_dex_cache == nullptr && h_dex_cache != nullptr) { // Do Initialize while holding dex lock to make sure two threads don't call it // at the same time with the same dex cache. Since the .bss is shared this can cause failing // DCHECK that the arrays are null. h_dex_cache->Initialize(&dex_file, h_class_loader.Get()); RegisterDexFileLocked(dex_file, h_dex_cache.Get(), h_class_loader.Get()); } if (old_dex_cache != nullptr) { // Another thread managed to initialize the dex cache faster, so use that DexCache. // If this thread encountered OOME, ignore it. DCHECK_EQ(h_dex_cache == nullptr, self->IsExceptionPending()); self->ClearException(); // We cannot call EnsureSameClassLoader() or allocate an exception while holding the // dex_lock_. if (IsSameClassLoader(old_dex_cache, old_data, h_class_loader.Get())) { return old_dex_cache; } else { registered_with_another_class_loader = true; } } } if (registered_with_another_class_loader) { ThrowDexFileAlreadyRegisteredError(self, dex_file); return nullptr; } if (h_dex_cache == nullptr) { self->AssertPendingOOMException(); return nullptr; } table->InsertStrongRoot(h_dex_cache.Get()); if (h_class_loader.Get() != nullptr) { // Since we added a strong root to the class table, do the write barrier as required for // remembered sets and generational GCs. WriteBarrier::ForEveryFieldWrite(h_class_loader.Get()); } VLOG(class_linker) << "Registered dex file " << dex_file.GetLocation(); PaletteNotifyDexFileLoaded(dex_file.GetLocation().c_str()); return h_dex_cache.Get(); } bool ClassLinker::IsDexFileRegistered(Thread* self, const DexFile& dex_file) { ReaderMutexLock mu(self, *Locks::dex_lock_); return DecodeDexCacheLocked(self, FindDexCacheDataLocked(dex_file)) != nullptr; } ObjPtr ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file) { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* dex_cache_data = FindDexCacheDataLocked(dex_file); ObjPtr dex_cache = DecodeDexCacheLocked(self, dex_cache_data); if (dex_cache != nullptr) { return dex_cache; } // Failure, dump diagnostic and abort. for (const auto& entry : dex_caches_) { const DexCacheData& data = entry.second; if (DecodeDexCacheLocked(self, &data) != nullptr) { LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << entry.first->GetLocation(); } } LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation() << " " << &dex_file; UNREACHABLE(); } ObjPtr ClassLinker::FindDexCache(Thread* self, const OatDexFile& oat_dex_file) { ReaderMutexLock mu(self, *Locks::dex_lock_); const DexCacheData* dex_cache_data = FindDexCacheDataLocked(oat_dex_file); ObjPtr dex_cache = DecodeDexCacheLocked(self, dex_cache_data); if (dex_cache != nullptr) { return dex_cache; } // Failure, dump diagnostic and abort. for (const auto& entry : dex_caches_) { const DexCacheData& data = entry.second; if (DecodeDexCacheLocked(self, &data) != nullptr) { const OatDexFile* other_oat_dex_file = entry.first->GetOatDexFile(); const OatFile* oat_file = (other_oat_dex_file == nullptr) ? nullptr : other_oat_dex_file->GetOatFile(); LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << entry.first->GetLocation() << " oat_dex_file=" << other_oat_dex_file << " oat_file=" << oat_file << " oat_location=" << (oat_file == nullptr ? "null" : oat_file->GetLocation()) << " dex_file=" << &entry.first; } } LOG(FATAL) << "Failed to find DexCache for OatDexFile " << oat_dex_file.GetDexFileLocation() << " oat_dex_file=" << &oat_dex_file << " oat_file=" << oat_dex_file.GetOatFile() << " oat_location=" << oat_dex_file.GetOatFile()->GetLocation(); UNREACHABLE(); } ClassTable* ClassLinker::FindClassTable(Thread* self, ObjPtr dex_cache) { const DexFile* dex_file = dex_cache->GetDexFile(); DCHECK(dex_file != nullptr); ReaderMutexLock mu(self, *Locks::dex_lock_); auto it = dex_caches_.find(dex_file); if (it != dex_caches_.end()) { const DexCacheData& data = it->second; ObjPtr registered_dex_cache = DecodeDexCacheLocked(self, &data); if (registered_dex_cache != nullptr) { CHECK_EQ(registered_dex_cache, dex_cache) << dex_file->GetLocation(); return data.class_table; } } return nullptr; } const ClassLinker::DexCacheData* ClassLinker::FindDexCacheDataLocked( const OatDexFile& oat_dex_file) { auto it = std::find_if(dex_caches_.begin(), dex_caches_.end(), [&](const auto& entry) { return entry.first->GetOatDexFile() == &oat_dex_file; }); return it != dex_caches_.end() ? &it->second : nullptr; } const ClassLinker::DexCacheData* ClassLinker::FindDexCacheDataLocked(const DexFile& dex_file) { auto it = dex_caches_.find(&dex_file); return it != dex_caches_.end() ? &it->second : nullptr; } void ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type, ClassRoot primitive_root) { ObjPtr primitive_class = AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_)); CHECK(primitive_class != nullptr) << "OOM for primitive class " << type; // Do not hold lock on the primitive class object, the initialization of // primitive classes is done while the process is still single threaded. primitive_class->SetAccessFlagsDuringLinking(kAccPublic | kAccFinal | kAccAbstract); primitive_class->SetPrimitiveType(type); primitive_class->SetIfTable(GetClassRoot(this)->GetIfTable()); DCHECK_EQ(primitive_class->NumMethods(), 0u); // Primitive classes are initialized during single threaded startup, so visibly initialized. primitive_class->SetStatusForPrimitiveOrArray(ClassStatus::kVisiblyInitialized); const char* descriptor = Primitive::Descriptor(type); ObjPtr existing = InsertClass(descriptor, primitive_class, ComputeModifiedUtf8Hash(descriptor)); CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed"; SetClassRoot(primitive_root, primitive_class); } inline ObjPtr ClassLinker::GetArrayIfTable() { return GetClassRoot>(this)->GetIfTable(); } // Create an array class (i.e. the class object for the array, not the // array itself). "descriptor" looks like "[C" or "[[[[B" or // "[Ljava/lang/String;". // // If "descriptor" refers to an array of primitives, look up the // primitive type's internally-generated class object. // // "class_loader" is the class loader of the class that's referring to // us. It's used to ensure that we're looking for the element type in // the right context. It does NOT become the class loader for the // array class; that always comes from the base element class. // // Returns null with an exception raised on failure. ObjPtr ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash, Handle class_loader) { // Identify the underlying component type CHECK_EQ('[', descriptor[0]); StackHandleScope<2> hs(self); // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied // code to be executed. We put it up here so we can avoid all the allocations associated with // creating the class. This can happen with (eg) jit threads. if (!self->CanLoadClasses()) { // Make sure we don't try to load anything, potentially causing an infinite loop. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } MutableHandle component_type(hs.NewHandle(FindClass(self, descriptor + 1, class_loader))); if (component_type == nullptr) { DCHECK(self->IsExceptionPending()); // We need to accept erroneous classes as component types. Under AOT, we // don't accept them as we cannot encode the erroneous class in an image. const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1); component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get())); if (component_type == nullptr || Runtime::Current()->IsAotCompiler()) { DCHECK(self->IsExceptionPending()); return nullptr; } else { self->ClearException(); } } if (UNLIKELY(component_type->IsPrimitiveVoid())) { ThrowNoClassDefFoundError("Attempt to create array of void primitive type"); return nullptr; } // See if the component type is already loaded. Array classes are // always associated with the class loader of their underlying // element type -- an array of Strings goes with the loader for // java/lang/String -- so we need to look for it there. (The // caller should have checked for the existence of the class // before calling here, but they did so with *their* class loader, // not the component type's loader.) // // If we find it, the caller adds "loader" to the class' initiating // loader list, which should prevent us from going through this again. // // This call is unnecessary if "loader" and "component_type->GetClassLoader()" // are the same, because our caller (FindClass) just did the // lookup. (Even if we get this wrong we still have correct behavior, // because we effectively do this lookup again when we add the new // class to the hash table --- necessary because of possible races with // other threads.) if (class_loader.Get() != component_type->GetClassLoader()) { ObjPtr new_class = LookupClass(self, descriptor, hash, component_type->GetClassLoader()); if (new_class != nullptr) { return new_class; } } // Core array classes, i.e. Object[], Class[], String[] and primitive // arrays, have special initialization and they should be found above. DCHECK_IMPLIES(component_type->IsObjectClass(), // Guard from false positives for errors before setting superclass. component_type->IsErroneousUnresolved()); DCHECK(!component_type->IsStringClass()); DCHECK(!component_type->IsClassClass()); DCHECK(!component_type->IsPrimitive()); // Fill out the fields in the Class. // // It is possible to execute some methods against arrays, because // all arrays are subclasses of java_lang_Object_, so we need to set // up a vtable. We can just point at the one in java_lang_Object_. // // Array classes are simple enough that we don't need to do a full // link step. size_t array_class_size = mirror::Array::ClassSize(image_pointer_size_); auto visitor = [this, array_class_size, component_type](ObjPtr obj, size_t usable_size) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoNewTransactionRecords sanntr("CreateArrayClass"); mirror::Class::InitializeClassVisitor init_class(array_class_size); init_class(obj, usable_size); ObjPtr klass = ObjPtr::DownCast(obj); klass->SetComponentType(component_type.Get()); // Do not hold lock for initialization, the fence issued after the visitor // returns ensures memory visibility together with the implicit consume // semantics (for all supported architectures) for any thread that loads // the array class reference from any memory locations afterwards. FinishArrayClassSetup(klass); }; auto new_class = hs.NewHandle( AllocClass(self, GetClassRoot(this), array_class_size, visitor)); if (new_class == nullptr) { self->AssertPendingOOMException(); return nullptr; } ObjPtr existing = InsertClass(descriptor, new_class.Get(), hash); if (existing == nullptr) { // We postpone ClassLoad and ClassPrepare events to this point in time to avoid // duplicate events in case of races. Array classes don't really follow dedicated // load and prepare, anyways. Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(new_class); Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(new_class, new_class); jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get()); return new_class.Get(); } // Another thread must have loaded the class after we // started but before we finished. Abandon what we've // done. // // (Yes, this happens.) return existing; } ObjPtr ClassLinker::LookupPrimitiveClass(char type) { ClassRoot class_root; switch (type) { case 'B': class_root = ClassRoot::kPrimitiveByte; break; case 'C': class_root = ClassRoot::kPrimitiveChar; break; case 'D': class_root = ClassRoot::kPrimitiveDouble; break; case 'F': class_root = ClassRoot::kPrimitiveFloat; break; case 'I': class_root = ClassRoot::kPrimitiveInt; break; case 'J': class_root = ClassRoot::kPrimitiveLong; break; case 'S': class_root = ClassRoot::kPrimitiveShort; break; case 'Z': class_root = ClassRoot::kPrimitiveBoolean; break; case 'V': class_root = ClassRoot::kPrimitiveVoid; break; default: return nullptr; } return GetClassRoot(class_root, this); } ObjPtr ClassLinker::FindPrimitiveClass(char type) { ObjPtr result = LookupPrimitiveClass(type); if (UNLIKELY(result == nullptr)) { std::string printable_type(PrintableChar(type)); ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); } return result; } ObjPtr ClassLinker::InsertClass(const char* descriptor, ObjPtr klass, size_t hash) { DCHECK(Thread::Current()->CanLoadClasses()); if (VLOG_IS_ON(class_linker)) { ObjPtr dex_cache = klass->GetDexCache(); std::string source; if (dex_cache != nullptr) { source += " from "; source += dex_cache->GetLocation()->ToModifiedUtf8(); } LOG(INFO) << "Loaded class " << descriptor << source; } { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); const ObjPtr class_loader = klass->GetClassLoader(); ClassTable* const class_table = InsertClassTableForClassLoader(class_loader); ObjPtr existing = class_table->Lookup(descriptor, hash); if (existing != nullptr) { return existing; } VerifyObject(klass); class_table->InsertWithHash(klass, hash); if (class_loader != nullptr) { // This is necessary because we need to have the card dirtied for remembered sets. WriteBarrier::ForEveryFieldWrite(class_loader); } if (log_new_roots_) { new_class_roots_.push_back(GcRoot(klass)); } } if (kIsDebugBuild) { // Test that copied methods correctly can find their holder. for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) { CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass); } } return nullptr; } void ClassLinker::WriteBarrierForBootOatFileBssRoots(const OatFile* oat_file) { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); DCHECK(!oat_file->GetBssGcRoots().empty()) << oat_file->GetLocation(); if (log_new_roots_ && !ContainsElement(new_bss_roots_boot_oat_files_, oat_file)) { new_bss_roots_boot_oat_files_.push_back(oat_file); } } // TODO This should really be in mirror::Class. void ClassLinker::UpdateClassMethods(ObjPtr klass, LengthPrefixedArray* new_methods) { klass->SetMethodsPtrUnchecked(new_methods, klass->NumDirectMethods(), klass->NumDeclaredVirtualMethods()); // Need to mark the card so that the remembered sets and mod union tables get updated. WriteBarrier::ForEveryFieldWrite(klass); } ObjPtr ClassLinker::LookupClass(Thread* self, const char* descriptor, ObjPtr class_loader) { return LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor), class_loader); } ObjPtr ClassLinker::LookupClass(Thread* self, const char* descriptor, size_t hash, ObjPtr class_loader) { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const class_table = ClassTableForClassLoader(class_loader); if (class_table != nullptr) { ObjPtr result = class_table->Lookup(descriptor, hash); if (result != nullptr) { return result; } } return nullptr; } class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor { public: MoveClassTableToPreZygoteVisitor() {} void Visit(ObjPtr class_loader) REQUIRES(Locks::classlinker_classes_lock_) REQUIRES_SHARED(Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { class_table->FreezeSnapshot(); } } }; void ClassLinker::MoveClassTableToPreZygote() { WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); boot_class_table_->FreezeSnapshot(); MoveClassTableToPreZygoteVisitor visitor; VisitClassLoaders(&visitor); } // Look up classes by hash and descriptor and put all matching ones in the result array. class LookupClassesVisitor : public ClassLoaderVisitor { public: LookupClassesVisitor(const char* descriptor, size_t hash, std::vector>* result) : descriptor_(descriptor), hash_(hash), result_(result) {} void Visit(ObjPtr class_loader) REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); ObjPtr klass = class_table->Lookup(descriptor_, hash_); // Add `klass` only if `class_loader` is its defining (not just initiating) class loader. if (klass != nullptr && klass->GetClassLoader() == class_loader) { result_->push_back(klass); } } private: const char* const descriptor_; const size_t hash_; std::vector>* const result_; }; void ClassLinker::LookupClasses(const char* descriptor, std::vector>& result) { result.clear(); Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); const size_t hash = ComputeModifiedUtf8Hash(descriptor); ObjPtr klass = boot_class_table_->Lookup(descriptor, hash); if (klass != nullptr) { DCHECK(klass->GetClassLoader() == nullptr); result.push_back(klass); } LookupClassesVisitor visitor(descriptor, hash, &result); VisitClassLoaders(&visitor); } bool ClassLinker::AttemptSupertypeVerification(Thread* self, verifier::VerifierDeps* verifier_deps, Handle klass, Handle supertype) { DCHECK(self != nullptr); DCHECK(klass != nullptr); DCHECK(supertype != nullptr); if (!supertype->IsVerified() && !supertype->IsErroneous()) { VerifyClass(self, verifier_deps, supertype); } if (supertype->IsVerified() || supertype->ShouldVerifyAtRuntime() || supertype->IsVerifiedNeedsAccessChecks()) { // The supertype is either verified, or we soft failed at AOT time. DCHECK(supertype->IsVerified() || Runtime::Current()->IsAotCompiler()); return true; } // If we got this far then we have a hard failure. std::string error_msg = StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s", klass->PrettyDescriptor().c_str(), supertype->PrettyDescriptor().c_str()); LOG(WARNING) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); StackHandleScope<1> hs(self); Handle cause(hs.NewHandle(self->GetException())); if (cause != nullptr) { // Set during VerifyClass call (if at all). self->ClearException(); } // Change into a verify error. ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); if (cause != nullptr) { self->GetException()->SetCause(cause.Get()); } ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex()); if (Runtime::Current()->IsAotCompiler()) { Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); } // Need to grab the lock to change status. ObjectLock super_lock(self, klass); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } verifier::FailureKind ClassLinker::VerifyClass(Thread* self, verifier::VerifierDeps* verifier_deps, Handle klass, verifier::HardFailLogMode log_level) { { // TODO: assert that the monitor on the Class is held ObjectLock lock(self, klass); // Is somebody verifying this now? ClassStatus old_status = klass->GetStatus(); while (old_status == ClassStatus::kVerifying) { lock.WaitIgnoringInterrupts(); // WaitIgnoringInterrupts can still receive an interrupt and return early, in this // case we may see the same status again. b/62912904. This is why the check is // greater or equal. CHECK(klass->IsErroneous() || (klass->GetStatus() >= old_status)) << "Class '" << klass->PrettyClass() << "' performed an illegal verification state transition from " << old_status << " to " << klass->GetStatus(); old_status = klass->GetStatus(); } // The class might already be erroneous, for example at compile time if we attempted to verify // this class as a parent to another. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get()); return verifier::FailureKind::kHardFailure; } // Don't attempt to re-verify if already verified. if (klass->IsVerified()) { if (verifier_deps != nullptr && verifier_deps->ContainsDexFile(klass->GetDexFile()) && !verifier_deps->HasRecordedVerifiedStatus(klass->GetDexFile(), *klass->GetClassDef()) && !Runtime::Current()->IsAotCompiler()) { // If the klass is verified, but `verifier_deps` did not record it, this // means we are running background verification of a secondary dex file. // Re-run the verifier to populate `verifier_deps`. // No need to run the verification when running on the AOT Compiler, as // the driver handles those multithreaded cases already. std::string error_msg; verifier::FailureKind failure = PerformClassVerification(self, verifier_deps, klass, log_level, &error_msg); // We could have soft failures, so just check that we don't have a hard // failure. DCHECK_NE(failure, verifier::FailureKind::kHardFailure) << error_msg; } return verifier::FailureKind::kNoFailure; } if (klass->IsVerifiedNeedsAccessChecks()) { if (!Runtime::Current()->IsAotCompiler()) { // Mark the class as having a verification attempt to avoid re-running // the verifier. mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); } return verifier::FailureKind::kAccessChecksFailure; } // For AOT, don't attempt to re-verify if we have already found we should // verify at runtime. if (klass->ShouldVerifyAtRuntime()) { CHECK(Runtime::Current()->IsAotCompiler()); return verifier::FailureKind::kSoftFailure; } DCHECK_EQ(klass->GetStatus(), ClassStatus::kResolved); mirror::Class::SetStatus(klass, ClassStatus::kVerifying, self); // Skip verification if disabled. if (!Runtime::Current()->IsVerificationEnabled()) { mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); UpdateClassAfterVerification(klass, image_pointer_size_, verifier::FailureKind::kNoFailure); return verifier::FailureKind::kNoFailure; } } VLOG(class_linker) << "Beginning verification for class: " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); // Verify super class. StackHandleScope<2> hs(self); MutableHandle supertype(hs.NewHandle(klass->GetSuperClass())); // If we have a superclass and we get a hard verification failure we can return immediately. if (supertype != nullptr && !AttemptSupertypeVerification(self, verifier_deps, klass, supertype)) { CHECK(self->IsExceptionPending()) << "Verification error should be pending."; return verifier::FailureKind::kHardFailure; } // Verify all default super-interfaces. // // (1) Don't bother if the superclass has already had a soft verification failure. // // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause // recursive initialization by themselves. This is because when an interface is initialized // directly it must not initialize its superinterfaces. We are allowed to verify regardless // but choose not to for an optimization. If the interfaces is being verified due to a class // initialization (which would need all the default interfaces to be verified) the class code // will trigger the recursive verification anyway. if ((supertype == nullptr || supertype->IsVerified()) // See (1) && !klass->IsInterface()) { // See (2) int32_t iftable_count = klass->GetIfTableCount(); MutableHandle iface(hs.NewHandle(nullptr)); // Loop through all interfaces this class has defined. It doesn't matter the order. for (int32_t i = 0; i < iftable_count; i++) { iface.Assign(klass->GetIfTable()->GetInterface(i)); DCHECK(iface != nullptr); // We only care if we have default interfaces and can skip if we are already verified... if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) { continue; } else if (UNLIKELY(!AttemptSupertypeVerification(self, verifier_deps, klass, iface))) { // We had a hard failure while verifying this interface. Just return immediately. CHECK(self->IsExceptionPending()) << "Verification error should be pending."; return verifier::FailureKind::kHardFailure; } else if (UNLIKELY(!iface->IsVerified())) { // We softly failed to verify the iface. Stop checking and clean up. // Put the iface into the supertype handle so we know what caused us to fail. supertype.Assign(iface.Get()); break; } } } // At this point if verification failed, then supertype is the "first" supertype that failed // verification (without a specific order). If verification succeeded, then supertype is either // null or the original superclass of klass and is verified. DCHECK(supertype == nullptr || supertype.Get() == klass->GetSuperClass() || !supertype->IsVerified()); // Try to use verification information from the oat file, otherwise do runtime verification. const DexFile& dex_file = *klass->GetDexCache()->GetDexFile(); ClassStatus oat_file_class_status(ClassStatus::kNotReady); bool preverified = VerifyClassUsingOatFile(self, dex_file, klass, oat_file_class_status); VLOG(class_linker) << "Class preverified status for class " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << ": " << preverified << "( " << oat_file_class_status << ")"; // If the oat file says the class had an error, re-run the verifier. That way we will either: // 1) Be successful at runtime, or // 2) Get a precise error message. DCHECK_IMPLIES(mirror::Class::IsErroneous(oat_file_class_status), !preverified); std::string error_msg; verifier::FailureKind verifier_failure = verifier::FailureKind::kNoFailure; if (!preverified) { verifier_failure = PerformClassVerification(self, verifier_deps, klass, log_level, &error_msg); } else if (oat_file_class_status == ClassStatus::kVerifiedNeedsAccessChecks) { verifier_failure = verifier::FailureKind::kAccessChecksFailure; } // Verification is done, grab the lock again. ObjectLock lock(self, klass); self->AssertNoPendingException(); if (verifier_failure == verifier::FailureKind::kHardFailure) { VLOG(verifier) << "Verification failed on class " << klass->PrettyDescriptor() << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return verifier_failure; } // Make sure all classes referenced by catch blocks are resolved. ResolveClassExceptionHandlerTypes(klass); if (Runtime::Current()->IsAotCompiler()) { if (supertype != nullptr && supertype->ShouldVerifyAtRuntime()) { // Regardless of our own verification result, we need to verify the class // at runtime if the super class is not verified. This is required in case // we generate an app/boot image. mirror::Class::SetStatus(klass, ClassStatus::kRetryVerificationAtRuntime, self); } else if (verifier_failure == verifier::FailureKind::kNoFailure) { mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); } else if (verifier_failure == verifier::FailureKind::kSoftFailure || verifier_failure == verifier::FailureKind::kTypeChecksFailure) { mirror::Class::SetStatus(klass, ClassStatus::kRetryVerificationAtRuntime, self); } else { mirror::Class::SetStatus(klass, ClassStatus::kVerifiedNeedsAccessChecks, self); } // Notify the compiler about the verification status, in case the class // was verified implicitly (eg super class of a compiled class). When the // compiler unloads dex file after compilation, we still want to keep // verification states. Runtime::Current()->GetCompilerCallbacks()->UpdateClassState( ClassReference(&klass->GetDexFile(), klass->GetDexClassDefIndex()), klass->GetStatus()); } else { mirror::Class::SetStatus(klass, ClassStatus::kVerified, self); } UpdateClassAfterVerification(klass, image_pointer_size_, verifier_failure); return verifier_failure; } verifier::FailureKind ClassLinker::PerformClassVerification(Thread* self, verifier::VerifierDeps* verifier_deps, Handle klass, verifier::HardFailLogMode log_level, std::string* error_msg) { Runtime* const runtime = Runtime::Current(); StackHandleScope<2> hs(self); Handle dex_cache(hs.NewHandle(klass->GetDexCache())); Handle class_loader(hs.NewHandle(klass->GetClassLoader())); return verifier::ClassVerifier::VerifyClass(self, verifier_deps, dex_cache->GetDexFile(), klass, dex_cache, class_loader, *klass->GetClassDef(), runtime->GetCompilerCallbacks(), log_level, Runtime::Current()->GetTargetSdkVersion(), error_msg); } bool ClassLinker::VerifyClassUsingOatFile(Thread* self, const DexFile& dex_file, Handle klass, ClassStatus& oat_file_class_status) { // If we're compiling, we can only verify the class using the oat file if // we are not compiling the image or if the class we're verifying is not part of // the compilation unit (app - dependencies). We will let the compiler callback // tell us about the latter. if (Runtime::Current()->IsAotCompiler()) { CompilerCallbacks* callbacks = Runtime::Current()->GetCompilerCallbacks(); // We are compiling an app (not the image). if (!callbacks->CanUseOatStatusForVerification(klass.Get())) { return false; } } const OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); // In case we run without an image there won't be a backing oat file. if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) { return false; } uint16_t class_def_index = klass->GetDexClassDefIndex(); oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus(); if (oat_file_class_status >= ClassStatus::kVerified) { return true; } if (oat_file_class_status >= ClassStatus::kVerifiedNeedsAccessChecks) { // We return that the clas has already been verified, and the caller should // check the class status to ensure we run with access checks. return true; } // Check the class status with the vdex file. const OatFile* oat_file = oat_dex_file->GetOatFile(); if (oat_file != nullptr) { ClassStatus vdex_status = oat_file->GetVdexFile()->ComputeClassStatus(self, klass); if (vdex_status >= ClassStatus::kVerifiedNeedsAccessChecks) { VLOG(verifier) << "Vdex verification success for " << klass->PrettyClass(); oat_file_class_status = vdex_status; return true; } } // If we only verified a subset of the classes at compile time, we can end up with classes that // were resolved by the verifier. if (oat_file_class_status == ClassStatus::kResolved) { return false; } // We never expect a .oat file to have kRetryVerificationAtRuntime statuses. CHECK_NE(oat_file_class_status, ClassStatus::kRetryVerificationAtRuntime) << klass->PrettyClass() << " " << dex_file.GetLocation(); if (mirror::Class::IsErroneous(oat_file_class_status)) { // Compile time verification failed with a hard error. We'll re-run // verification, which might be successful at runtime. return false; } if (oat_file_class_status == ClassStatus::kNotReady) { // Status is uninitialized if we couldn't determine the status at compile time, for example, // not loading the class. // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy // isn't a problem and this case shouldn't occur return false; } std::string temp; LOG(FATAL) << "Unexpected class status: " << oat_file_class_status << " " << dex_file.GetLocation() << " " << klass->PrettyClass() << " " << klass->GetDescriptor(&temp); UNREACHABLE(); } void ClassLinker::ResolveClassExceptionHandlerTypes(Handle klass) { for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) { ResolveMethodExceptionHandlerTypes(&method); } } void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) { // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod. CodeItemDataAccessor accessor(method->DexInstructionData()); if (!accessor.HasCodeItem()) { return; // native or abstract method } if (accessor.TriesSize() == 0) { return; // nothing to process } const uint8_t* handlers_ptr = accessor.GetCatchHandlerData(0); CHECK(method->GetDexFile()->IsInDataSection(handlers_ptr)) << method->PrettyMethod() << "@" << method->GetDexFile()->GetLocation() << "@" << reinterpret_cast(handlers_ptr) << " is_compact_dex=" << method->GetDexFile()->IsCompactDexFile(); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; idx++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { // Ensure exception types are resolved so that they don't need resolution to be delivered, // unresolved exception types will be ignored by exception delivery if (iterator.GetHandlerTypeIndex().IsValid()) { ObjPtr exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method); if (exception_type == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); } } } handlers_ptr = iterator.EndDataPointer(); } } ObjPtr ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa, jstring name, jobjectArray interfaces, jobject loader, jobjectArray methods, jobjectArray throws) { Thread* self = soa.Self(); // This is to prevent the calls to ClassLoad and ClassPrepare which can cause java/user-supplied // code to be executed. We put it up here so we can avoid all the allocations associated with // creating the class. This can happen with (eg) jit-threads. if (!self->CanLoadClasses()) { // Make sure we don't try to load anything, potentially causing an infinite loop. ObjPtr pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); self->SetException(pre_allocated); return nullptr; } StackHandleScope<12> hs(self); MutableHandle temp_klass(hs.NewHandle( AllocClass(self, GetClassRoot(this), sizeof(mirror::Class)))); if (temp_klass == nullptr) { CHECK(self->IsExceptionPending()); // OOME. return nullptr; } DCHECK(temp_klass->GetClass() != nullptr); temp_klass->SetObjectSize(sizeof(mirror::Proxy)); // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on // the methods. temp_klass->SetAccessFlagsDuringLinking(kAccClassIsProxy | kAccPublic | kAccFinal); temp_klass->SetClassLoader(soa.Decode(loader)); DCHECK_EQ(temp_klass->GetPrimitiveType(), Primitive::kPrimNot); temp_klass->SetName(soa.Decode(name)); temp_klass->SetDexCache(GetClassRoot(this)->GetDexCache()); // Object has an empty iftable, copy it for that reason. temp_klass->SetIfTable(GetClassRoot(this)->GetIfTable()); mirror::Class::SetStatus(temp_klass, ClassStatus::kIdx, self); std::string storage; const char* descriptor = temp_klass->GetDescriptor(&storage); const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Needs to be before we insert the class so that the allocator field is set. LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(temp_klass->GetClassLoader()); // Insert the class before loading the fields as the field roots // (ArtField::declaring_class_) are only visited from the class // table. There can't be any suspend points between inserting the // class and setting the field arrays below. ObjPtr existing = InsertClass(descriptor, temp_klass.Get(), hash); CHECK(existing == nullptr); // Instance fields are inherited, but we add a couple of static fields... const size_t num_fields = 2; LengthPrefixedArray* sfields = AllocArtFieldArray(self, allocator, num_fields); temp_klass->SetSFieldsPtr(sfields); // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by // our proxy, so Class.getInterfaces doesn't return the flattened set. ArtField& interfaces_sfield = sfields->At(0); interfaces_sfield.SetDexFieldIndex(0); interfaces_sfield.SetDeclaringClass(temp_klass.Get()); interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // 2. Create a static field 'throws' that holds exceptions thrown by our methods. ArtField& throws_sfield = sfields->At(1); throws_sfield.SetDexFieldIndex(1); throws_sfield.SetDeclaringClass(temp_klass.Get()); throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // Proxies have 1 direct method, the constructor const size_t num_direct_methods = 1; // The array we get passed contains all methods, including private and static // ones that aren't proxied. We need to filter those out since only interface // methods (non-private & virtual) are actually proxied. Handle> h_methods = hs.NewHandle(soa.Decode>(methods)); DCHECK_EQ(h_methods->GetClass(), GetClassRoot>()) << mirror::Class::PrettyClass(h_methods->GetClass()); // List of the actual virtual methods this class will have. std::vector proxied_methods; std::vector proxied_throws_idx; proxied_methods.reserve(h_methods->GetLength()); proxied_throws_idx.reserve(h_methods->GetLength()); // Filter out to only the non-private virtual methods. for (auto [mirror, idx] : ZipCount(h_methods.Iterate())) { ArtMethod* m = mirror->GetArtMethod(); if (!m->IsPrivate() && !m->IsStatic()) { proxied_methods.push_back(m); proxied_throws_idx.push_back(idx); } } const size_t num_virtual_methods = proxied_methods.size(); // We also need to filter out the 'throws'. The 'throws' are a Class[][] that // contains an array of all the classes each function is declared to throw. // This is used to wrap unexpected exceptions in a // UndeclaredThrowableException exception. This array is in the same order as // the methods array and like the methods array must be filtered to remove any // non-proxied methods. const bool has_filtered_methods = static_cast(num_virtual_methods) != h_methods->GetLength(); MutableHandle>> original_proxied_throws( hs.NewHandle(soa.Decode>>(throws))); MutableHandle>> proxied_throws( hs.NewHandle>>( (has_filtered_methods) ? mirror::ObjectArray>::Alloc( self, original_proxied_throws->GetClass(), num_virtual_methods) : original_proxied_throws.Get())); if (proxied_throws.IsNull() && !original_proxied_throws.IsNull()) { self->AssertPendingOOMException(); return nullptr; } if (has_filtered_methods) { for (auto [orig_idx, new_idx] : ZipCount(MakeIterationRange(proxied_throws_idx))) { DCHECK_LE(new_idx, orig_idx); proxied_throws->Set(new_idx, original_proxied_throws->Get(orig_idx)); } } // Create the methods array. LengthPrefixedArray* proxy_class_methods = AllocArtMethodArray( self, allocator, num_direct_methods + num_virtual_methods); // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we // want to throw OOM in the future. if (UNLIKELY(proxy_class_methods == nullptr)) { self->AssertPendingOOMException(); return nullptr; } temp_klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods); // Create the single direct method. CreateProxyConstructor(temp_klass, temp_klass->GetDirectMethodUnchecked(0, image_pointer_size_)); // Create virtual method using specified prototypes. // TODO These should really use the iterators. for (size_t i = 0; i < num_virtual_methods; ++i) { auto* virtual_method = temp_klass->GetVirtualMethodUnchecked(i, image_pointer_size_); auto* prototype = proxied_methods[i]; CreateProxyMethod(temp_klass, prototype, virtual_method); DCHECK(virtual_method->GetDeclaringClass() != nullptr); DCHECK(prototype->GetDeclaringClass() != nullptr); } // The super class is java.lang.reflect.Proxy temp_klass->SetSuperClass(GetClassRoot(this)); // Now effectively in the loaded state. mirror::Class::SetStatus(temp_klass, ClassStatus::kLoaded, self); self->AssertNoPendingException(); // At this point the class is loaded. Publish a ClassLoad event. // Note: this may be a temporary class. It is a listener's responsibility to handle this. Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(temp_klass); MutableHandle klass = hs.NewHandle(nullptr); { // Must hold lock on object when resolved. ObjectLock resolution_lock(self, temp_klass); // Link the fields and virtual methods, creating vtable and iftables. // The new class will replace the old one in the class table. Handle> h_interfaces( hs.NewHandle(soa.Decode>(interfaces))); if (!LinkClass(self, descriptor, temp_klass, h_interfaces, &klass)) { if (!temp_klass->IsErroneous()) { mirror::Class::SetStatus(temp_klass, ClassStatus::kErrorUnresolved, self); } return nullptr; } } CHECK(temp_klass->IsRetired()); CHECK_NE(temp_klass.Get(), klass.Get()); CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get()); interfaces_sfield.SetObject( klass.Get(), soa.Decode>(interfaces)); CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get()); throws_sfield.SetObject( klass.Get(), proxied_throws.Get()); Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(temp_klass, klass); // SubtypeCheckInfo::Initialized must happen-before any new-instance for that type. // See also ClassLinker::EnsureInitialized(). if (kBitstringSubtypeCheckEnabled) { MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck>::EnsureInitialized(klass.Get()); // TODO: Avoid taking subtype_check_lock_ if SubtypeCheck for j.l.r.Proxy is already assigned. } VisiblyInitializedCallback* callback = nullptr; { // Lock on klass is released. Lock new class object. ObjectLock initialization_lock(self, klass); // Conservatively go through the ClassStatus::kInitialized state. callback = MarkClassInitialized(self, klass); } if (callback != nullptr) { callback->MakeVisible(self); } // Consistency checks. if (kIsDebugBuild) { CHECK(klass->GetIFieldsPtr() == nullptr); CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_)); for (size_t i = 0; i < num_virtual_methods; ++i) { auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); CheckProxyMethod(virtual_method, proxied_methods[i]); } StackHandleScope<1> hs2(self); Handle decoded_name = hs2.NewHandle(soa.Decode(name)); std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(0)), interfaces_field_name); std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws", decoded_name->ToModifiedUtf8().c_str())); CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(1)), throws_field_name); CHECK_EQ(klass.Get()->GetProxyInterfaces(), soa.Decode>(interfaces)); CHECK_EQ(klass.Get()->GetProxyThrows(), proxied_throws.Get()); } return klass.Get(); } void ClassLinker::CreateProxyConstructor(Handle klass, ArtMethod* out) { // Create constructor for Proxy that must initialize the method. ObjPtr proxy_class = GetClassRoot(this); CHECK_EQ(proxy_class->NumDirectMethods(), 21u); // Find the (InvocationHandler)V method. The exact method offset varies depending // on which front-end compiler was used to build the libcore DEX files. ArtMethod* proxy_constructor = WellKnownClasses::java_lang_reflect_Proxy_init; DCHECK(proxy_constructor != nullptr) << "Could not find method in java.lang.reflect.Proxy"; // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its // code_ too) DCHECK(out != nullptr); out->CopyFrom(proxy_constructor, image_pointer_size_); // Make this constructor public and fix the class to be our Proxy version. // Mark kAccCompileDontBother so that we don't take JIT samples for the method. b/62349349 // Note that the compiler calls a ResolveMethod() overload that does not handle a Proxy referrer. out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic | kAccCompileDontBother); out->SetDeclaringClass(klass.Get()); // Set the original constructor method. out->SetDataPtrSize(proxy_constructor, image_pointer_size_); } void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const { CHECK(constructor->IsConstructor()); auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_); CHECK_STREQ(np->GetName(), ""); CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V"); DCHECK(constructor->IsPublic()); } void ClassLinker::CreateProxyMethod(Handle klass, ArtMethod* prototype, ArtMethod* out) { // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize // as necessary DCHECK(out != nullptr); out->CopyFrom(prototype, image_pointer_size_); // Set class to be the concrete proxy class. out->SetDeclaringClass(klass.Get()); // Clear the abstract and default flags to ensure that defaults aren't picked in // preference to the invocation handler. const uint32_t kRemoveFlags = kAccAbstract | kAccDefault; // Make the method final. // Mark kAccCompileDontBother so that we don't take JIT samples for the method. b/62349349 const uint32_t kAddFlags = kAccFinal | kAccCompileDontBother; out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags); // Set the original interface method. out->SetDataPtrSize(prototype, image_pointer_size_); // At runtime the method looks like a reference and argument saving method, clone the code // related parameters from this method. out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler()); } void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const { // Basic consistency checks. CHECK(!prototype->IsFinal()); CHECK(method->IsFinal()); CHECK(method->IsInvokable()); // The proxy method doesn't have its own dex cache or dex file and so it steals those of its // interface prototype. The exception to this are Constructors and the Class of the Proxy itself. CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex()); CHECK_EQ(prototype, method->GetInterfaceMethodIfProxy(image_pointer_size_)); } bool ClassLinker::CanWeInitializeClass(ObjPtr klass, bool can_init_statics, bool can_init_parents) { if (can_init_statics && can_init_parents) { return true; } DCHECK(Runtime::Current()->IsAotCompiler()); // We currently don't support initializing at AOT time classes that need access // checks. if (klass->IsVerifiedNeedsAccessChecks()) { return false; } if (!can_init_statics) { // Check if there's a class initializer. ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); if (clinit != nullptr) { return false; } // Check if there are encoded static values needing initialization. if (klass->NumStaticFields() != 0) { const dex::ClassDef* dex_class_def = klass->GetClassDef(); DCHECK(dex_class_def != nullptr); if (dex_class_def->static_values_off_ != 0) { return false; } } } // If we are a class we need to initialize all interfaces with default methods when we are // initialized. Check all of them. if (!klass->IsInterface()) { size_t num_interfaces = klass->GetIfTableCount(); for (size_t i = 0; i < num_interfaces; i++) { ObjPtr iface = klass->GetIfTable()->GetInterface(i); if (iface->HasDefaultMethods() && !iface->IsInitialized()) { if (!can_init_parents || !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) { return false; } } } } if (klass->IsInterface() || !klass->HasSuperClass()) { return true; } ObjPtr super_class = klass->GetSuperClass(); if (super_class->IsInitialized()) { return true; } return can_init_parents && CanWeInitializeClass(super_class, can_init_statics, can_init_parents); } bool ClassLinker::InitializeClass(Thread* self, Handle klass, bool can_init_statics, bool can_init_parents) { // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol // Are we already initialized and therefore done? // Note: we differ from the JLS here as we don't do this under the lock, this is benign as // an initialized class will never change its state. if (klass->IsInitialized()) { return true; } // Fast fail if initialization requires a full runtime. Not part of the JLS. if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) { return false; } self->AllowThreadSuspension(); Runtime* const runtime = Runtime::Current(); const bool stats_enabled = runtime->HasStatsEnabled(); uint64_t t0; { ObjectLock lock(self, klass); // Re-check under the lock in case another thread initialized ahead of us. if (klass->IsInitialized()) { return true; } // Was the class already found to be erroneous? Done under the lock to match the JLS. if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass.Get(), true, /* log= */ true); VlogClassInitializationFailure(klass); return false; } CHECK(klass->IsResolved() && !klass->IsErroneousResolved()) << klass->PrettyClass() << ": state=" << klass->GetStatus(); if (!klass->IsVerified()) { VerifyClass(self, /*verifier_deps= */ nullptr, klass); if (!klass->IsVerified()) { // We failed to verify, expect either the klass to be erroneous or verification failed at // compile time. if (klass->IsErroneous()) { // The class is erroneous. This may be a verifier error, or another thread attempted // verification and/or initialization and failed. We can distinguish those cases by // whether an exception is already pending. if (self->IsExceptionPending()) { // Check that it's a VerifyError. DCHECK(IsVerifyError(self->GetException())); } else { // Check that another thread attempted initialization. DCHECK_NE(0, klass->GetClinitThreadId()); DCHECK_NE(self->GetTid(), klass->GetClinitThreadId()); // Need to rethrow the previous failure now. ThrowEarlierClassFailure(klass.Get(), true); } VlogClassInitializationFailure(klass); } else { CHECK(Runtime::Current()->IsAotCompiler()); CHECK(klass->ShouldVerifyAtRuntime() || klass->IsVerifiedNeedsAccessChecks()); self->AssertNoPendingException(); self->SetException(Runtime::Current()->GetPreAllocatedNoClassDefFoundError()); } self->AssertPendingException(); return false; } else { self->AssertNoPendingException(); } // A separate thread could have moved us all the way to initialized. A "simple" example // involves a subclass of the current class being initialized at the same time (which // will implicitly initialize the superclass, if scheduled that way). b/28254258 DCHECK(!klass->IsErroneous()) << klass->GetStatus(); if (klass->IsInitialized()) { return true; } } // If the class is ClassStatus::kInitializing, either this thread is // initializing higher up the stack or another thread has beat us // to initializing and we need to wait. Either way, this // invocation of InitializeClass will not be responsible for // running and will return. if (klass->GetStatus() == ClassStatus::kInitializing) { // Could have got an exception during verification. if (self->IsExceptionPending()) { VlogClassInitializationFailure(klass); return false; } // We caught somebody else in the act; was it us? if (klass->GetClinitThreadId() == self->GetTid()) { // Yes. That's fine. Return so we can continue initializing. return true; } // No. That's fine. Wait for another thread to finish initializing. return WaitForInitializeClass(klass, self, lock); } // Try to get the oat class's status for this class if the oat file is present. The compiler // tries to validate superclass descriptors, and writes the result into the oat file. // Runtime correctness is guaranteed by classpath checks done on loading. If the classpath // is different at runtime than it was at compile time, the oat file is rejected. So if the // oat file is present, the classpaths must match, and the runtime time check can be skipped. bool has_oat_class = false; const OatFile::OatClass oat_class = (runtime->IsStarted() && !runtime->IsAotCompiler()) ? OatFile::FindOatClass(klass->GetDexFile(), klass->GetDexClassDefIndex(), &has_oat_class) : OatFile::OatClass::Invalid(); if (oat_class.GetStatus() < ClassStatus::kSuperclassValidated && !ValidateSuperClassDescriptors(klass)) { mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } self->AllowThreadSuspension(); CHECK_EQ(klass->GetStatus(), ClassStatus::kVerified) << klass->PrettyClass() << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId(); // From here out other threads may observe that we're initializing and so changes of state // require the a notification. klass->SetClinitThreadId(self->GetTid()); mirror::Class::SetStatus(klass, ClassStatus::kInitializing, self); t0 = stats_enabled ? NanoTime() : 0u; } uint64_t t_sub = 0; // Initialize super classes, must be done while initializing for the JLS. if (!klass->IsInterface() && klass->HasSuperClass()) { ObjPtr super_class = klass->GetSuperClass(); if (!super_class->IsInitialized()) { CHECK(!super_class->IsInterface()); CHECK(can_init_parents); StackHandleScope<1> hs(self); Handle handle_scope_super(hs.NewHandle(super_class)); uint64_t super_t0 = stats_enabled ? NanoTime() : 0u; bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true); uint64_t super_t1 = stats_enabled ? NanoTime() : 0u; if (!super_initialized) { // The super class was verified ahead of entering initializing, we should only be here if // the super class became erroneous due to initialization. // For the case of aot compiler, the super class might also be initializing but we don't // want to process circular dependencies in pre-compile. CHECK(self->IsExceptionPending()) << "Super class initialization failed for " << handle_scope_super->PrettyDescriptor() << " that has unexpected status " << handle_scope_super->GetStatus() << "\nPending exception:\n" << (self->GetException() != nullptr ? self->GetException()->Dump() : ""); ObjectLock lock(self, klass); // Initialization failed because the super-class is erroneous. mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } t_sub = super_t1 - super_t0; } } if (!klass->IsInterface()) { // Initialize interfaces with default methods for the JLS. size_t num_direct_interfaces = klass->NumDirectInterfaces(); // Only setup the (expensive) handle scope if we actually need to. if (UNLIKELY(num_direct_interfaces > 0)) { StackHandleScope<1> hs_iface(self); MutableHandle handle_scope_iface(hs_iface.NewHandle(nullptr)); for (size_t i = 0; i < num_direct_interfaces; i++) { handle_scope_iface.Assign(klass->GetDirectInterface(i)); CHECK(handle_scope_iface != nullptr) << klass->PrettyDescriptor() << " iface #" << i; CHECK(handle_scope_iface->IsInterface()); if (handle_scope_iface->HasBeenRecursivelyInitialized()) { // We have already done this for this interface. Skip it. continue; } // We cannot just call initialize class directly because we need to ensure that ALL // interfaces with default methods are initialized. Non-default interface initialization // will not affect other non-default super-interfaces. // This is not very precise, misses all walking. uint64_t inf_t0 = stats_enabled ? NanoTime() : 0u; bool iface_initialized = InitializeDefaultInterfaceRecursive(self, handle_scope_iface, can_init_statics, can_init_parents); uint64_t inf_t1 = stats_enabled ? NanoTime() : 0u; if (!iface_initialized) { ObjectLock lock(self, klass); // Initialization failed because one of our interfaces with default methods is erroneous. mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } t_sub += inf_t1 - inf_t0; } } } const size_t num_static_fields = klass->NumStaticFields(); if (num_static_fields > 0) { const dex::ClassDef* dex_class_def = klass->GetClassDef(); CHECK(dex_class_def != nullptr); StackHandleScope<3> hs(self); Handle class_loader(hs.NewHandle(klass->GetClassLoader())); Handle dex_cache(hs.NewHandle(klass->GetDexCache())); // Eagerly fill in static fields so that the we don't have to do as many expensive // Class::FindStaticField in ResolveField. for (size_t i = 0; i < num_static_fields; ++i) { ArtField* field = klass->GetStaticField(i); const uint32_t field_idx = field->GetDexFieldIndex(); ArtField* resolved_field = dex_cache->GetResolvedField(field_idx); if (resolved_field == nullptr) { // Populating cache of a dex file which defines `klass` should always be allowed. DCHECK(!hiddenapi::ShouldDenyAccessToMember( field, hiddenapi::AccessContext(class_loader.Get(), dex_cache.Get()), hiddenapi::AccessMethod::kNone)); dex_cache->SetResolvedField(field_idx, field); } else { DCHECK_EQ(field, resolved_field); } } annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_cache, class_loader, this, *dex_class_def); const DexFile& dex_file = *dex_cache->GetDexFile(); if (value_it.HasNext()) { ClassAccessor accessor(dex_file, *dex_class_def); CHECK(can_init_statics); for (const ClassAccessor::Field& field : accessor.GetStaticFields()) { if (!value_it.HasNext()) { break; } ArtField* art_field = ResolveField(field.GetIndex(), dex_cache, class_loader, /* is_static= */ true); if (Runtime::Current()->IsActiveTransaction()) { value_it.ReadValueToField(art_field); } else { value_it.ReadValueToField(art_field); } if (self->IsExceptionPending()) { break; } value_it.Next(); } DCHECK(self->IsExceptionPending() || !value_it.HasNext()); } } if (!self->IsExceptionPending()) { ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); if (clinit != nullptr) { CHECK(can_init_statics); JValue result; clinit->Invoke(self, nullptr, 0, &result, "V"); } } self->AllowThreadSuspension(); uint64_t t1 = stats_enabled ? NanoTime() : 0u; VisiblyInitializedCallback* callback = nullptr; bool success = true; { ObjectLock lock(self, klass); if (self->IsExceptionPending()) { WrapExceptionInInitializer(klass); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); success = false; } else if (Runtime::Current()->IsTransactionAborted()) { // The exception thrown when the transaction aborted has been caught and cleared // so we need to throw it again now. VLOG(compiler) << "Return from class initializer of " << mirror::Class::PrettyDescriptor(klass.Get()) << " without exception while transaction was aborted: re-throw it now."; runtime->ThrowTransactionAbortError(self); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); success = false; } else { if (stats_enabled) { RuntimeStats* global_stats = runtime->GetStats(); RuntimeStats* thread_stats = self->GetStats(); ++global_stats->class_init_count; ++thread_stats->class_init_count; global_stats->class_init_time_ns += (t1 - t0 - t_sub); thread_stats->class_init_time_ns += (t1 - t0 - t_sub); } // Set the class as initialized except if failed to initialize static fields. callback = MarkClassInitialized(self, klass); if (VLOG_IS_ON(class_linker)) { std::string temp; LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " << klass->GetLocation(); } } } if (callback != nullptr) { callback->MakeVisible(self); } return success; } // We recursively run down the tree of interfaces. We need to do this in the order they are declared // and perform the initialization only on those interfaces that contain default methods. bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self, Handle iface, bool can_init_statics, bool can_init_parents) { CHECK(iface->IsInterface()); size_t num_direct_ifaces = iface->NumDirectInterfaces(); // Only create the (expensive) handle scope if we need it. if (UNLIKELY(num_direct_ifaces > 0)) { StackHandleScope<1> hs(self); MutableHandle handle_super_iface(hs.NewHandle(nullptr)); // First we initialize all of iface's super-interfaces recursively. for (size_t i = 0; i < num_direct_ifaces; i++) { ObjPtr super_iface = iface->GetDirectInterface(i); CHECK(super_iface != nullptr) << iface->PrettyDescriptor() << " iface #" << i; if (!super_iface->HasBeenRecursivelyInitialized()) { // Recursive step handle_super_iface.Assign(super_iface); if (!InitializeDefaultInterfaceRecursive(self, handle_super_iface, can_init_statics, can_init_parents)) { return false; } } } } bool result = true; // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not) // initialize if we don't have default methods. if (iface->HasDefaultMethods()) { result = EnsureInitialized(self, iface, can_init_statics, can_init_parents); } // Mark that this interface has undergone recursive default interface initialization so we know we // can skip it on any later class initializations. We do this even if we are not a default // interface since we can still avoid the traversal. This is purely a performance optimization. if (result) { // TODO This should be done in a better way // Note: Use a try-lock to avoid blocking when someone else is holding the lock on this // interface. It is bad (Java) style, but not impossible. Marking the recursive // initialization is a performance optimization (to avoid another idempotent visit // for other implementing classes/interfaces), and can be revisited later. ObjectTryLock lock(self, iface); if (lock.Acquired()) { iface->SetRecursivelyInitialized(); } } return result; } bool ClassLinker::WaitForInitializeClass(Handle klass, Thread* self, ObjectLock& lock) REQUIRES_SHARED(Locks::mutator_lock_) { while (true) { self->AssertNoPendingException(); CHECK(!klass->IsInitialized()); lock.WaitIgnoringInterrupts(); // When we wake up, repeat the test for init-in-progress. If // there's an exception pending (only possible if // we were not using WaitIgnoringInterrupts), bail out. if (self->IsExceptionPending()) { WrapExceptionInInitializer(klass); mirror::Class::SetStatus(klass, ClassStatus::kErrorResolved, self); return false; } // Spurious wakeup? Go back to waiting. if (klass->GetStatus() == ClassStatus::kInitializing) { continue; } if (klass->GetStatus() == ClassStatus::kVerified && Runtime::Current()->IsAotCompiler()) { // Compile time initialization failed. return false; } if (klass->IsErroneous()) { // The caller wants an exception, but it was thrown in a // different thread. Synthesize one here. ThrowNoClassDefFoundError(" failed for class %s; see exception in other thread", klass->PrettyDescriptor().c_str()); VlogClassInitializationFailure(klass); return false; } if (klass->IsInitialized()) { return true; } LOG(FATAL) << "Unexpected class status. " << klass->PrettyClass() << " is " << klass->GetStatus(); } UNREACHABLE(); } static void ThrowSignatureCheckResolveReturnTypeException(Handle klass, Handle super_klass, ArtMethod* method, ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Thread::Current()->IsExceptionPending()); DCHECK(!m->IsProxyMethod()); const DexFile* dex_file = m->GetDexFile(); const dex::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex()); const dex::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id); dex::TypeIndex return_type_idx = proto_id.return_type_idx_; std::string return_type = dex_file->PrettyType(return_type_idx); std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); ThrowWrappedLinkageError(klass.Get(), "While checking class %s method %s signature against %s %s: " "Failed to resolve return type %s with %s", mirror::Class::PrettyDescriptor(klass.Get()).c_str(), ArtMethod::PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), return_type.c_str(), class_loader.c_str()); } static void ThrowSignatureCheckResolveArgException(Handle klass, Handle super_klass, ArtMethod* method, ArtMethod* m, uint32_t index, dex::TypeIndex arg_type_idx) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Thread::Current()->IsExceptionPending()); DCHECK(!m->IsProxyMethod()); const DexFile* dex_file = m->GetDexFile(); std::string arg_type = dex_file->PrettyType(arg_type_idx); std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); ThrowWrappedLinkageError(klass.Get(), "While checking class %s method %s signature against %s %s: " "Failed to resolve arg %u type %s with %s", mirror::Class::PrettyDescriptor(klass.Get()).c_str(), ArtMethod::PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), index, arg_type.c_str(), class_loader.c_str()); } static void ThrowSignatureMismatch(Handle klass, Handle super_klass, ArtMethod* method, const std::string& error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { ThrowLinkageError(klass.Get(), "Class %s method %s resolves differently in %s %s: %s", mirror::Class::PrettyDescriptor(klass.Get()).c_str(), ArtMethod::PrettyMethod(method).c_str(), super_klass->IsInterface() ? "interface" : "superclass", mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), error_msg.c_str()); } static bool HasSameSignatureWithDifferentClassLoaders(Thread* self, Handle klass, Handle super_klass, ArtMethod* method1, ArtMethod* method2) REQUIRES_SHARED(Locks::mutator_lock_) { { StackHandleScope<1> hs(self); Handle return_type(hs.NewHandle(method1->ResolveReturnType())); if (UNLIKELY(return_type == nullptr)) { ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1); return false; } ObjPtr other_return_type = method2->ResolveReturnType(); if (UNLIKELY(other_return_type == nullptr)) { ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2); return false; } if (UNLIKELY(other_return_type != return_type.Get())) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Return types mismatch: %s(%p) vs %s(%p)", return_type->PrettyClassAndClassLoader().c_str(), return_type.Get(), other_return_type->PrettyClassAndClassLoader().c_str(), other_return_type.Ptr())); return false; } } const dex::TypeList* types1 = method1->GetParameterTypeList(); const dex::TypeList* types2 = method2->GetParameterTypeList(); if (types1 == nullptr) { if (types2 != nullptr && types2->Size() != 0) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", method2->PrettyMethod(true).c_str())); return false; } return true; } else if (UNLIKELY(types2 == nullptr)) { if (types1->Size() != 0) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", method2->PrettyMethod(true).c_str())); return false; } return true; } uint32_t num_types = types1->Size(); if (UNLIKELY(num_types != types2->Size())) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Type list mismatch with %s", method2->PrettyMethod(true).c_str())); return false; } for (uint32_t i = 0; i < num_types; ++i) { StackHandleScope<1> hs(self); dex::TypeIndex param_type_idx = types1->GetTypeItem(i).type_idx_; Handle param_type(hs.NewHandle( method1->ResolveClassFromTypeIndex(param_type_idx))); if (UNLIKELY(param_type == nullptr)) { ThrowSignatureCheckResolveArgException(klass, super_klass, method1, method1, i, param_type_idx); return false; } dex::TypeIndex other_param_type_idx = types2->GetTypeItem(i).type_idx_; ObjPtr other_param_type = method2->ResolveClassFromTypeIndex(other_param_type_idx); if (UNLIKELY(other_param_type == nullptr)) { ThrowSignatureCheckResolveArgException(klass, super_klass, method1, method2, i, other_param_type_idx); return false; } if (UNLIKELY(param_type.Get() != other_param_type)) { ThrowSignatureMismatch(klass, super_klass, method1, StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)", i, param_type->PrettyClassAndClassLoader().c_str(), param_type.Get(), other_param_type->PrettyClassAndClassLoader().c_str(), other_param_type.Ptr())); return false; } } return true; } bool ClassLinker::ValidateSuperClassDescriptors(Handle klass) { if (klass->IsInterface()) { return true; } // Begin with the methods local to the superclass. Thread* self = Thread::Current(); StackHandleScope<1> hs(self); MutableHandle super_klass(hs.NewHandle(nullptr)); if (klass->HasSuperClass() && klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { super_klass.Assign(klass->GetSuperClass()); for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) { auto* m = klass->GetVTableEntry(i, image_pointer_size_); auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_); if (m != super_m) { if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, klass, super_klass, m, super_m))) { self->AssertPendingException(); return false; } } } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { super_klass.Assign(klass->GetIfTable()->GetInterface(i)); if (klass->GetClassLoader() != super_klass->GetClassLoader()) { uint32_t num_methods = super_klass->NumVirtualMethods(); for (uint32_t j = 0; j < num_methods; ++j) { auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize( j, image_pointer_size_); auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_); if (m != super_m) { if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, klass, super_klass, m, super_m))) { self->AssertPendingException(); return false; } } } } } return true; } bool ClassLinker::EnsureInitialized(Thread* self, Handle c, bool can_init_fields, bool can_init_parents) { DCHECK(c != nullptr); if (c->IsInitialized()) { // If we've seen an initialized but not visibly initialized class // many times, request visible initialization. if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) { // Thanks to the x86 memory model classes skip the initialized status. DCHECK(c->IsVisiblyInitialized()); } else if (UNLIKELY(!c->IsVisiblyInitialized())) { if (self->IncrementMakeVisiblyInitializedCounter()) { MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ false); } } return true; } // SubtypeCheckInfo::Initialized must happen-before any new-instance for that type. // // Ensure the bitstring is initialized before any of the class initialization // logic occurs. Once a class initializer starts running, objects can // escape into the heap and use the subtype checking code. // // Note: A class whose SubtypeCheckInfo is at least Initialized means it // can be used as a source for the IsSubClass check, and that all ancestors // of the class are Assigned (can be used as a target for IsSubClass check) // or Overflowed (can be used as a source for IsSubClass check). if (kBitstringSubtypeCheckEnabled) { MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); SubtypeCheck>::EnsureInitialized(c.Get()); // TODO: Avoid taking subtype_check_lock_ if SubtypeCheck is already initialized. } const bool success = InitializeClass(self, c, can_init_fields, can_init_parents); if (!success) { if (can_init_fields && can_init_parents) { CHECK(self->IsExceptionPending()) << c->PrettyClass(); } else { // There may or may not be an exception pending. If there is, clear it. // We propagate the exception only if we can initialize fields and parents. self->ClearException(); } } else { self->AssertNoPendingException(); } return success; } void ClassLinker::FixupTemporaryDeclaringClass(ObjPtr temp_class, ObjPtr new_class) { DCHECK_EQ(temp_class->NumInstanceFields(), 0u); for (ArtField& field : new_class->GetIFields()) { if (field.GetDeclaringClass() == temp_class) { field.SetDeclaringClass(new_class); } } DCHECK_EQ(temp_class->NumStaticFields(), 0u); for (ArtField& field : new_class->GetSFields()) { if (field.GetDeclaringClass() == temp_class) { field.SetDeclaringClass(new_class); } } DCHECK_EQ(temp_class->NumDirectMethods(), 0u); DCHECK_EQ(temp_class->NumVirtualMethods(), 0u); for (auto& method : new_class->GetMethods(image_pointer_size_)) { if (method.GetDeclaringClass() == temp_class) { method.SetDeclaringClass(new_class); } } // Make sure the remembered set and mod-union tables know that we updated some of the native // roots. WriteBarrier::ForEveryFieldWrite(new_class); } void ClassLinker::RegisterClassLoader(ObjPtr class_loader) { CHECK(class_loader->GetAllocator() == nullptr); CHECK(class_loader->GetClassTable() == nullptr); Thread* const self = Thread::Current(); ClassLoaderData data; data.weak_root = self->GetJniEnv()->GetVm()->AddWeakGlobalRef(self, class_loader); // Create and set the class table. data.class_table = new ClassTable; class_loader->SetClassTable(data.class_table); // Create and set the linear allocator. data.allocator = Runtime::Current()->CreateLinearAlloc(); class_loader->SetAllocator(data.allocator); // Add to the list so that we know to free the data later. class_loaders_.push_back(data); } ClassTable* ClassLinker::InsertClassTableForClassLoader(ObjPtr class_loader) { if (class_loader == nullptr) { return boot_class_table_.get(); } ClassTable* class_table = class_loader->GetClassTable(); if (class_table == nullptr) { RegisterClassLoader(class_loader); class_table = class_loader->GetClassTable(); DCHECK(class_table != nullptr); } return class_table; } ClassTable* ClassLinker::ClassTableForClassLoader(ObjPtr class_loader) { return class_loader == nullptr ? boot_class_table_.get() : class_loader->GetClassTable(); } bool ClassLinker::LinkClass(Thread* self, const char* descriptor, Handle klass, Handle> interfaces, MutableHandle* h_new_class_out) { CHECK_EQ(ClassStatus::kLoaded, klass->GetStatus()); if (!LinkSuperClass(klass)) { return false; } ArtMethod* imt_data[ImTable::kSize]; // If there are any new conflicts compared to super class. bool new_conflict = false; std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod()); if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) { return false; } if (!LinkInstanceFields(self, klass)) { return false; } size_t class_size; if (!LinkStaticFields(self, klass, &class_size)) { return false; } CreateReferenceInstanceOffsets(klass); CHECK_EQ(ClassStatus::kLoaded, klass->GetStatus()); ImTable* imt = nullptr; if (klass->ShouldHaveImt()) { // If there are any new conflicts compared to the super class we can not make a copy. There // can be cases where both will have a conflict method at the same slot without having the same // set of conflicts. In this case, we can not share the IMT since the conflict table slow path // will possibly create a table that is incorrect for either of the classes. // Same IMT with new_conflict does not happen very often. if (!new_conflict) { ImTable* super_imt = klass->FindSuperImt(image_pointer_size_); if (super_imt != nullptr) { bool imt_equals = true; for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) { imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]); } if (imt_equals) { imt = super_imt; } } } if (imt == nullptr) { LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); imt = reinterpret_cast( allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_), LinearAllocKind::kNoGCRoots)); if (imt == nullptr) { return false; } imt->Populate(imt_data, image_pointer_size_); } } if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) { // We don't need to retire this class as it has no embedded tables or it was created the // correct size during class linker initialization. CHECK_EQ(klass->GetClassSize(), class_size) << klass->PrettyDescriptor(); if (klass->ShouldHaveEmbeddedVTable()) { klass->PopulateEmbeddedVTable(image_pointer_size_); } if (klass->ShouldHaveImt()) { klass->SetImt(imt, image_pointer_size_); } // Update CHA info based on whether we override methods. // Have to do this before setting the class as resolved which allows // instantiation of klass. if (LIKELY(descriptor != nullptr) && cha_ != nullptr) { cha_->UpdateAfterLoadingOf(klass); } // This will notify waiters on klass that saw the not yet resolved // class in the class_table_ during EnsureResolved. mirror::Class::SetStatus(klass, ClassStatus::kResolved, self); h_new_class_out->Assign(klass.Get()); } else { CHECK(!klass->IsResolved()); // Retire the temporary class and create the correctly sized resolved class. StackHandleScope<1> hs(self); Handle h_new_class = hs.NewHandle(mirror::Class::CopyOf(klass, self, class_size, imt, image_pointer_size_)); // Set arrays to null since we don't want to have multiple classes with the same ArtField or // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC // may not see any references to the target space and clean the card for a class if another // class had the same array pointer. klass->SetMethodsPtrUnchecked(nullptr, 0, 0); klass->SetSFieldsPtrUnchecked(nullptr); klass->SetIFieldsPtrUnchecked(nullptr); if (UNLIKELY(h_new_class == nullptr)) { self->AssertPendingOOMException(); mirror::Class::SetStatus(klass, ClassStatus::kErrorUnresolved, self); return false; } CHECK_EQ(h_new_class->GetClassSize(), class_size); ObjectLock lock(self, h_new_class); FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get()); if (LIKELY(descriptor != nullptr)) { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); const ObjPtr class_loader = h_new_class.Get()->GetClassLoader(); ClassTable* const table = InsertClassTableForClassLoader(class_loader); const ObjPtr existing = table->UpdateClass(descriptor, h_new_class.Get(), ComputeModifiedUtf8Hash(descriptor)); if (class_loader != nullptr) { // We updated the class in the class table, perform the write barrier so that the GC knows // about the change. WriteBarrier::ForEveryFieldWrite(class_loader); } CHECK_EQ(existing, klass.Get()); if (log_new_roots_) { new_class_roots_.push_back(GcRoot(h_new_class.Get())); } } // Update CHA info based on whether we override methods. // Have to do this before setting the class as resolved which allows // instantiation of klass. if (LIKELY(descriptor != nullptr) && cha_ != nullptr) { cha_->UpdateAfterLoadingOf(h_new_class); } // This will notify waiters on temp class that saw the not yet resolved class in the // class_table_ during EnsureResolved. mirror::Class::SetStatus(klass, ClassStatus::kRetired, self); CHECK_EQ(h_new_class->GetStatus(), ClassStatus::kResolving); // This will notify waiters on new_class that saw the not yet resolved // class in the class_table_ during EnsureResolved. mirror::Class::SetStatus(h_new_class, ClassStatus::kResolved, self); // Return the new class. h_new_class_out->Assign(h_new_class.Get()); } return true; } bool ClassLinker::LoadSuperAndInterfaces(Handle klass, const DexFile& dex_file) { CHECK_EQ(ClassStatus::kIdx, klass->GetStatus()); const dex::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); dex::TypeIndex super_class_idx = class_def.superclass_idx_; if (super_class_idx.IsValid()) { // Check that a class does not inherit from itself directly. // // TODO: This is a cheap check to detect the straightforward case // of a class extending itself (b/28685551), but we should do a // proper cycle detection on loaded classes, to detect all cases // of class circularity errors (b/28830038). if (super_class_idx == class_def.class_idx_) { ThrowClassCircularityError(klass.Get(), "Class %s extends itself", klass->PrettyDescriptor().c_str()); return false; } ObjPtr super_class = ResolveType(super_class_idx, klass.Get()); if (super_class == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(super_class)) { ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible", super_class->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } CHECK(super_class->IsResolved()); klass->SetSuperClass(super_class); } const dex::TypeList* interfaces = dex_file.GetInterfacesList(class_def); if (interfaces != nullptr) { for (size_t i = 0; i < interfaces->Size(); i++) { dex::TypeIndex idx = interfaces->GetTypeItem(i).type_idx_; ObjPtr interface = ResolveType(idx, klass.Get()); if (interface == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(interface)) { // TODO: the RI seemed to ignore this in my testing. ThrowIllegalAccessError(klass.Get(), "Interface %s implemented by class %s is inaccessible", interface->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } } } // Mark the class as loaded. mirror::Class::SetStatus(klass, ClassStatus::kLoaded, nullptr); return true; } bool ClassLinker::LinkSuperClass(Handle klass) { CHECK(!klass->IsPrimitive()); ObjPtr super = klass->GetSuperClass(); ObjPtr object_class = GetClassRoot(this); if (klass.Get() == object_class) { if (super != nullptr) { ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass"); return false; } return true; } if (super == nullptr) { ThrowLinkageError(klass.Get(), "No superclass defined for class %s", klass->PrettyDescriptor().c_str()); return false; } // Verify if (klass->IsInterface() && super != object_class) { ThrowClassFormatError(klass.Get(), "Interfaces must have java.lang.Object as superclass"); return false; } if (super->IsFinal()) { ThrowVerifyError(klass.Get(), "Superclass %s of %s is declared final", super->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } if (super->IsInterface()) { ThrowIncompatibleClassChangeError(klass.Get(), "Superclass %s of %s is an interface", super->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } if (!klass->CanAccess(super)) { ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s", super->PrettyDescriptor().c_str(), klass->PrettyDescriptor().c_str()); return false; } if (!VerifyRecordClass(klass, super)) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Inherit kAccClassIsFinalizable from the superclass in case this // class doesn't override finalize. if (super->IsFinalizable()) { klass->SetFinalizable(); } // Inherit class loader flag form super class. if (super->IsClassLoaderClass()) { klass->SetClassLoaderClass(); } // Inherit reference flags (if any) from the superclass. uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference); if (reference_flags != 0) { CHECK_EQ(klass->GetClassFlags(), 0u); klass->SetClassFlags(klass->GetClassFlags() | reference_flags); } // Disallow custom direct subclasses of java.lang.ref.Reference. if (init_done_ && super == GetClassRoot(this)) { ThrowLinkageError(klass.Get(), "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed", klass->PrettyDescriptor().c_str()); return false; } if (kIsDebugBuild) { // Ensure super classes are fully resolved prior to resolving fields.. while (super != nullptr) { CHECK(super->IsResolved()); super = super->GetSuperClass(); } } return true; } // Comparator for name and signature of a method, used in finding overriding methods. Implementation // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex // caches in the implementation below. class MethodNameAndSignatureComparator final : public ValueObject { public: explicit MethodNameAndSignatureComparator(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) : dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())), name_view_() { DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); } ALWAYS_INLINE std::string_view GetNameView() { if (name_view_.empty()) { name_view_ = dex_file_->StringViewByIdx(mid_->name_idx_); } return name_view_; } bool HasSameNameAndSignature(ArtMethod* other) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!other->IsProxyMethod()) << other->PrettyMethod(); const DexFile* other_dex_file = other->GetDexFile(); const dex::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex()); if (dex_file_ == other_dex_file) { return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_; } return GetNameView() == other_dex_file->StringViewByIdx(other_mid.name_idx_) && dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid); } private: // Dex file for the method to compare against. const DexFile* const dex_file_; // MethodId for the method to compare against. const dex::MethodId* const mid_; // Lazily computed name from the dex file's strings. std::string_view name_view_; }; static ObjPtr GetImtOwner(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { ImTable* imt = klass->GetImt(kRuntimePointerSize); DCHECK(imt != nullptr); while (klass->HasSuperClass()) { ObjPtr super_class = klass->GetSuperClass(); if (super_class->ShouldHaveImt() && imt != super_class->GetImt(kRuntimePointerSize)) { // IMT not shared with the super class, return the current class. return klass; } klass = super_class; } return nullptr; } ArtMethod* ClassLinker::AddMethodToConflictTable(ObjPtr klass, ArtMethod* conflict_method, ArtMethod* interface_method, ArtMethod* method) { ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize); Runtime* const runtime = Runtime::Current(); // The IMT may be shared with a super class, in which case we need to use that // super class's `LinearAlloc`. The conflict itself should be limited to // methods at or higher up the chain of the IMT owner, otherwise class // linker would have created a different IMT. ObjPtr imt_owner = GetImtOwner(klass); DCHECK(imt_owner != nullptr); LinearAlloc* linear_alloc = GetAllocatorForClassLoader(imt_owner->GetClassLoader()); // Create a new entry if the existing one is the shared conflict method. ArtMethod* new_conflict_method = (conflict_method == runtime->GetImtConflictMethod()) ? runtime->CreateImtConflictMethod(linear_alloc) : conflict_method; // Allocate a new table. Note that we will leak this table at the next conflict, // but that's a tradeoff compared to making the table fixed size. void* data = linear_alloc->Alloc( Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table, image_pointer_size_), LinearAllocKind::kNoGCRoots); if (data == nullptr) { LOG(ERROR) << "Failed to allocate conflict table"; return conflict_method; } ImtConflictTable* new_table = new (data) ImtConflictTable(current_table, interface_method, method, image_pointer_size_); // Do a fence to ensure threads see the data in the table before it is assigned // to the conflict method. // Note that there is a race in the presence of multiple threads and we may leak // memory from the LinearAlloc, but that's a tradeoff compared to using // atomic operations. std::atomic_thread_fence(std::memory_order_release); new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); return new_conflict_method; } void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, ArtMethod* current_method, /*out*/bool* new_conflict, /*out*/ArtMethod** imt_ref) { // Place method in imt if entry is empty, place conflict otherwise. if (*imt_ref == unimplemented_method) { *imt_ref = current_method; } else if (!(*imt_ref)->IsRuntimeMethod()) { // If we are not a conflict and we have the same signature and name as the imt // entry, it must be that we overwrote a superclass vtable entry. // Note that we have checked IsRuntimeMethod, as there may be multiple different // conflict methods. MethodNameAndSignatureComparator imt_comparator( (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_)); if (imt_comparator.HasSameNameAndSignature( current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { *imt_ref = current_method; } else { *imt_ref = imt_conflict_method; *new_conflict = true; } } else { // Place the default conflict method. Note that there may be an existing conflict // method in the IMT, but it could be one tailored to the super class, with a // specific ImtConflictTable. *imt_ref = imt_conflict_method; *new_conflict = true; } } void ClassLinker::FillIMTAndConflictTables(ObjPtr klass) { DCHECK(klass->ShouldHaveImt()) << klass->PrettyClass(); DCHECK(!klass->IsTemp()) << klass->PrettyClass(); ArtMethod* imt_data[ImTable::kSize]; Runtime* const runtime = Runtime::Current(); ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); ArtMethod* const conflict_method = runtime->GetImtConflictMethod(); std::fill_n(imt_data, arraysize(imt_data), unimplemented_method); if (klass->GetIfTable() != nullptr) { bool new_conflict = false; FillIMTFromIfTable(klass->GetIfTable(), unimplemented_method, conflict_method, klass, /*create_conflict_tables=*/true, /*ignore_copied_methods=*/false, &new_conflict, &imt_data[0]); } // Compare the IMT with the super class including the conflict methods. If they are equivalent, // we can just use the same pointer. ImTable* imt = nullptr; ImTable* super_imt = klass->FindSuperImt(image_pointer_size_); if (super_imt != nullptr) { bool same = true; for (size_t i = 0; same && i < ImTable::kSize; ++i) { ArtMethod* method = imt_data[i]; ArtMethod* super_method = super_imt->Get(i, image_pointer_size_); if (method != super_method) { bool is_conflict_table = method->IsRuntimeMethod() && method != unimplemented_method && method != conflict_method; // Verify conflict contents. bool super_conflict_table = super_method->IsRuntimeMethod() && super_method != unimplemented_method && super_method != conflict_method; if (!is_conflict_table || !super_conflict_table) { same = false; } else { ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_); ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_); same = same && table1->Equals(table2, image_pointer_size_); } } } if (same) { imt = super_imt; } } if (imt == nullptr) { imt = klass->GetImt(image_pointer_size_); DCHECK(imt != nullptr); DCHECK_NE(imt, super_imt); imt->Populate(imt_data, image_pointer_size_); } else { klass->SetImt(imt, image_pointer_size_); } } ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc, PointerSize image_pointer_size) { void* data = linear_alloc->Alloc(Thread::Current(), ImtConflictTable::ComputeSize(count, image_pointer_size), LinearAllocKind::kNoGCRoots); return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr; } ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) { return CreateImtConflictTable(count, linear_alloc, image_pointer_size_); } void ClassLinker::FillIMTFromIfTable(ObjPtr if_table, ArtMethod* unimplemented_method, ArtMethod* imt_conflict_method, ObjPtr klass, bool create_conflict_tables, bool ignore_copied_methods, /*out*/bool* new_conflict, /*out*/ArtMethod** imt) { uint32_t conflict_counts[ImTable::kSize] = {}; for (size_t i = 0, length = if_table->Count(); i < length; ++i) { ObjPtr interface = if_table->GetInterface(i); const size_t num_virtuals = interface->NumVirtualMethods(); const size_t method_array_count = if_table->GetMethodArrayCount(i); // Virtual methods can be larger than the if table methods if there are default methods. DCHECK_GE(num_virtuals, method_array_count); if (kIsDebugBuild) { if (klass->IsInterface()) { DCHECK_EQ(method_array_count, 0u); } else { DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count); } } if (method_array_count == 0) { continue; } ObjPtr method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < method_array_count; ++j) { ArtMethod* implementation_method = method_array->GetElementPtrSize(j, image_pointer_size_); if (ignore_copied_methods && implementation_method->IsCopied()) { continue; } DCHECK(implementation_method != nullptr); // Miranda methods cannot be used to implement an interface method, but they are safe to put // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods // or interface methods in the IMT here they will not create extra conflicts since we compare // names and signatures in SetIMTRef. ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); const uint32_t imt_index = interface_method->GetImtIndex(); // There is only any conflicts if all of the interface methods for an IMT slot don't have // the same implementation method, keep track of this to avoid creating a conflict table in // this case. // Conflict table size for each IMT slot. ++conflict_counts[imt_index]; SetIMTRef(unimplemented_method, imt_conflict_method, implementation_method, /*out*/new_conflict, /*out*/&imt[imt_index]); } } if (create_conflict_tables) { // Create the conflict tables. LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); for (size_t i = 0; i < ImTable::kSize; ++i) { size_t conflicts = conflict_counts[i]; if (imt[i] == imt_conflict_method) { ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc); if (new_table != nullptr) { ArtMethod* new_conflict_method = Runtime::Current()->CreateImtConflictMethod(linear_alloc); new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); imt[i] = new_conflict_method; } else { LOG(ERROR) << "Failed to allocate conflict table"; imt[i] = imt_conflict_method; } } else { DCHECK_NE(imt[i], imt_conflict_method); } } for (size_t i = 0, length = if_table->Count(); i < length; ++i) { ObjPtr interface = if_table->GetInterface(i); const size_t method_array_count = if_table->GetMethodArrayCount(i); // Virtual methods can be larger than the if table methods if there are default methods. if (method_array_count == 0) { continue; } ObjPtr method_array = if_table->GetMethodArray(i); for (size_t j = 0; j < method_array_count; ++j) { ArtMethod* implementation_method = method_array->GetElementPtrSize(j, image_pointer_size_); if (ignore_copied_methods && implementation_method->IsCopied()) { continue; } DCHECK(implementation_method != nullptr); ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); const uint32_t imt_index = interface_method->GetImtIndex(); if (!imt[imt_index]->IsRuntimeMethod() || imt[imt_index] == unimplemented_method || imt[imt_index] == imt_conflict_method) { continue; } ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_); const size_t num_entries = table->NumEntries(image_pointer_size_); table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method); table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method); } } } } namespace { // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes' // set. static bool NotSubinterfaceOfAny( const ScopedArenaHashSet& classes, ObjPtr val) REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(val != nullptr); for (ObjPtr c : classes) { if (val->IsAssignableFrom(c)) { return false; } } return true; } // We record new interfaces by the index of the direct interface and the index in the // direct interface's `IfTable`, or `dex::kDexNoIndex` if it's the direct interface itself. struct NewInterfaceReference { uint32_t direct_interface_index; uint32_t direct_interface_iftable_index; }; class ProxyInterfacesAccessor { public: explicit ProxyInterfacesAccessor(Handle> interfaces) REQUIRES_SHARED(Locks::mutator_lock_) : interfaces_(interfaces) {} size_t GetLength() REQUIRES_SHARED(Locks::mutator_lock_) { return interfaces_->GetLength(); } ObjPtr GetInterface(size_t index) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_LT(index, GetLength()); return interfaces_->GetWithoutChecks(index); } private: Handle> interfaces_; }; class NonProxyInterfacesAccessor { public: NonProxyInterfacesAccessor(ClassLinker* class_linker, Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) : interfaces_(klass->GetInterfaceTypeList()), class_linker_(class_linker), klass_(klass) { DCHECK(!klass->IsProxyClass()); } size_t GetLength() REQUIRES_SHARED(Locks::mutator_lock_) { return (interfaces_ != nullptr) ? interfaces_->Size() : 0u; } ObjPtr GetInterface(size_t index) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_LT(index, GetLength()); dex::TypeIndex type_index = interfaces_->GetTypeItem(index).type_idx_; return class_linker_->LookupResolvedType(type_index, klass_.Get()); } private: const dex::TypeList* interfaces_; ClassLinker* class_linker_; Handle klass_; }; // Finds new interfaces to add to the interface table in addition to superclass interfaces. // // Interfaces in the interface table must satisfy the following constraint: // all I, J: Interface | I <: J implies J precedes I // (note A <: B means that A is a subtype of B). We order this backwards so that we do not need // to reorder superclass interfaces when new interfaces are added in subclass's interface tables. // // This function returns a list of references for all interfaces in the transitive // closure of the direct interfaces that are not in the superclass interfaces. // The entries in the list are ordered to satisfy the interface table ordering // constraint and therefore the interface table formed by appending them to the // superclass interface table shall also satisfy that constraint. template ALWAYS_INLINE static ArrayRef FindNewIfTableInterfaces( ObjPtr super_iftable, size_t super_ifcount, ScopedArenaAllocator* allocator, InterfaceAccessor&& interfaces, ArrayRef initial_storage, /*out*/ScopedArenaVector* supplemental_storage) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension nts(__FUNCTION__); // This is the set of all classes already in the iftable. Used to make checking // if a class has already been added quicker. constexpr size_t kBufferSize = 32; // 256 bytes on 64-bit architectures. mirror::Class* buffer[kBufferSize]; ScopedArenaHashSet classes_in_iftable(buffer, kBufferSize, allocator->Adapter()); // The first super_ifcount elements are from the superclass. We note that they are already added. for (size_t i = 0; i < super_ifcount; i++) { ObjPtr iface = super_iftable->GetInterface(i); DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering."; classes_in_iftable.Put(iface.Ptr()); } ArrayRef current_storage = initial_storage; DCHECK_NE(current_storage.size(), 0u); size_t num_new_interfaces = 0u; auto insert_reference = [&](uint32_t direct_interface_index, uint32_t direct_interface_iface_index) { if (UNLIKELY(num_new_interfaces == current_storage.size())) { bool copy = current_storage.data() != supplemental_storage->data(); supplemental_storage->resize(2u * num_new_interfaces); if (copy) { std::copy_n(current_storage.data(), num_new_interfaces, supplemental_storage->data()); } current_storage = ArrayRef(*supplemental_storage); } current_storage[num_new_interfaces] = {direct_interface_index, direct_interface_iface_index}; ++num_new_interfaces; }; for (size_t i = 0, num_interfaces = interfaces.GetLength(); i != num_interfaces; ++i) { ObjPtr interface = interfaces.GetInterface(i); // Let us call the first filled_ifcount elements of iftable the current-iface-list. // At this point in the loop current-iface-list has the invariant that: // for every pair of interfaces I,J within it: // if index_of(I) < index_of(J) then I is not a subtype of J // If we have already seen this element then all of its super-interfaces must already be in the // current-iface-list so we can skip adding it. if (classes_in_iftable.find(interface.Ptr()) == classes_in_iftable.end()) { // We haven't seen this interface so add all of its super-interfaces onto the // current-iface-list, skipping those already on it. int32_t ifcount = interface->GetIfTableCount(); for (int32_t j = 0; j < ifcount; j++) { ObjPtr super_interface = interface->GetIfTable()->GetInterface(j); if (classes_in_iftable.find(super_interface.Ptr()) == classes_in_iftable.end()) { DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering."; classes_in_iftable.Put(super_interface.Ptr()); insert_reference(i, j); } } // Add this interface reference after all of its super-interfaces. DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering"; classes_in_iftable.Put(interface.Ptr()); insert_reference(i, dex::kDexNoIndex); } else if (kIsDebugBuild) { // Check all super-interfaces are already in the list. int32_t ifcount = interface->GetIfTableCount(); for (int32_t j = 0; j < ifcount; j++) { ObjPtr super_interface = interface->GetIfTable()->GetInterface(j); DCHECK(classes_in_iftable.find(super_interface.Ptr()) != classes_in_iftable.end()) << "Iftable does not contain " << mirror::Class::PrettyClass(super_interface) << ", a superinterface of " << interface->PrettyClass(); } } } return ArrayRef(current_storage.data(), num_new_interfaces); } template static ObjPtr SetupInterfaceLookupTable( Thread* self, Handle klass, ScopedArenaAllocator* allocator, InterfaceAccessor&& interfaces) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(klass->HasSuperClass()); ObjPtr super_iftable = klass->GetSuperClass()->GetIfTable(); DCHECK(super_iftable != nullptr); const size_t num_interfaces = interfaces.GetLength(); // If there are no new interfaces, return the interface table from superclass. // If any implementation methods are overridden, we shall copy the table and // the method arrays that contain any differences (copy-on-write). if (num_interfaces == 0) { return super_iftable; } // Check that every class being implemented is an interface. for (size_t i = 0; i != num_interfaces; ++i) { ObjPtr interface = interfaces.GetInterface(i); DCHECK(interface != nullptr); if (UNLIKELY(!interface->IsInterface())) { ThrowIncompatibleClassChangeError(klass.Get(), "Class %s implements non-interface class %s", klass->PrettyDescriptor().c_str(), interface->PrettyDescriptor().c_str()); return nullptr; } } static constexpr size_t kMaxStackReferences = 16; NewInterfaceReference initial_storage[kMaxStackReferences]; ScopedArenaVector supplemental_storage(allocator->Adapter()); const size_t super_ifcount = super_iftable->Count(); ArrayRef new_interface_references = FindNewIfTableInterfaces( super_iftable, super_ifcount, allocator, interfaces, ArrayRef(initial_storage), &supplemental_storage); // If all declared interfaces were already present in superclass interface table, // return the interface table from superclass. See above. if (UNLIKELY(new_interface_references.empty())) { return super_iftable; } // Create the interface table. size_t ifcount = super_ifcount + new_interface_references.size(); ObjPtr iftable = AllocIfTable(self, ifcount, super_iftable->GetClass()); if (UNLIKELY(iftable == nullptr)) { self->AssertPendingOOMException(); return nullptr; } // Fill in table with superclass's iftable. if (super_ifcount != 0) { // Reload `super_iftable` as it may have been clobbered by the allocation. super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i != super_ifcount; i++) { ObjPtr super_interface = super_iftable->GetInterface(i); DCHECK(super_interface != nullptr); iftable->SetInterface(i, super_interface); ObjPtr method_array = super_iftable->GetMethodArrayOrNull(i); if (method_array != nullptr) { iftable->SetMethodArray(i, method_array); } } } // Fill in the table with additional interfaces. size_t current_index = super_ifcount; for (NewInterfaceReference ref : new_interface_references) { ObjPtr direct_interface = interfaces.GetInterface(ref.direct_interface_index); ObjPtr new_interface = (ref.direct_interface_iftable_index != dex::kDexNoIndex) ? direct_interface->GetIfTable()->GetInterface(ref.direct_interface_iftable_index) : direct_interface; iftable->SetInterface(current_index, new_interface); ++current_index; } DCHECK_EQ(current_index, ifcount); if (kIsDebugBuild) { // Check that the iftable is ordered correctly. for (size_t i = 0; i < ifcount; i++) { ObjPtr if_a = iftable->GetInterface(i); for (size_t j = i + 1; j < ifcount; j++) { ObjPtr if_b = iftable->GetInterface(j); // !(if_a <: if_b) CHECK(!if_b->IsAssignableFrom(if_a)) << "Bad interface order: " << mirror::Class::PrettyClass(if_a) << " (index " << i << ") extends " << if_b->PrettyClass() << " (index " << j << ") and so should be after it in the " << "interface list."; } } } return iftable; } // Check that all vtable entries are present in this class's virtuals or are the same as a // superclasses vtable entry. void CheckClassOwnsVTableEntries(Thread* self, Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<2> hs(self); Handle check_vtable(hs.NewHandle(klass->GetVTableDuringLinking())); ObjPtr super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr; Handle superclass(hs.NewHandle(super_temp)); int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0; for (int32_t i = 0; i < check_vtable->GetLength(); ++i) { ArtMethod* m = check_vtable->GetElementPtrSize(i, pointer_size); CHECK(m != nullptr); if (m->GetMethodIndexDuringLinking() != i) { LOG(WARNING) << m->PrettyMethod() << " has an unexpected method index for its spot in the vtable for class" << klass->PrettyClass(); } ArraySlice virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size); auto is_same_method = [m] (const ArtMethod& meth) { return &meth == m; }; if (!((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) || std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())) { LOG(WARNING) << m->PrettyMethod() << " does not seem to be owned by current class " << klass->PrettyClass() << " or any of its superclasses!"; } } } // Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a // method is overridden in a subclass. template void CheckVTableHasNoDuplicates(Thread* self, Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); Handle vtable(hs.NewHandle(klass->GetVTableDuringLinking())); int32_t num_entries = vtable->GetLength(); // Observations: // * The older implementation was O(n^2) and got too expensive for apps with larger classes. // * Many classes do not override Object functions (e.g., equals/hashCode/toString). Thus, // for many classes outside of libcore a cross-dexfile check has to be run anyways. // * In the cross-dexfile case, with the O(n^2), in the best case O(n) cross checks would have // to be done. It is thus OK in a single-pass algorithm to read all data, anyways. // * The single-pass algorithm will trade memory for speed, but that is OK. CHECK_GT(num_entries, 0); auto log_fn = [&vtable, &klass](int32_t i, int32_t j) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m1 = vtable->GetElementPtrSize(i); ArtMethod* m2 = vtable->GetElementPtrSize(j); LOG(WARNING) << "vtable entries " << i << " and " << j << " are identical for " << klass->PrettyClass() << " in method " << m1->PrettyMethod() << " (0x" << std::hex << reinterpret_cast(m2) << ") and " << m2->PrettyMethod() << " (0x" << std::hex << reinterpret_cast(m2) << ")"; }; struct BaseHashType { static size_t HashCombine(size_t seed, size_t val) { return seed ^ (val + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } }; // Check assuming all entries come from the same dex file. { // Find the first interesting method and its dex file. int32_t start = 0; for (; start < num_entries; ++start) { ArtMethod* vtable_entry = vtable->GetElementPtrSize(start); // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member // maybe). if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), vtable_entry->GetAccessFlags())) { continue; } break; } if (start == num_entries) { return; } const DexFile* dex_file = vtable->GetElementPtrSize(start)-> GetInterfaceMethodIfProxy(kPointerSize)->GetDexFile(); // Helper function to avoid logging if we have to run the cross-file checks. auto check_fn = [&](bool log_warn) REQUIRES_SHARED(Locks::mutator_lock_) { // Use a map to store seen entries, as the storage space is too large for a bitvector. using PairType = std::pair; struct PairHash : BaseHashType { size_t operator()(const PairType& key) const { return BaseHashType::HashCombine(BaseHashType::HashCombine(0, key.first), key.second); } }; HashMap, PairHash> seen; seen.reserve(2 * num_entries); bool need_slow_path = false; bool found_dup = false; for (int i = start; i < num_entries; ++i) { // Can use Unchecked here as the start loop already ensured that the arrays are correct // wrt/ kPointerSize. ArtMethod* vtable_entry = vtable->GetElementPtrSizeUnchecked(i); if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), vtable_entry->GetAccessFlags())) { continue; } ArtMethod* m = vtable_entry->GetInterfaceMethodIfProxy(kPointerSize); if (dex_file != m->GetDexFile()) { need_slow_path = true; break; } const dex::MethodId* m_mid = &dex_file->GetMethodId(m->GetDexMethodIndex()); PairType pair = std::make_pair(m_mid->name_idx_.index_, m_mid->proto_idx_.index_); auto it = seen.find(pair); if (it != seen.end()) { found_dup = true; if (log_warn) { log_fn(it->second, i); } } else { seen.insert(std::make_pair(pair, i)); } } return std::make_pair(need_slow_path, found_dup); }; std::pair result = check_fn(/* log_warn= */ false); if (!result.first) { if (result.second) { check_fn(/* log_warn= */ true); } return; } } // Need to check across dex files. struct Entry { size_t cached_hash = 0; uint32_t name_len = 0; const char* name = nullptr; Signature signature = Signature::NoSignature(); Entry() = default; Entry(const Entry& other) = default; Entry& operator=(const Entry& other) = default; Entry(const DexFile* dex_file, const dex::MethodId& mid) : name_len(0), // Explicit to enforce ordering with -Werror,-Wreorder-ctor. // This call writes `name_len` and it is therefore necessary that the // initializer for `name_len` comes before it, otherwise the value // from the call would be overwritten by that initializer. name(dex_file->StringDataAndUtf16LengthByIdx(mid.name_idx_, &name_len)), signature(dex_file->GetMethodSignature(mid)) { // The `name_len` has been initialized to the UTF16 length. Calculate length in bytes. if (name[name_len] != 0) { name_len += strlen(name + name_len); } } bool operator==(const Entry& other) const { return name_len == other.name_len && memcmp(name, other.name, name_len) == 0 && signature == other.signature; } }; struct EntryHash { size_t operator()(const Entry& key) const { return key.cached_hash; } }; HashMap, EntryHash> map; for (int32_t i = 0; i < num_entries; ++i) { // Can use Unchecked here as the first loop already ensured that the arrays are correct // wrt/ kPointerSize. ArtMethod* vtable_entry = vtable->GetElementPtrSizeUnchecked(i); // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member // maybe). if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), vtable_entry->GetAccessFlags())) { continue; } ArtMethod* m = vtable_entry->GetInterfaceMethodIfProxy(kPointerSize); const DexFile* dex_file = m->GetDexFile(); const dex::MethodId& mid = dex_file->GetMethodId(m->GetDexMethodIndex()); Entry e(dex_file, mid); size_t string_hash = std::hash()(std::string_view(e.name, e.name_len)); size_t sig_hash = std::hash()(e.signature.ToString()); e.cached_hash = BaseHashType::HashCombine(BaseHashType::HashCombine(0u, string_hash), sig_hash); auto it = map.find(e); if (it != map.end()) { log_fn(it->second, i); } else { map.insert(std::make_pair(e, i)); } } } void CheckVTableHasNoDuplicates(Thread* self, Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { switch (pointer_size) { case PointerSize::k64: CheckVTableHasNoDuplicates(self, klass); break; case PointerSize::k32: CheckVTableHasNoDuplicates(self, klass); break; } } static void CheckVTable(Thread* self, Handle klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { CheckClassOwnsVTableEntries(self, klass, pointer_size); CheckVTableHasNoDuplicates(self, klass, pointer_size); } } // namespace template class ClassLinker::LinkMethodsHelper { public: LinkMethodsHelper(ClassLinker* class_linker, Handle klass, Thread* self, Runtime* runtime) : class_linker_(class_linker), klass_(klass), self_(self), runtime_(runtime), stack_(runtime->GetArenaPool()), allocator_(&stack_), copied_method_records_(copied_method_records_initial_buffer_, kCopiedMethodRecordInitialBufferSize, allocator_.Adapter()), num_new_copied_methods_(0u) { } // Links the virtual and interface methods for the given class. // // Arguments: // * self - The current thread. // * klass - class, whose vtable will be filled in. // * interfaces - implemented interfaces for a proxy class, otherwise null. // * out_new_conflict - whether there is a new conflict compared to the superclass. // * out_imt - interface method table to fill. bool LinkMethods( Thread* self, Handle klass, Handle> interfaces, bool* out_new_conflict, ArtMethod** out_imt) REQUIRES_SHARED(Locks::mutator_lock_); private: // Allocate a pointer array. static ObjPtr AllocPointerArray(Thread* self, size_t length) REQUIRES_SHARED(Locks::mutator_lock_); // Allocate method arrays for interfaces. bool AllocateIfTableMethodArrays(Thread* self, Handle klass, Handle iftable) REQUIRES_SHARED(Locks::mutator_lock_); // Assign vtable indexes to declared virtual methods for a non-interface class other // than `java.lang.Object`. Returns the number of vtable entries on success, 0 on failure. // This function also assigns vtable indexes for interface methods in new interfaces // and records data for copied methods which shall be referenced by the vtable. size_t AssignVTableIndexes(ObjPtr klass, ObjPtr super_class, bool is_super_abstract, size_t num_virtual_methods, ObjPtr iftable) REQUIRES_SHARED(Locks::mutator_lock_); bool FindCopiedMethodsForInterface(ObjPtr klass, size_t num_virtual_methods, ObjPtr iftable) REQUIRES_SHARED(Locks::mutator_lock_); bool LinkJavaLangObjectMethods(Thread* self, Handle klass) REQUIRES_SHARED(Locks::mutator_lock_) COLD_ATTR; void ReallocMethods(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_); bool FinalizeIfTable(Handle klass, MutableHandle iftable, Handle vtable, bool is_klass_abstract, bool is_super_abstract, bool* out_new_conflict, ArtMethod** out_imt) REQUIRES_SHARED(Locks::mutator_lock_); void ClobberOldMethods(LengthPrefixedArray* old_methods, LengthPrefixedArray* methods) { if (kIsDebugBuild && old_methods != nullptr) { CHECK(methods != nullptr); // Put some random garbage in old methods to help find stale pointers. if (methods != old_methods) { // Need to make sure the GC is not running since it could be scanning the methods we are // about to overwrite. ScopedThreadStateChange tsc(self_, ThreadState::kSuspended); gc::ScopedGCCriticalSection gcs(self_, gc::kGcCauseClassLinker, gc::kCollectorTypeClassLinker); const size_t old_size = LengthPrefixedArray::ComputeSize(old_methods->size(), kMethodSize, kMethodAlignment); memset(old_methods, 0xFEu, old_size); // Set size to 0 to avoid visiting declaring classes. if (gUseUserfaultfd) { old_methods->SetSize(0); } } } } NO_INLINE void LogNewVirtuals(LengthPrefixedArray* methods) const REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr klass = klass_.Get(); size_t num_new_copied_methods = num_new_copied_methods_; size_t old_method_count = methods->size() - num_new_copied_methods; size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength(); size_t num_miranda_methods = 0u; size_t num_overriding_default_methods = 0u; size_t num_default_methods = 0u; size_t num_overriding_default_conflict_methods = 0u; size_t num_default_conflict_methods = 0u; for (size_t i = 0; i != num_new_copied_methods; ++i) { ArtMethod& m = methods->At(old_method_count + i, kMethodSize, kMethodAlignment); if (m.IsDefault()) { if (m.GetMethodIndexDuringLinking() < super_vtable_length) { ++num_overriding_default_methods; } else { ++num_default_methods; } } else if (m.IsDefaultConflicting()) { if (m.GetMethodIndexDuringLinking() < super_vtable_length) { ++num_overriding_default_conflict_methods; } else { ++num_default_conflict_methods; } } else { DCHECK(m.IsMiranda()); ++num_miranda_methods; } } VLOG(class_linker) << klass->PrettyClass() << ": miranda_methods=" << num_miranda_methods << " default_methods=" << num_default_methods << " overriding_default_methods=" << num_overriding_default_methods << " default_conflict_methods=" << num_default_conflict_methods << " overriding_default_conflict_methods=" << num_overriding_default_conflict_methods; } class MethodIndexEmptyFn { public: void MakeEmpty(uint32_t& item) const { item = dex::kDexNoIndex; } bool IsEmpty(const uint32_t& item) const { return item == dex::kDexNoIndex; } }; class VTableIndexCheckerDebug { protected: explicit VTableIndexCheckerDebug(size_t vtable_length) : vtable_length_(vtable_length) {} void CheckIndex(uint32_t index) const { CHECK_LT(index, vtable_length_); } private: uint32_t vtable_length_; }; class VTableIndexCheckerRelease { protected: explicit VTableIndexCheckerRelease(size_t vtable_length ATTRIBUTE_UNUSED) {} void CheckIndex(uint32_t index ATTRIBUTE_UNUSED) const {} }; using VTableIndexChecker = std::conditional_t; class VTableAccessor : private VTableIndexChecker { public: VTableAccessor(uint8_t* raw_vtable, size_t vtable_length) REQUIRES_SHARED(Locks::mutator_lock_) : VTableIndexChecker(vtable_length), raw_vtable_(raw_vtable) {} ArtMethod* GetVTableEntry(uint32_t index) const REQUIRES_SHARED(Locks::mutator_lock_) { this->CheckIndex(index); uint8_t* entry = raw_vtable_ + static_cast(kPointerSize) * index; if (kPointerSize == PointerSize::k64) { return reinterpret_cast64(*reinterpret_cast(entry)); } else { return reinterpret_cast32(*reinterpret_cast(entry)); } } private: uint8_t* raw_vtable_; }; class VTableSignatureHash { public: explicit VTableSignatureHash(VTableAccessor accessor) REQUIRES_SHARED(Locks::mutator_lock_) : accessor_(accessor) {} // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. size_t operator()(ArtMethod* method) const NO_THREAD_SAFETY_ANALYSIS { return ComputeMethodHash(method); } // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. size_t operator()(uint32_t index) const NO_THREAD_SAFETY_ANALYSIS { return ComputeMethodHash(accessor_.GetVTableEntry(index)); } private: VTableAccessor accessor_; }; class VTableSignatureEqual { public: explicit VTableSignatureEqual(VTableAccessor accessor) REQUIRES_SHARED(Locks::mutator_lock_) : accessor_(accessor) {} // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. bool operator()(uint32_t lhs_index, ArtMethod* rhs) const NO_THREAD_SAFETY_ANALYSIS { return MethodSignatureEquals(accessor_.GetVTableEntry(lhs_index), rhs); } // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. bool operator()(uint32_t lhs_index, uint32_t rhs_index) const NO_THREAD_SAFETY_ANALYSIS { return (*this)(lhs_index, accessor_.GetVTableEntry(rhs_index)); } private: VTableAccessor accessor_; }; using VTableSignatureSet = ScopedArenaHashSet; class DeclaredVirtualSignatureHash { public: explicit DeclaredVirtualSignatureHash(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) : klass_(klass) {} // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. size_t operator()(ArtMethod* method) const NO_THREAD_SAFETY_ANALYSIS { return ComputeMethodHash(method); } // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. size_t operator()(uint32_t index) const NO_THREAD_SAFETY_ANALYSIS { DCHECK_LT(index, klass_->NumDeclaredVirtualMethods()); ArtMethod* method = klass_->GetVirtualMethodDuringLinking(index, kPointerSize); return ComputeMethodHash(method->GetInterfaceMethodIfProxy(kPointerSize)); } private: ObjPtr klass_; }; class DeclaredVirtualSignatureEqual { public: explicit DeclaredVirtualSignatureEqual(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) : klass_(klass) {} // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. bool operator()(uint32_t lhs_index, ArtMethod* rhs) const NO_THREAD_SAFETY_ANALYSIS { DCHECK_LT(lhs_index, klass_->NumDeclaredVirtualMethods()); ArtMethod* lhs = klass_->GetVirtualMethodDuringLinking(lhs_index, kPointerSize); return MethodSignatureEquals(lhs->GetInterfaceMethodIfProxy(kPointerSize), rhs); } // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. bool operator()(uint32_t lhs_index, uint32_t rhs_index) const NO_THREAD_SAFETY_ANALYSIS { DCHECK_LT(lhs_index, klass_->NumDeclaredVirtualMethods()); DCHECK_LT(rhs_index, klass_->NumDeclaredVirtualMethods()); return lhs_index == rhs_index; } private: ObjPtr klass_; }; using DeclaredVirtualSignatureSet = ScopedArenaHashSet; // Helper class to keep records for determining the correct copied method to create. class CopiedMethodRecord { public: enum class State : uint32_t { // Note: The `*Single` values are used when we know that there is only one interface // method with the given signature that's not masked; that method is the main method. // We use this knowledge for faster masking check, otherwise we need to search for // a masking method through methods of all interfaces that could potentially mask it. kAbstractSingle, kDefaultSingle, kAbstract, kDefault, kDefaultConflict, kUseSuperMethod, }; CopiedMethodRecord() : main_method_(nullptr), method_index_(0u), state_(State::kAbstractSingle) {} CopiedMethodRecord(ArtMethod* main_method, size_t vtable_index) : main_method_(main_method), method_index_(vtable_index), state_(State::kAbstractSingle) {} // Set main method. The new main method must be more specific implementation. void SetMainMethod(ArtMethod* main_method) { DCHECK(main_method_ != nullptr); main_method_ = main_method; } // The main method is the first encountered default method if any, // otherwise the first encountered abstract method. ArtMethod* GetMainMethod() const { return main_method_; } void SetMethodIndex(size_t method_index) { DCHECK_NE(method_index, dex::kDexNoIndex); method_index_ = method_index; } size_t GetMethodIndex() const { DCHECK_NE(method_index_, dex::kDexNoIndex); return method_index_; } void SetState(State state) { state_ = state; } State GetState() const { return state_; } ALWAYS_INLINE void UpdateStateForInterface(ObjPtr iface, ArtMethod* interface_method, ObjPtr iftable, size_t ifcount, size_t index) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(ifcount, iftable->Count()); DCHECK_LT(index, ifcount); DCHECK(iface == interface_method->GetDeclaringClass()); DCHECK(iface == iftable->GetInterface(index)); DCHECK(interface_method->IsDefault()); if (GetState() != State::kDefaultConflict) { DCHECK(GetState() == State::kDefault); // We do not record all overriding methods, so we need to walk over all // interfaces that could mask the `interface_method`. if (ContainsOverridingMethodOf(iftable, index + 1, ifcount, iface, interface_method)) { return; // Found an overriding method that masks `interface_method`. } // We have a new default method that's not masked by any other method. SetState(State::kDefaultConflict); } } ALWAYS_INLINE void UpdateState(ObjPtr iface, ArtMethod* interface_method, size_t vtable_index, ObjPtr iftable, size_t ifcount, size_t index) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(ifcount, iftable->Count()); DCHECK_LT(index, ifcount); if (kIsDebugBuild) { if (interface_method->IsCopied()) { // Called from `FinalizeState()` for a default method from superclass. // The `index` points to the last interface inherited from the superclass // as we need to search only the new interfaces for masking methods. DCHECK(interface_method->IsDefault()); } else { DCHECK(iface == interface_method->GetDeclaringClass()); DCHECK(iface == iftable->GetInterface(index)); } } DCHECK_EQ(vtable_index, method_index_); auto slow_is_masked = [=]() REQUIRES_SHARED(Locks::mutator_lock_) { return ContainsImplementingMethod(iftable, index + 1, ifcount, iface, vtable_index); }; UpdateStateImpl(iface, interface_method, slow_is_masked); } ALWAYS_INLINE void FinalizeState(ArtMethod* super_method, size_t vtable_index, ObjPtr iftable, size_t ifcount, ObjPtr super_iftable, size_t super_ifcount) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(super_method->IsCopied()); DCHECK_EQ(vtable_index, method_index_); DCHECK_EQ(vtable_index, super_method->GetMethodIndex()); DCHECK_NE(super_ifcount, 0u); if (super_method->IsDefault()) { if (UNLIKELY(super_method->IsDefaultConflicting())) { // Some of the default methods that contributed to the conflict in the superclass // may be masked by new interfaces. Walk over all the interfaces and update state // as long as the current state is not `kDefaultConflict`. size_t i = super_ifcount; while (GetState() != State::kDefaultConflict && i != 0u) { --i; ObjPtr iface = iftable->GetInterface(i); DCHECK(iface == super_iftable->GetInterface(i)); auto [found, index] = MethodArrayContains(super_iftable->GetMethodArrayOrNull(i), super_method); if (found) { ArtMethod* interface_method = iface->GetVirtualMethod(index, kPointerSize); auto slow_is_masked = [=]() REQUIRES_SHARED(Locks::mutator_lock_) { // Note: The `iftable` has method arrays in range [super_ifcount, ifcount) filled // with vtable indexes but the range [0, super_ifcount) is empty, so we need to // use the `super_iftable` filled with implementation methods for that range. return ContainsImplementingMethod( super_iftable, i + 1u, super_ifcount, iface, super_method) || ContainsImplementingMethod( iftable, super_ifcount, ifcount, iface, vtable_index); }; UpdateStateImpl(iface, interface_method, slow_is_masked); } } if (GetState() == State::kDefaultConflict) { SetState(State::kUseSuperMethod); } } else { // There was exactly one default method in superclass interfaces that was // not masked by subinterfaces. Use `UpdateState()` to process it and pass // `super_ifcount - 1` as index for checking if it's been masked by new interfaces. ObjPtr iface = super_method->GetDeclaringClass(); UpdateState( iface, super_method, vtable_index, iftable, ifcount, /*index=*/ super_ifcount - 1u); if (GetMainMethod() == super_method) { DCHECK(GetState() == State::kDefault) << enum_cast(GetState()); SetState(State::kUseSuperMethod); } } } else { DCHECK(super_method->IsMiranda()); // Any default methods with this signature in superclass interfaces have been // masked by subinterfaces. Check if we can reuse the miranda method. if (GetState() == State::kAbstractSingle || GetState() == State::kAbstract) { SetState(State::kUseSuperMethod); } } } private: template ALWAYS_INLINE void UpdateStateImpl(ObjPtr iface, ArtMethod* interface_method, Predicate&& slow_is_masked) REQUIRES_SHARED(Locks::mutator_lock_) { bool have_default = false; switch (GetState()) { case State::kDefaultSingle: have_default = true; FALLTHROUGH_INTENDED; case State::kAbstractSingle: if (GetMainMethod()->GetDeclaringClass()->Implements(iface)) { return; // The main method masks the `interface_method`. } if (!interface_method->IsDefault()) { SetState(have_default ? State::kDefault : State::kAbstract); return; } break; case State::kDefault: have_default = true; FALLTHROUGH_INTENDED; case State::kAbstract: if (!interface_method->IsDefault()) { return; // Keep the same state. We do not need to check for masking. } // We do not record all overriding methods, so we need to walk over all // interfaces that could mask the `interface_method`. The provided // predicate `slow_is_masked()` does that. if (slow_is_masked()) { return; // Found an overriding method that masks `interface_method`. } break; case State::kDefaultConflict: return; // The state cannot change anymore. default: LOG(FATAL) << "Unexpected state: " << enum_cast(GetState()); UNREACHABLE(); } // We have a new default method that's not masked by any other method. DCHECK(interface_method->IsDefault()); if (have_default) { SetState(State::kDefaultConflict); } else { SetMainMethod(interface_method); SetState(State::kDefault); } } // Determine if the given `iftable` contains in the given range a subinterface of `iface` // that declares a method with the same name and signature as 'interface_method'. // // Arguments // - iftable: The iftable we are searching for an overriding method. // - begin: The start of the range to search. // - end: The end of the range to search. // - iface: The interface we are checking to see if anything overrides. // - interface_method: // The interface method providing a name and signature we're searching for. // // Returns whether an overriding method was found in any subinterface of `iface`. static bool ContainsOverridingMethodOf(ObjPtr iftable, size_t begin, size_t end, ObjPtr iface, ArtMethod* interface_method) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = begin; i != end; ++i) { ObjPtr current_iface = iftable->GetInterface(i); for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(kPointerSize)) { if (MethodSignatureEquals(¤t_method, interface_method)) { // Check if the i'th interface is a subtype of this one. if (current_iface->Implements(iface)) { return true; } break; } } } return false; } // Determine if the given `iftable` contains in the given range a subinterface of `iface` // that declares a method implemented by 'target'. This is an optimized version of // `ContainsOverridingMethodOf()` that searches implementation method arrays instead // of comparing signatures for declared interface methods. // // Arguments // - iftable: The iftable we are searching for an overriding method. // - begin: The start of the range to search. // - end: The end of the range to search. // - iface: The interface we are checking to see if anything overrides. // - target: The implementation method we're searching for. // Note that the new `iftable` is filled with vtable indexes for new interfaces, // so this needs to be the vtable index if we're searching that range. // // Returns whether the `target` was found in a method array for any subinterface of `iface`. template static bool ContainsImplementingMethod(ObjPtr iftable, size_t begin, size_t end, ObjPtr iface, TargetType target) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = begin; i != end; ++i) { if (MethodArrayContains(iftable->GetMethodArrayOrNull(i), target).first && iftable->GetInterface(i)->Implements(iface)) { return true; } } return false; } template static std::pair MethodArrayContains(ObjPtr method_array, TargetType target) REQUIRES_SHARED(Locks::mutator_lock_) { size_t num_methods = (method_array != nullptr) ? method_array->GetLength() : 0u; for (size_t j = 0; j != num_methods; ++j) { if (method_array->GetElementPtrSize(j) == target) { return {true, j}; } } return {false, 0}; } ArtMethod* main_method_; uint32_t method_index_; State state_; }; class CopiedMethodRecordEmptyFn { public: void MakeEmpty(CopiedMethodRecord& item) const { item = CopiedMethodRecord(); } bool IsEmpty(const CopiedMethodRecord& item) const { return item.GetMainMethod() == nullptr; } }; class CopiedMethodRecordHash { public: // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. size_t operator()(ArtMethod* method) const NO_THREAD_SAFETY_ANALYSIS { DCHECK(method != nullptr); return ComputeMethodHash(method); } // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. size_t operator()(const CopiedMethodRecord& record) const NO_THREAD_SAFETY_ANALYSIS { return (*this)(record.GetMainMethod()); } }; class CopiedMethodRecordEqual { public: // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. bool operator()(const CopiedMethodRecord& lhs_record, ArtMethod* rhs) const NO_THREAD_SAFETY_ANALYSIS { ArtMethod* lhs = lhs_record.GetMainMethod(); DCHECK(lhs != nullptr); DCHECK(rhs != nullptr); return MethodSignatureEquals(lhs, rhs); } // NO_THREAD_SAFETY_ANALYSIS: This is called from unannotated `HashSet<>` functions. bool operator()(const CopiedMethodRecord& lhs_record, const CopiedMethodRecord& rhs_record) const NO_THREAD_SAFETY_ANALYSIS { return (*this)(lhs_record, rhs_record.GetMainMethod()); } }; using CopiedMethodRecordSet = ScopedArenaHashSet; static constexpr size_t kMethodAlignment = ArtMethod::Alignment(kPointerSize); static constexpr size_t kMethodSize = ArtMethod::Size(kPointerSize); ClassLinker* class_linker_; Handle klass_; Thread* const self_; Runtime* const runtime_; // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create // the virtual methods array. // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array // during cross compilation. // Use the linear alloc pool since this one is in the low 4gb for the compiler. ArenaStack stack_; ScopedArenaAllocator allocator_; // If there are multiple methods with the same signature in the superclass vtable // (which can happen with a new virtual method having the same signature as an // inaccessible package-private method from another package in the superclass), // we keep singly-linked lists in this single array that maps vtable index to the // next vtable index in the list, `dex::kDexNoIndex` denotes the end of a list. ArrayRef same_signature_vtable_lists_; // Avoid large allocation for a few copied method records. // Keep the initial buffer on the stack to avoid arena allocations // if there are no special cases (the first arena allocation is costly). static constexpr size_t kCopiedMethodRecordInitialBufferSize = 16u; CopiedMethodRecord copied_method_records_initial_buffer_[kCopiedMethodRecordInitialBufferSize]; CopiedMethodRecordSet copied_method_records_; size_t num_new_copied_methods_; }; template NO_INLINE void ClassLinker::LinkMethodsHelper::ReallocMethods(ObjPtr klass) { // There should be no thread suspension in this function, // native allocations do not cause thread suspension. ScopedAssertNoThreadSuspension sants(__FUNCTION__); size_t num_new_copied_methods = num_new_copied_methods_; DCHECK_NE(num_new_copied_methods, 0u); const size_t old_method_count = klass->NumMethods(); const size_t new_method_count = old_method_count + num_new_copied_methods; // Attempt to realloc to save RAM if possible. LengthPrefixedArray* old_methods = klass->GetMethodsPtr(); // The Realloced virtual methods aren't visible from the class roots, so there is no issue // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since // CopyFrom has internal read barriers. // // TODO We should maybe move some of this into mirror::Class or at least into another method. const size_t old_size = LengthPrefixedArray::ComputeSize(old_method_count, kMethodSize, kMethodAlignment); const size_t new_size = LengthPrefixedArray::ComputeSize(new_method_count, kMethodSize, kMethodAlignment); const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0; auto* methods = reinterpret_cast*>( class_linker_->GetAllocatorForClassLoader(klass->GetClassLoader())->Realloc( self_, old_methods, old_methods_ptr_size, new_size, LinearAllocKind::kArtMethodArray)); CHECK(methods != nullptr); // Native allocation failure aborts. if (methods != old_methods) { if (gUseReadBarrier) { StrideIterator out = methods->begin(kMethodSize, kMethodAlignment); // Copy over the old methods. The `ArtMethod::CopyFrom()` is only necessary to not miss // read barriers since `LinearAlloc::Realloc()` won't do read barriers when it copies. for (auto& m : klass->GetMethods(kPointerSize)) { out->CopyFrom(&m, kPointerSize); ++out; } } else if (gUseUserfaultfd) { // Clear the declaring class of the old dangling method array so that GC doesn't // try to update them, which could cause crashes in userfaultfd GC due to // checks in post-compact address computation. for (auto& m : klass->GetMethods(kPointerSize)) { m.SetDeclaringClass(nullptr); } } } // Collect and sort copied method records by the vtable index. This places overriding // copied methods first, sorted by the vtable index already assigned in the superclass, // followed by copied methods with new signatures in the order in which we encountered // them when going over virtual methods of new interfaces. // This order is deterministic but implementation-defined. // // Avoid arena allocation for a few records (the first arena allocation is costly). constexpr size_t kSortedRecordsBufferSize = 16; CopiedMethodRecord* sorted_records_buffer[kSortedRecordsBufferSize]; CopiedMethodRecord** sorted_records = (num_new_copied_methods <= kSortedRecordsBufferSize) ? sorted_records_buffer : allocator_.AllocArray(num_new_copied_methods); size_t filled_sorted_records = 0u; for (CopiedMethodRecord& record : copied_method_records_) { if (record.GetState() != CopiedMethodRecord::State::kUseSuperMethod) { DCHECK_LT(filled_sorted_records, num_new_copied_methods); sorted_records[filled_sorted_records] = &record; ++filled_sorted_records; } } DCHECK_EQ(filled_sorted_records, num_new_copied_methods); std::sort(sorted_records, sorted_records + num_new_copied_methods, [](const CopiedMethodRecord* lhs, const CopiedMethodRecord* rhs) { return lhs->GetMethodIndex() < rhs->GetMethodIndex(); }); if (klass->IsInterface()) { // Some records may have been pruned. Update method indexes in collected records. size_t interface_method_index = klass->NumDeclaredVirtualMethods(); for (size_t i = 0; i != num_new_copied_methods; ++i) { CopiedMethodRecord* record = sorted_records[i]; DCHECK_LE(interface_method_index, record->GetMethodIndex()); record->SetMethodIndex(interface_method_index); ++interface_method_index; } } // Add copied methods. methods->SetSize(new_method_count); for (size_t i = 0; i != num_new_copied_methods; ++i) { const CopiedMethodRecord* record = sorted_records[i]; ArtMethod* interface_method = record->GetMainMethod(); DCHECK(!interface_method->IsCopied()); ArtMethod& new_method = methods->At(old_method_count + i, kMethodSize, kMethodAlignment); new_method.CopyFrom(interface_method, kPointerSize); new_method.SetMethodIndex(dchecked_integral_cast(record->GetMethodIndex())); switch (record->GetState()) { case CopiedMethodRecord::State::kAbstractSingle: case CopiedMethodRecord::State::kAbstract: { DCHECK(!klass->IsInterface()); // We do not create miranda methods for interfaces. uint32_t access_flags = new_method.GetAccessFlags(); DCHECK_EQ(access_flags & (kAccAbstract | kAccIntrinsic | kAccDefault), kAccAbstract) << "Miranda method should be abstract but not intrinsic or default!"; new_method.SetAccessFlags(access_flags | kAccCopied); break; } case CopiedMethodRecord::State::kDefaultSingle: case CopiedMethodRecord::State::kDefault: { DCHECK(!klass->IsInterface()); // We do not copy default methods for interfaces. // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been // verified yet it shouldn't have methods that are skipping access checks. // TODO This is rather arbitrary. We should maybe support classes where only some of its // methods are skip_access_checks. DCHECK_EQ(new_method.GetAccessFlags() & kAccNative, 0u); constexpr uint32_t kSetFlags = kAccDefault | kAccCopied; constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks; new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags); break; } case CopiedMethodRecord::State::kDefaultConflict: { // This is a type of default method (there are default method impls, just a conflict) // so mark this as a default. We use the `kAccAbstract` flag to distinguish it from // invokable copied default method without using a separate access flag but the default // conflicting method is technically not abstract and ArtMethod::IsAbstract() shall // return false. Also clear the kAccSkipAccessChecks bit since this class hasn't been // verified yet it shouldn't have methods that are skipping access checks. Also clear // potential kAccSingleImplementation to avoid CHA trying to inline the default method. uint32_t access_flags = new_method.GetAccessFlags(); DCHECK_EQ(access_flags & (kAccNative | kAccIntrinsic), 0u); constexpr uint32_t kSetFlags = kAccDefault | kAccAbstract | kAccCopied; constexpr uint32_t kMaskFlags = ~(kAccSkipAccessChecks | kAccSingleImplementation); new_method.SetAccessFlags((access_flags | kSetFlags) & kMaskFlags); new_method.SetDataPtrSize(nullptr, kPointerSize); DCHECK(new_method.IsDefaultConflicting()); DCHECK(!new_method.IsAbstract()); // The actual method might or might not be marked abstract since we just copied it from // a (possibly default) interface method. We need to set its entry point to be the bridge // so that the compiler will not invoke the implementation of whatever method we copied // from. EnsureThrowsInvocationError(class_linker_, &new_method); break; } default: LOG(FATAL) << "Unexpected state: " << enum_cast(record->GetState()); UNREACHABLE(); } } if (VLOG_IS_ON(class_linker)) { LogNewVirtuals(methods); } class_linker_->UpdateClassMethods(klass, methods); } template bool ClassLinker::LinkMethodsHelper::FinalizeIfTable( Handle klass, MutableHandle iftable, Handle vtable, bool is_klass_abstract, bool is_super_abstract, bool* out_new_conflict, ArtMethod** out_imt) { size_t ifcount = iftable->Count(); // We do not need a read barrier here as the length is constant, both from-space and // to-space `IfTable`s shall yield the same result. See also `Class::GetIfTableCount()`. size_t super_ifcount = klass->GetSuperClass()->GetIfTableCount(); ClassLinker* class_linker = nullptr; ArtMethod* unimplemented_method = nullptr; ArtMethod* imt_conflict_method = nullptr; uintptr_t imt_methods_begin = 0u; size_t imt_methods_size = 0u; DCHECK_EQ(klass->ShouldHaveImt(), !is_klass_abstract); DCHECK_EQ(klass->GetSuperClass()->ShouldHaveImt(), !is_super_abstract); if (!is_klass_abstract) { class_linker = class_linker_; unimplemented_method = runtime_->GetImtUnimplementedMethod(); imt_conflict_method = runtime_->GetImtConflictMethod(); if (is_super_abstract) { // There was no IMT in superclass to copy to `out_imt[]`, so we need // to fill it with all implementation methods from superclass. DCHECK_EQ(imt_methods_begin, 0u); imt_methods_size = std::numeric_limits::max(); // No method at the last byte. } else { // If the superclass has IMT, we have already copied it to `out_imt[]` and // we do not need to call `SetIMTRef()` for interfaces from superclass when // the implementation method is already in the superclass, only for new methods. // For simplicity, use the entire method array including direct methods. LengthPrefixedArray* const new_methods = klass->GetMethodsPtr(); if (new_methods != nullptr) { DCHECK_NE(new_methods->size(), 0u); imt_methods_begin = reinterpret_cast(&new_methods->At(0, kMethodSize, kMethodAlignment)); imt_methods_size = new_methods->size() * kMethodSize; } } } auto update_imt = [=](ObjPtr iface, size_t j, ArtMethod* implementation) REQUIRES_SHARED(Locks::mutator_lock_) { // Place method in imt if entry is empty, place conflict otherwise. ArtMethod** imt_ptr = &out_imt[iface->GetVirtualMethod(j, kPointerSize)->GetImtIndex()]; class_linker->SetIMTRef(unimplemented_method, imt_conflict_method, implementation, /*out*/out_new_conflict, /*out*/imt_ptr); }; // For interfaces inherited from superclass, the new method arrays are empty, // so use vtable indexes from implementation methods from the superclass method array. for (size_t i = 0; i != super_ifcount; ++i) { ObjPtr method_array = iftable->GetMethodArrayOrNull(i); DCHECK(method_array == klass->GetSuperClass()->GetIfTable()->GetMethodArrayOrNull(i)); if (method_array == nullptr) { continue; } size_t num_methods = method_array->GetLength(); ObjPtr iface = iftable->GetInterface(i); size_t j = 0; // First loop has method array shared with the super class. for (; j != num_methods; ++j) { ArtMethod* super_implementation = method_array->GetElementPtrSize(j); size_t vtable_index = super_implementation->GetMethodIndex(); ArtMethod* implementation = vtable->GetElementPtrSize(vtable_index); // Check if we need to update IMT with this method, see above. if (reinterpret_cast(implementation) - imt_methods_begin < imt_methods_size) { update_imt(iface, j, implementation); } if (implementation != super_implementation) { // Copy-on-write and move to the next loop. Thread* self = self_; StackHandleScope<2u> hs(self); Handle old_method_array = hs.NewHandle(method_array); HandleWrapperObjPtr h_iface = hs.NewHandleWrapper(&iface); if (ifcount == super_ifcount && iftable.Get() == klass->GetSuperClass()->GetIfTable()) { ObjPtr new_iftable = ObjPtr::DownCast( mirror::ObjectArray::CopyOf( iftable, self, ifcount * mirror::IfTable::kMax)); if (new_iftable == nullptr) { return false; } iftable.Assign(new_iftable); } method_array = ObjPtr::DownCast( mirror::Array::CopyOf(old_method_array, self, num_methods)); if (method_array == nullptr) { return false; } iftable->SetMethodArray(i, method_array); method_array->SetElementPtrSize(j, implementation, kPointerSize); ++j; break; } } // Second loop (if non-empty) has method array different from the superclass. for (; j != num_methods; ++j) { ArtMethod* super_implementation = method_array->GetElementPtrSize(j); size_t vtable_index = super_implementation->GetMethodIndex(); ArtMethod* implementation = vtable->GetElementPtrSize(vtable_index); method_array->SetElementPtrSize(j, implementation, kPointerSize); // Check if we need to update IMT with this method, see above. if (reinterpret_cast(implementation) - imt_methods_begin < imt_methods_size) { update_imt(iface, j, implementation); } } } // New interface method arrays contain vtable indexes. Translate them to methods. DCHECK_EQ(klass->ShouldHaveImt(), !is_klass_abstract); for (size_t i = super_ifcount; i != ifcount; ++i) { ObjPtr method_array = iftable->GetMethodArrayOrNull(i); if (method_array == nullptr) { continue; } size_t num_methods = method_array->GetLength(); ObjPtr iface = iftable->GetInterface(i); for (size_t j = 0; j != num_methods; ++j) { size_t vtable_index = method_array->GetElementPtrSize(j); ArtMethod* implementation = vtable->GetElementPtrSize(vtable_index); method_array->SetElementPtrSize(j, implementation, kPointerSize); if (!is_klass_abstract) { update_imt(iface, j, implementation); } } } return true; } template ObjPtr ClassLinker::LinkMethodsHelper::AllocPointerArray( Thread* self, size_t length) { using PointerArrayType = std::conditional_t< kPointerSize == PointerSize::k64, mirror::LongArray, mirror::IntArray>; ObjPtr array = PointerArrayType::Alloc(self, length); return ObjPtr::DownCast(array); } template bool ClassLinker::LinkMethodsHelper::AllocateIfTableMethodArrays( Thread* self, Handle klass, Handle iftable) { DCHECK(!klass->IsInterface()); DCHECK(klass_->HasSuperClass()); const size_t ifcount = iftable->Count(); // We do not need a read barrier here as the length is constant, both from-space and // to-space `IfTable`s shall yield the same result. See also `Class::GetIfTableCount()`. size_t super_ifcount = klass->GetSuperClass()->GetIfTableCount(); if (ifcount == super_ifcount) { DCHECK(iftable.Get() == klass_->GetSuperClass()->GetIfTable()); return true; } if (kIsDebugBuild) { // The method array references for superclass interfaces have been copied. // We shall allocate new arrays if needed (copy-on-write) in `FinalizeIfTable()`. ObjPtr super_iftable = klass_->GetSuperClass()->GetIfTable(); for (size_t i = 0; i != super_ifcount; ++i) { CHECK(iftable->GetInterface(i) == super_iftable->GetInterface(i)); CHECK(iftable->GetMethodArrayOrNull(i) == super_iftable->GetMethodArrayOrNull(i)); } } for (size_t i = super_ifcount; i < ifcount; ++i) { size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); if (num_methods > 0) { ObjPtr method_array = AllocPointerArray(self, num_methods); if (UNLIKELY(method_array == nullptr)) { self->AssertPendingOOMException(); return false; } iftable->SetMethodArray(i, method_array); } } return true; } template size_t ClassLinker::LinkMethodsHelper::AssignVTableIndexes( ObjPtr klass, ObjPtr super_class, bool is_super_abstract, size_t num_virtual_methods, ObjPtr iftable) { DCHECK(!klass->IsInterface()); DCHECK(klass->HasSuperClass()); DCHECK(klass->GetSuperClass() == super_class); // There should be no thread suspension unless we want to throw an exception. // (We are using `ObjPtr<>` and raw vtable pointers that are invalidated by thread suspension.) std::optional sants(__FUNCTION__); // Prepare a hash table with virtual methods from the superclass. // For the unlikely cases that there are multiple methods with the same signature // but different vtable indexes, keep an array with indexes of the previous // methods with the same signature (walked as singly-linked lists). uint8_t* raw_super_vtable; size_t super_vtable_length; if (is_super_abstract) { DCHECK(!super_class->ShouldHaveEmbeddedVTable()); ObjPtr super_vtable = super_class->GetVTableDuringLinking(); DCHECK(super_vtable != nullptr); raw_super_vtable = reinterpret_cast(super_vtable.Ptr()) + mirror::Array::DataOffset(static_cast(kPointerSize)).Uint32Value(); super_vtable_length = super_vtable->GetLength(); } else { DCHECK(super_class->ShouldHaveEmbeddedVTable()); raw_super_vtable = reinterpret_cast(super_class.Ptr()) + mirror::Class::EmbeddedVTableOffset(kPointerSize).Uint32Value(); super_vtable_length = super_class->GetEmbeddedVTableLength(); } VTableAccessor super_vtable_accessor(raw_super_vtable, super_vtable_length); static constexpr double kMinLoadFactor = 0.3; static constexpr double kMaxLoadFactor = 0.5; static constexpr size_t kMaxStackBuferSize = 256; const size_t declared_virtuals_buffer_size = num_virtual_methods * 3; const size_t super_vtable_buffer_size = super_vtable_length * 3; const size_t bit_vector_size = BitVector::BitsToWords(num_virtual_methods); const size_t total_size = declared_virtuals_buffer_size + super_vtable_buffer_size + bit_vector_size; uint32_t* declared_virtuals_buffer_ptr = (total_size <= kMaxStackBuferSize) ? reinterpret_cast(alloca(total_size * sizeof(uint32_t))) : allocator_.AllocArray(total_size); uint32_t* bit_vector_buffer_ptr = declared_virtuals_buffer_ptr + declared_virtuals_buffer_size; DeclaredVirtualSignatureSet declared_virtual_signatures( kMinLoadFactor, kMaxLoadFactor, DeclaredVirtualSignatureHash(klass), DeclaredVirtualSignatureEqual(klass), declared_virtuals_buffer_ptr, declared_virtuals_buffer_size, allocator_.Adapter()); ArrayRef same_signature_vtable_lists; const bool is_proxy_class = klass->IsProxyClass(); size_t vtable_length = super_vtable_length; // Record which declared methods are overriding a super method. BitVector initialized_methods(/* expandable= */ false, Allocator::GetNoopAllocator(), bit_vector_size, bit_vector_buffer_ptr); // Note: our sets hash on the method name, and therefore we pay a high // performance price when a class has many overloads. // // We populate a set of declared signatures instead of signatures from the // super vtable (which is only lazy populated in case of interface overriding, // see below). This makes sure that we pay the performance price only on that // class, and not on its subclasses (except in the case of interface overriding, see below). for (size_t i = 0; i != num_virtual_methods; ++i) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, kPointerSize); DCHECK(!virtual_method->IsStatic()) << virtual_method->PrettyMethod(); ArtMethod* signature_method = UNLIKELY(is_proxy_class) ? virtual_method->GetInterfaceMethodForProxyUnchecked(kPointerSize) : virtual_method; size_t hash = ComputeMethodHash(signature_method); declared_virtual_signatures.PutWithHash(i, hash); } // Loop through each super vtable method and see if they are overridden by a method we added to // the hash table. for (size_t j = 0; j < super_vtable_length; ++j) { // Search the hash table to see if we are overridden by any method. ArtMethod* super_method = super_vtable_accessor.GetVTableEntry(j); if (!klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) { // Continue on to the next method since this one is package private and cannot be overridden. // Before Android 4.1, the package-private method super_method might have been incorrectly // overridden. continue; } size_t hash = (j < mirror::Object::kVTableLength) ? class_linker_->object_virtual_method_hashes_[j] : ComputeMethodHash(super_method); auto it = declared_virtual_signatures.FindWithHash(super_method, hash); if (it == declared_virtual_signatures.end()) { continue; } ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(*it, kPointerSize); if (super_method->IsFinal()) { sants.reset(); ThrowLinkageError(klass, "Method %s overrides final method in class %s", virtual_method->PrettyMethod().c_str(), super_method->GetDeclaringClassDescriptor()); return 0u; } if (initialized_methods.IsBitSet(*it)) { // The method is overriding more than one method. // We record that information in a linked list to later set the method in the vtable // locations that are not the method index. if (same_signature_vtable_lists.empty()) { same_signature_vtable_lists = ArrayRef( allocator_.AllocArray(super_vtable_length), super_vtable_length); std::fill_n(same_signature_vtable_lists.data(), super_vtable_length, dex::kDexNoIndex); same_signature_vtable_lists_ = same_signature_vtable_lists; } same_signature_vtable_lists[j] = virtual_method->GetMethodIndexDuringLinking(); } else { initialized_methods.SetBit(*it); } // We arbitrarily set to the largest index. This is also expected when // iterating over the `same_signature_vtable_lists_`. virtual_method->SetMethodIndex(j); } // Add the non-overridden methods at the end. for (size_t i = 0; i < num_virtual_methods; ++i) { if (!initialized_methods.IsBitSet(i)) { ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, kPointerSize); local_method->SetMethodIndex(vtable_length); vtable_length++; } } // A lazily constructed super vtable set, which we only populate in the less // common sittuation of a superclass implementing a method declared in an // interface this class inherits. // We still try to allocate the set on the stack as using the arena will have // a larger cost. uint32_t* super_vtable_buffer_ptr = bit_vector_buffer_ptr + bit_vector_size; VTableSignatureSet super_vtable_signatures( kMinLoadFactor, kMaxLoadFactor, VTableSignatureHash(super_vtable_accessor), VTableSignatureEqual(super_vtable_accessor), super_vtable_buffer_ptr, super_vtable_buffer_size, allocator_.Adapter()); // Assign vtable indexes for interface methods in new interfaces and store them // in implementation method arrays. These shall be replaced by actual method // pointers later. We do not need to do this for superclass interfaces as we can // get these vtable indexes from implementation methods in superclass iftable. // Record data for copied methods which shall be referenced by the vtable. const size_t ifcount = iftable->Count(); ObjPtr super_iftable = super_class->GetIfTable(); const size_t super_ifcount = super_iftable->Count(); for (size_t i = ifcount; i != super_ifcount; ) { --i; DCHECK_LT(i, ifcount); ObjPtr iface = iftable->GetInterface(i); ObjPtr method_array = iftable->GetMethodArrayOrNull(i); size_t num_methods = (method_array != nullptr) ? method_array->GetLength() : 0u; for (size_t j = 0; j != num_methods; ++j) { ArtMethod* interface_method = iface->GetVirtualMethod(j, kPointerSize); size_t hash = ComputeMethodHash(interface_method); ArtMethod* vtable_method = nullptr; auto it1 = declared_virtual_signatures.FindWithHash(interface_method, hash); if (it1 != declared_virtual_signatures.end()) { ArtMethod* found_method = klass->GetVirtualMethodDuringLinking(*it1, kPointerSize); // For interface overriding, we only look at public methods. if (found_method->IsPublic()) { vtable_method = found_method; } } else { // This situation should be rare (a superclass implements a method // declared in an interface this class is inheriting). Only in this case // do we lazily populate the super_vtable_signatures. if (super_vtable_signatures.empty()) { for (size_t k = 0; k < super_vtable_length; ++k) { ArtMethod* super_method = super_vtable_accessor.GetVTableEntry(k); if (!super_method->IsPublic()) { // For interface overriding, we only look at public methods. continue; } size_t super_hash = (k < mirror::Object::kVTableLength) ? class_linker_->object_virtual_method_hashes_[k] : ComputeMethodHash(super_method); auto [it, inserted] = super_vtable_signatures.InsertWithHash(k, super_hash); DCHECK(inserted || super_vtable_accessor.GetVTableEntry(*it) == super_method); } } auto it2 = super_vtable_signatures.FindWithHash(interface_method, hash); if (it2 != super_vtable_signatures.end()) { vtable_method = super_vtable_accessor.GetVTableEntry(*it2); } } uint32_t vtable_index = vtable_length; if (vtable_method != nullptr) { vtable_index = vtable_method->GetMethodIndexDuringLinking(); if (!vtable_method->IsOverridableByDefaultMethod()) { method_array->SetElementPtrSize(j, vtable_index, kPointerSize); continue; } } auto [it, inserted] = copied_method_records_.InsertWithHash( CopiedMethodRecord(interface_method, vtable_index), hash); if (vtable_method != nullptr) { DCHECK_EQ(vtable_index, it->GetMethodIndex()); } else if (inserted) { DCHECK_EQ(vtable_index, it->GetMethodIndex()); DCHECK_EQ(vtable_index, vtable_length); ++vtable_length; } else { vtable_index = it->GetMethodIndex(); } method_array->SetElementPtrSize(j, it->GetMethodIndex(), kPointerSize); if (inserted) { it->SetState(interface_method->IsAbstract() ? CopiedMethodRecord::State::kAbstractSingle : CopiedMethodRecord::State::kDefaultSingle); } else { it->UpdateState(iface, interface_method, vtable_index, iftable, ifcount, i); } } } // Finalize copied method records and check if we can reuse some methods from superclass vtable. size_t num_new_copied_methods = copied_method_records_.size(); for (CopiedMethodRecord& record : copied_method_records_) { uint32_t vtable_index = record.GetMethodIndex(); if (vtable_index < super_vtable_length) { ArtMethod* super_method = super_vtable_accessor.GetVTableEntry(record.GetMethodIndex()); DCHECK(super_method->IsOverridableByDefaultMethod()); record.FinalizeState( super_method, vtable_index, iftable, ifcount, super_iftable, super_ifcount); if (record.GetState() == CopiedMethodRecord::State::kUseSuperMethod) { --num_new_copied_methods; } } } num_new_copied_methods_ = num_new_copied_methods; if (UNLIKELY(!IsUint<16>(vtable_length))) { sants.reset(); ThrowClassFormatError(klass, "Too many methods defined on class: %zd", vtable_length); return 0u; } return vtable_length; } template bool ClassLinker::LinkMethodsHelper::FindCopiedMethodsForInterface( ObjPtr klass, size_t num_virtual_methods, ObjPtr iftable) { DCHECK(klass->IsInterface()); DCHECK(klass->HasSuperClass()); DCHECK(klass->GetSuperClass()->IsObjectClass()); DCHECK_EQ(klass->GetSuperClass()->GetIfTableCount(), 0); // There should be no thread suspension unless we want to throw an exception. // (We are using `ObjPtr<>`s that are invalidated by thread suspension.) std::optional sants(__FUNCTION__); // Prepare a `HashSet<>` with the declared virtual methods. These mask any methods // from superinterfaces, so we can filter out matching superinterface methods. static constexpr double kMinLoadFactor = 0.3; static constexpr double kMaxLoadFactor = 0.5; static constexpr size_t kMaxStackBuferSize = 256; const size_t declared_virtuals_buffer_size = num_virtual_methods * 3; uint32_t* declared_virtuals_buffer_ptr = (declared_virtuals_buffer_size <= kMaxStackBuferSize) ? reinterpret_cast(alloca(declared_virtuals_buffer_size * sizeof(uint32_t))) : allocator_.AllocArray(declared_virtuals_buffer_size); DeclaredVirtualSignatureSet declared_virtual_signatures( kMinLoadFactor, kMaxLoadFactor, DeclaredVirtualSignatureHash(klass), DeclaredVirtualSignatureEqual(klass), declared_virtuals_buffer_ptr, declared_virtuals_buffer_size, allocator_.Adapter()); for (size_t i = 0; i != num_virtual_methods; ++i) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, kPointerSize); DCHECK(!virtual_method->IsStatic()) << virtual_method->PrettyMethod(); size_t hash = ComputeMethodHash(virtual_method); declared_virtual_signatures.PutWithHash(i, hash); } // We do not create miranda methods for interface classes, so we do not need to track // non-default (abstract) interface methods. The downside is that we cannot use the // optimized code paths with `CopiedMethodRecord::State::kDefaultSingle` and since // we do not fill method arrays for interfaces, the method search actually has to // compare signatures instead of searching for the implementing method. const size_t ifcount = iftable->Count(); size_t new_method_index = num_virtual_methods; for (size_t i = ifcount; i != 0u; ) { --i; DCHECK_LT(i, ifcount); ObjPtr iface = iftable->GetInterface(i); if (!iface->HasDefaultMethods()) { continue; // No default methods to process. } size_t num_methods = iface->NumDeclaredVirtualMethods(); for (size_t j = 0; j != num_methods; ++j) { ArtMethod* interface_method = iface->GetVirtualMethod(j, kPointerSize); if (!interface_method->IsDefault()) { continue; // Do not process this non-default method. } size_t hash = ComputeMethodHash(interface_method); auto it1 = declared_virtual_signatures.FindWithHash(interface_method, hash); if (it1 != declared_virtual_signatures.end()) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(*it1, kPointerSize); if (!virtual_method->IsAbstract() && !virtual_method->IsPublic()) { sants.reset(); ThrowIllegalAccessErrorForImplementingMethod(klass, virtual_method, interface_method); return false; } continue; // This default method is masked by a method declared in this interface. } CopiedMethodRecord new_record(interface_method, new_method_index); auto it = copied_method_records_.FindWithHash(new_record, hash); if (it == copied_method_records_.end()) { // Pretend that there is another default method and try to update the state. // If the `interface_method` is not masked, the state shall change to // `kDefaultConflict`; if it is masked, the state remains `kDefault`. new_record.SetState(CopiedMethodRecord::State::kDefault); new_record.UpdateStateForInterface(iface, interface_method, iftable, ifcount, i); if (new_record.GetState() == CopiedMethodRecord::State::kDefaultConflict) { // Insert the new record with the state `kDefault`. new_record.SetState(CopiedMethodRecord::State::kDefault); copied_method_records_.PutWithHash(new_record, hash); DCHECK_EQ(new_method_index, new_record.GetMethodIndex()); ++new_method_index; } } else { it->UpdateStateForInterface(iface, interface_method, iftable, ifcount, i); } } } // Prune records without conflict. (Method indexes are updated in `ReallocMethods()`.) // We do not copy normal default methods to subinterfaces, instead we find the // default method with `Class::FindVirtualMethodForInterfaceSuper()` when needed. size_t num_new_copied_methods = copied_method_records_.size(); for (CopiedMethodRecord& record : copied_method_records_) { if (record.GetState() != CopiedMethodRecord::State::kDefaultConflict) { DCHECK(record.GetState() == CopiedMethodRecord::State::kDefault); record.SetState(CopiedMethodRecord::State::kUseSuperMethod); --num_new_copied_methods; } } num_new_copied_methods_ = num_new_copied_methods; return true; } template FLATTEN bool ClassLinker::LinkMethodsHelper::LinkMethods( Thread* self, Handle klass, Handle> interfaces, bool* out_new_conflict, ArtMethod** out_imt) { const size_t num_virtual_methods = klass->NumVirtualMethods(); if (klass->IsInterface()) { // No vtable. if (!IsUint<16>(num_virtual_methods)) { ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods); return false; } // Assign each method an interface table index and set the default flag. bool has_defaults = false; for (size_t i = 0; i < num_virtual_methods; ++i) { ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, kPointerSize); m->SetMethodIndex(i); uint32_t access_flags = m->GetAccessFlags(); DCHECK(!ArtMethod::IsDefault(access_flags)); DCHECK_EQ(!ArtMethod::IsAbstract(access_flags), ArtMethod::IsInvokable(access_flags)); if (ArtMethod::IsInvokable(access_flags)) { // If the dex file does not support default methods, throw ClassFormatError. // This check is necessary to protect from odd cases, such as native default // methods, that the dex file verifier permits for old dex file versions. b/157170505 // FIXME: This should be `if (!m->GetDexFile()->SupportsDefaultMethods())` but we're // currently running CTS tests for default methods with dex file version 035 which // does not support default methods. So, we limit this to native methods. b/157718952 if (ArtMethod::IsNative(access_flags)) { DCHECK(!m->GetDexFile()->SupportsDefaultMethods()); ThrowClassFormatError(klass.Get(), "Dex file does not support default method '%s'", m->PrettyMethod().c_str()); return false; } if (!ArtMethod::IsPublic(access_flags)) { // The verifier should have caught the non-public method for dex version 37. // Just warn and skip it since this is from before default-methods so we don't // really need to care that it has code. LOG(WARNING) << "Default interface method " << m->PrettyMethod() << " is not public! " << "This will be a fatal error in subsequent versions of android. " << "Continuing anyway."; } m->SetAccessFlags(access_flags | kAccDefault); has_defaults = true; } } // Mark that we have default methods so that we won't need to scan the virtual_methods_ array // during initialization. This is a performance optimization. We could simply traverse the // virtual_methods_ array again during initialization. if (has_defaults) { klass->SetHasDefaultMethods(); } ObjPtr iftable = SetupInterfaceLookupTable( self, klass, &allocator_, NonProxyInterfacesAccessor(class_linker_, klass)); if (UNLIKELY(iftable == nullptr)) { self->AssertPendingException(); return false; } size_t ifcount = iftable->Count(); bool have_super_with_defaults = false; for (size_t i = 0; i != ifcount; ++i) { if (iftable->GetInterface(i)->HasDefaultMethods()) { have_super_with_defaults = true; break; } } LengthPrefixedArray* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr; if (have_super_with_defaults) { if (!FindCopiedMethodsForInterface(klass.Get(), num_virtual_methods, iftable)) { self->AssertPendingException(); return false; } if (num_new_copied_methods_ != 0u) { // Re-check the number of methods. size_t final_num_virtual_methods = num_virtual_methods + num_new_copied_methods_; if (!IsUint<16>(final_num_virtual_methods)) { ThrowClassFormatError( klass.Get(), "Too many methods on interface: %zu", final_num_virtual_methods); return false; } ReallocMethods(klass.Get()); } } klass->SetIfTable(iftable); if (kIsDebugBuild) { // May cause thread suspension, so do this after we're done with `ObjPtr<> iftable`. ClobberOldMethods(old_methods, klass->GetMethodsPtr()); } return true; } else if (LIKELY(klass->HasSuperClass())) { // We set up the interface lookup table now because we need it to determine if we need // to update any vtable entries with new default method implementations. StackHandleScope<3> hs(self); MutableHandle iftable = hs.NewHandle(UNLIKELY(klass->IsProxyClass()) ? SetupInterfaceLookupTable(self, klass, &allocator_, ProxyInterfacesAccessor(interfaces)) : SetupInterfaceLookupTable( self, klass, &allocator_, NonProxyInterfacesAccessor(class_linker_, klass))); if (UNLIKELY(iftable == nullptr)) { self->AssertPendingException(); return false; } // Copy the IMT from superclass if present and needed. Update with new methods later. Handle super_class = hs.NewHandle(klass->GetSuperClass()); bool is_klass_abstract = klass->IsAbstract(); bool is_super_abstract = super_class->IsAbstract(); DCHECK_EQ(klass->ShouldHaveImt(), !is_klass_abstract); DCHECK_EQ(super_class->ShouldHaveImt(), !is_super_abstract); if (!is_klass_abstract && !is_super_abstract) { ImTable* super_imt = super_class->GetImt(kPointerSize); for (size_t i = 0; i < ImTable::kSize; ++i) { out_imt[i] = super_imt->Get(i, kPointerSize); } } // If there are no new virtual methods and no new interfaces, we can simply reuse // the vtable from superclass. We may need to make a copy if it's embedded. const size_t super_vtable_length = super_class->GetVTableLength(); if (num_virtual_methods == 0 && iftable.Get() == super_class->GetIfTable()) { DCHECK_EQ(is_super_abstract, !super_class->ShouldHaveEmbeddedVTable()); if (is_super_abstract) { DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass()); ObjPtr super_vtable = super_class->GetVTable(); CHECK(super_vtable != nullptr) << super_class->PrettyClass(); klass->SetVTable(super_vtable); // No IMT in the super class, we need to reconstruct it from the iftable. if (!is_klass_abstract && iftable->Count() != 0) { class_linker_->FillIMTFromIfTable(iftable.Get(), runtime_->GetImtUnimplementedMethod(), runtime_->GetImtConflictMethod(), klass.Get(), /*create_conflict_tables=*/false, /*ignore_copied_methods=*/false, out_new_conflict, out_imt); } } else { ObjPtr vtable = AllocPointerArray(self, super_vtable_length); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } for (size_t i = 0; i < super_vtable_length; i++) { vtable->SetElementPtrSize( i, super_class->GetEmbeddedVTableEntry(i, kPointerSize), kPointerSize); } klass->SetVTable(vtable); // The IMT was already copied from superclass if `klass` is not abstract. } klass->SetIfTable(iftable.Get()); return true; } // Allocate method arrays, so that we can link interface methods without thread suspension, // otherwise GC could miss visiting newly allocated copied methods. // TODO: Do not allocate copied methods during linking, store only records about what // we need to allocate and allocate it at the end. Start with superclass iftable and // perform copy-on-write when needed to facilitate maximum memory sharing. if (!AllocateIfTableMethodArrays(self, klass, iftable)) { self->AssertPendingOOMException(); return false; } size_t final_vtable_size = AssignVTableIndexes( klass.Get(), super_class.Get(), is_super_abstract, num_virtual_methods, iftable.Get()); if (final_vtable_size == 0u) { self->AssertPendingException(); return false; } DCHECK(IsUint<16>(final_vtable_size)); // Allocate the new vtable. Handle vtable = hs.NewHandle(AllocPointerArray(self, final_vtable_size)); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } LengthPrefixedArray* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr; if (num_new_copied_methods_ != 0u) { ReallocMethods(klass.Get()); } // Store new virtual methods in the new vtable. ArrayRef same_signature_vtable_lists = same_signature_vtable_lists_; for (ArtMethod& virtual_method : klass->GetVirtualMethodsSliceUnchecked(kPointerSize)) { uint32_t vtable_index = virtual_method.GetMethodIndexDuringLinking(); vtable->SetElementPtrSize(vtable_index, &virtual_method, kPointerSize); if (UNLIKELY(vtable_index < same_signature_vtable_lists.size())) { // We may override more than one method according to JLS, see b/211854716. while (same_signature_vtable_lists[vtable_index] != dex::kDexNoIndex) { DCHECK_LT(same_signature_vtable_lists[vtable_index], vtable_index); vtable_index = same_signature_vtable_lists[vtable_index]; vtable->SetElementPtrSize(vtable_index, &virtual_method, kPointerSize); if (kIsDebugBuild) { ArtMethod* current_method = super_class->GetVTableEntry(vtable_index, kPointerSize); DCHECK(klass->CanAccessMember(current_method->GetDeclaringClass(), current_method->GetAccessFlags())); DCHECK(!current_method->IsFinal()); } } } } // For non-overridden vtable slots, copy a method from `super_class`. for (size_t j = 0; j != super_vtable_length; ++j) { if (vtable->GetElementPtrSize(j) == nullptr) { ArtMethod* super_method = super_class->GetVTableEntry(j, kPointerSize); vtable->SetElementPtrSize(j, super_method, kPointerSize); } } // Update the `iftable` (and IMT) with finalized virtual methods. if (!FinalizeIfTable(klass, iftable, vtable, is_klass_abstract, is_super_abstract, out_new_conflict, out_imt)) { self->AssertPendingOOMException(); return false; } klass->SetVTable(vtable.Get()); klass->SetIfTable(iftable.Get()); if (kIsDebugBuild) { CheckVTable(self, klass, kPointerSize); ClobberOldMethods(old_methods, klass->GetMethodsPtr()); } return true; } else { return LinkJavaLangObjectMethods(self, klass); } } template bool ClassLinker::LinkMethodsHelper::LinkJavaLangObjectMethods( Thread* self, Handle klass) { DCHECK_EQ(klass.Get(), GetClassRoot(class_linker_)); DCHECK_EQ(klass->NumVirtualMethods(), mirror::Object::kVTableLength); static_assert(IsUint<16>(mirror::Object::kVTableLength)); ObjPtr vtable = AllocPointerArray(self, mirror::Object::kVTableLength); if (UNLIKELY(vtable == nullptr)) { self->AssertPendingOOMException(); return false; } for (size_t i = 0; i < mirror::Object::kVTableLength; ++i) { ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, kPointerSize); vtable->SetElementPtrSize(i, virtual_method, kPointerSize); virtual_method->SetMethodIndex(i); } klass->SetVTable(vtable); InitializeObjectVirtualMethodHashes( klass.Get(), kPointerSize, ArrayRef(class_linker_->object_virtual_method_hashes_)); // The interface table is already allocated but there are no interface methods to link. DCHECK(klass->GetIfTable() != nullptr); DCHECK_EQ(klass->GetIfTableCount(), 0); return true; } // Populate the class vtable and itable. Compute return type indices. bool ClassLinker::LinkMethods(Thread* self, Handle klass, Handle> interfaces, bool* out_new_conflict, ArtMethod** out_imt) { self->AllowThreadSuspension(); // Link virtual methods then interface methods. Runtime* const runtime = Runtime::Current(); if (LIKELY(GetImagePointerSize() == kRuntimePointerSize)) { LinkMethodsHelper helper(this, klass, self, runtime); return helper.LinkMethods(self, klass, interfaces, out_new_conflict, out_imt); } else { constexpr PointerSize kOtherPointerSize = (kRuntimePointerSize == PointerSize::k64) ? PointerSize::k32 : PointerSize::k64; LinkMethodsHelper helper(this, klass, self, runtime); return helper.LinkMethods(self, klass, interfaces, out_new_conflict, out_imt); } } class ClassLinker::LinkFieldsHelper { public: static bool LinkFields(ClassLinker* class_linker, Thread* self, Handle klass, bool is_static, size_t* class_size) REQUIRES_SHARED(Locks::mutator_lock_); private: enum class FieldTypeOrder : uint16_t; class FieldGaps; struct FieldTypeOrderAndIndex { FieldTypeOrder field_type_order; uint16_t field_index; }; static FieldTypeOrder FieldTypeOrderFromFirstDescriptorCharacter(char first_char); template static MemberOffset AssignFieldOffset(ArtField* field, MemberOffset field_offset) REQUIRES_SHARED(Locks::mutator_lock_); }; // We use the following order of field types for assigning offsets. // Some fields can be shuffled forward to fill gaps, see // `ClassLinker::LinkFieldsHelper::LinkFields()`. enum class ClassLinker::LinkFieldsHelper::FieldTypeOrder : uint16_t { kReference = 0u, kLong, kDouble, kInt, kFloat, kChar, kShort, kBoolean, kByte, kLast64BitType = kDouble, kLast32BitType = kFloat, kLast16BitType = kShort, }; ALWAYS_INLINE ClassLinker::LinkFieldsHelper::FieldTypeOrder ClassLinker::LinkFieldsHelper::FieldTypeOrderFromFirstDescriptorCharacter(char first_char) { switch (first_char) { case 'J': return FieldTypeOrder::kLong; case 'D': return FieldTypeOrder::kDouble; case 'I': return FieldTypeOrder::kInt; case 'F': return FieldTypeOrder::kFloat; case 'C': return FieldTypeOrder::kChar; case 'S': return FieldTypeOrder::kShort; case 'Z': return FieldTypeOrder::kBoolean; case 'B': return FieldTypeOrder::kByte; default: DCHECK(first_char == 'L' || first_char == '[') << first_char; return FieldTypeOrder::kReference; } } // Gaps where we can insert fields in object layout. class ClassLinker::LinkFieldsHelper::FieldGaps { public: template ALWAYS_INLINE MemberOffset AlignFieldOffset(MemberOffset field_offset) { static_assert(kSize == 2u || kSize == 4u || kSize == 8u); if (!IsAligned(field_offset.Uint32Value())) { uint32_t gap_start = field_offset.Uint32Value(); field_offset = MemberOffset(RoundUp(gap_start, kSize)); AddGaps(gap_start, field_offset.Uint32Value()); } return field_offset; } template bool HasGap() const { static_assert(kSize == 1u || kSize == 2u || kSize == 4u); return (kSize == 1u && gap1_offset_ != kNoOffset) || (kSize <= 2u && gap2_offset_ != kNoOffset) || gap4_offset_ != kNoOffset; } template MemberOffset ReleaseGap() { static_assert(kSize == 1u || kSize == 2u || kSize == 4u); uint32_t result; if (kSize == 1u && gap1_offset_ != kNoOffset) { DCHECK(gap2_offset_ == kNoOffset || gap2_offset_ > gap1_offset_); DCHECK(gap4_offset_ == kNoOffset || gap4_offset_ > gap1_offset_); result = gap1_offset_; gap1_offset_ = kNoOffset; } else if (kSize <= 2u && gap2_offset_ != kNoOffset) { DCHECK(gap4_offset_ == kNoOffset || gap4_offset_ > gap2_offset_); result = gap2_offset_; gap2_offset_ = kNoOffset; if (kSize < 2u) { AddGaps<1u>(result + kSize, result + 2u); } } else { DCHECK_NE(gap4_offset_, kNoOffset); result = gap4_offset_; gap4_offset_ = kNoOffset; if (kSize < 4u) { AddGaps(result + kSize, result + 4u); } } return MemberOffset(result); } private: template void AddGaps(uint32_t gap_start, uint32_t gap_end) { if ((kGapsToCheck & 1u) != 0u) { DCHECK_LT(gap_start, gap_end); DCHECK_ALIGNED(gap_end, 2u); if ((gap_start & 1u) != 0u) { DCHECK_EQ(gap1_offset_, kNoOffset); gap1_offset_ = gap_start; gap_start += 1u; if (kGapsToCheck == 1u || gap_start == gap_end) { DCHECK_EQ(gap_start, gap_end); return; } } } if ((kGapsToCheck & 2u) != 0u) { DCHECK_LT(gap_start, gap_end); DCHECK_ALIGNED(gap_start, 2u); DCHECK_ALIGNED(gap_end, 4u); if ((gap_start & 2u) != 0u) { DCHECK_EQ(gap2_offset_, kNoOffset); gap2_offset_ = gap_start; gap_start += 2u; if (kGapsToCheck <= 3u || gap_start == gap_end) { DCHECK_EQ(gap_start, gap_end); return; } } } if ((kGapsToCheck & 4u) != 0u) { DCHECK_LT(gap_start, gap_end); DCHECK_ALIGNED(gap_start, 4u); DCHECK_ALIGNED(gap_end, 8u); DCHECK_EQ(gap_start + 4u, gap_end); DCHECK_EQ(gap4_offset_, kNoOffset); gap4_offset_ = gap_start; return; } DCHECK(false) << "Remaining gap: " << gap_start << " to " << gap_end << " after checking " << kGapsToCheck; } static constexpr uint32_t kNoOffset = static_cast(-1); uint32_t gap4_offset_ = kNoOffset; uint32_t gap2_offset_ = kNoOffset; uint32_t gap1_offset_ = kNoOffset; }; template ALWAYS_INLINE MemberOffset ClassLinker::LinkFieldsHelper::AssignFieldOffset(ArtField* field, MemberOffset field_offset) { DCHECK_ALIGNED(field_offset.Uint32Value(), kSize); DCHECK_EQ(Primitive::ComponentSize(field->GetTypeAsPrimitiveType()), kSize); field->SetOffset(field_offset); return MemberOffset(field_offset.Uint32Value() + kSize); } bool ClassLinker::LinkFieldsHelper::LinkFields(ClassLinker* class_linker, Thread* self, Handle klass, bool is_static, size_t* class_size) { self->AllowThreadSuspension(); const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields(); LengthPrefixedArray* const fields = is_static ? klass->GetSFieldsPtr() : klass->GetIFieldsPtr(); // Initialize field_offset MemberOffset field_offset(0); if (is_static) { field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking( class_linker->GetImagePointerSize()); } else { ObjPtr super_class = klass->GetSuperClass(); if (super_class != nullptr) { CHECK(super_class->IsResolved()) << klass->PrettyClass() << " " << super_class->PrettyClass(); field_offset = MemberOffset(super_class->GetObjectSize()); } } CHECK_EQ(num_fields == 0, fields == nullptr) << klass->PrettyClass(); // we want a relatively stable order so that adding new fields // minimizes disruption of C++ version such as Class and Method. // // The overall sort order order is: // 1) All object reference fields, sorted alphabetically. // 2) All java long (64-bit) integer fields, sorted alphabetically. // 3) All java double (64-bit) floating point fields, sorted alphabetically. // 4) All java int (32-bit) integer fields, sorted alphabetically. // 5) All java float (32-bit) floating point fields, sorted alphabetically. // 6) All java char (16-bit) integer fields, sorted alphabetically. // 7) All java short (16-bit) integer fields, sorted alphabetically. // 8) All java boolean (8-bit) integer fields, sorted alphabetically. // 9) All java byte (8-bit) integer fields, sorted alphabetically. // // (References are first to increase the chance of reference visiting // being able to take a fast path using a bitmap of references at the // start of the object, see `Class::reference_instance_offsets_`.) // // Once the fields are sorted in this order we will attempt to fill any gaps // that might be present in the memory layout of the structure. // Note that we shall not fill gaps between the superclass fields. // Collect fields and their "type order index" (see numbered points above). const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension( "Using plain ArtField references"); constexpr size_t kStackBufferEntries = 64; // Avoid allocations for small number of fields. FieldTypeOrderAndIndex stack_buffer[kStackBufferEntries]; std::vector heap_buffer; ArrayRef sorted_fields; if (num_fields <= kStackBufferEntries) { sorted_fields = ArrayRef(stack_buffer, num_fields); } else { heap_buffer.resize(num_fields); sorted_fields = ArrayRef(heap_buffer); } size_t num_reference_fields = 0; size_t primitive_fields_start = num_fields; DCHECK_LE(num_fields, 1u << 16); for (size_t i = 0; i != num_fields; ++i) { ArtField* field = &fields->At(i); const char* descriptor = field->GetTypeDescriptor(); FieldTypeOrder field_type_order = FieldTypeOrderFromFirstDescriptorCharacter(descriptor[0]); uint16_t field_index = dchecked_integral_cast(i); // Insert references to the start, other fields to the end. DCHECK_LT(num_reference_fields, primitive_fields_start); if (field_type_order == FieldTypeOrder::kReference) { sorted_fields[num_reference_fields] = { field_type_order, field_index }; ++num_reference_fields; } else { --primitive_fields_start; sorted_fields[primitive_fields_start] = { field_type_order, field_index }; } } DCHECK_EQ(num_reference_fields, primitive_fields_start); // Reference fields are already sorted by field index (and dex field index). DCHECK(std::is_sorted( sorted_fields.begin(), sorted_fields.begin() + num_reference_fields, [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* lhs_field = &fields->At(lhs.field_index); ArtField* rhs_field = &fields->At(rhs.field_index); CHECK_EQ(lhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_EQ(rhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_EQ(lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(), lhs.field_index < rhs.field_index); return lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(); })); // Primitive fields were stored in reverse order of their field index (and dex field index). DCHECK(std::is_sorted( sorted_fields.begin() + primitive_fields_start, sorted_fields.end(), [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* lhs_field = &fields->At(lhs.field_index); ArtField* rhs_field = &fields->At(rhs.field_index); CHECK_NE(lhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_NE(rhs_field->GetTypeAsPrimitiveType(), Primitive::kPrimNot); CHECK_EQ(lhs_field->GetDexFieldIndex() > rhs_field->GetDexFieldIndex(), lhs.field_index > rhs.field_index); return lhs.field_index > rhs.field_index; })); // Sort the primitive fields by the field type order, then field index. std::sort(sorted_fields.begin() + primitive_fields_start, sorted_fields.end(), [](const auto& lhs, const auto& rhs) { if (lhs.field_type_order != rhs.field_type_order) { return lhs.field_type_order < rhs.field_type_order; } else { return lhs.field_index < rhs.field_index; } }); // Primitive fields are now sorted by field size (descending), then type, then field index. DCHECK(std::is_sorted( sorted_fields.begin() + primitive_fields_start, sorted_fields.end(), [fields](const auto& lhs, const auto& rhs) REQUIRES_SHARED(Locks::mutator_lock_) { ArtField* lhs_field = &fields->At(lhs.field_index); ArtField* rhs_field = &fields->At(rhs.field_index); Primitive::Type lhs_type = lhs_field->GetTypeAsPrimitiveType(); CHECK_NE(lhs_type, Primitive::kPrimNot); Primitive::Type rhs_type = rhs_field->GetTypeAsPrimitiveType(); CHECK_NE(rhs_type, Primitive::kPrimNot); if (lhs_type != rhs_type) { size_t lhs_size = Primitive::ComponentSize(lhs_type); size_t rhs_size = Primitive::ComponentSize(rhs_type); return (lhs_size != rhs_size) ? (lhs_size > rhs_size) : (lhs_type < rhs_type); } else { return lhs_field->GetDexFieldIndex() < rhs_field->GetDexFieldIndex(); } })); // Process reference fields. FieldGaps field_gaps; size_t index = 0u; if (num_reference_fields != 0u) { constexpr size_t kReferenceSize = sizeof(mirror::HeapReference); field_offset = field_gaps.AlignFieldOffset(field_offset); for (; index != num_reference_fields; ++index) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset(field, field_offset); } } // Process 64-bit fields. if (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast64BitType) { field_offset = field_gaps.AlignFieldOffset<8u>(field_offset); while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast64BitType) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<8u>(field, field_offset); ++index; } } // Process 32-bit fields. if (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast32BitType) { field_offset = field_gaps.AlignFieldOffset<4u>(field_offset); if (field_gaps.HasGap<4u>()) { ArtField* field = &fields->At(sorted_fields[index].field_index); AssignFieldOffset<4u>(field, field_gaps.ReleaseGap<4u>()); // Ignore return value. ++index; DCHECK(!field_gaps.HasGap<4u>()); // There can be only one gap for a 32-bit field. } while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast32BitType) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<4u>(field, field_offset); ++index; } } // Process 16-bit fields. if (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType) { field_offset = field_gaps.AlignFieldOffset<2u>(field_offset); while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType && field_gaps.HasGap<2u>()) { ArtField* field = &fields->At(sorted_fields[index].field_index); AssignFieldOffset<2u>(field, field_gaps.ReleaseGap<2u>()); // Ignore return value. ++index; } while (index != num_fields && sorted_fields[index].field_type_order <= FieldTypeOrder::kLast16BitType) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<2u>(field, field_offset); ++index; } } // Process 8-bit fields. for (; index != num_fields && field_gaps.HasGap<1u>(); ++index) { ArtField* field = &fields->At(sorted_fields[index].field_index); AssignFieldOffset<1u>(field, field_gaps.ReleaseGap<1u>()); // Ignore return value. } for (; index != num_fields; ++index) { ArtField* field = &fields->At(sorted_fields[index].field_index); field_offset = AssignFieldOffset<1u>(field, field_offset); } self->EndAssertNoThreadSuspension(old_no_suspend_cause); // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it. DCHECK_IMPLIES(class_linker->init_done_, !klass->DescriptorEquals("Ljava/lang/ref/Reference;")); if (!is_static && UNLIKELY(!class_linker->init_done_) && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) { // We know there are no non-reference fields in the Reference classes, and we know // that 'referent' is alphabetically last, so this is easy... CHECK_EQ(num_reference_fields, num_fields) << klass->PrettyClass(); CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent") << klass->PrettyClass(); --num_reference_fields; } size_t size = field_offset.Uint32Value(); // Update klass if (is_static) { klass->SetNumReferenceStaticFields(num_reference_fields); *class_size = size; } else { klass->SetNumReferenceInstanceFields(num_reference_fields); ObjPtr super_class = klass->GetSuperClass(); if (num_reference_fields == 0 || super_class == nullptr) { // object has one reference field, klass, but we ignore it since we always visit the class. // super_class is null iff the class is java.lang.Object. if (super_class == nullptr || (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) { klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields); } } if (kIsDebugBuild) { DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;")); size_t total_reference_instance_fields = 0; ObjPtr cur_super = klass.Get(); while (cur_super != nullptr) { total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking(); cur_super = cur_super->GetSuperClass(); } if (super_class == nullptr) { CHECK_EQ(total_reference_instance_fields, 1u) << klass->PrettyDescriptor(); } else { // Check that there is at least num_reference_fields other than Object.class. CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields) << klass->PrettyClass(); } } if (!klass->IsVariableSize()) { std::string temp; DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp); size_t previous_size = klass->GetObjectSize(); if (previous_size != 0) { // Make sure that we didn't originally have an incorrect size. CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp); } klass->SetObjectSize(size); } } if (kIsDebugBuild) { // Make sure that the fields array is ordered by name but all reference // offsets are at the beginning as far as alignment allows. MemberOffset start_ref_offset = is_static ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(class_linker->image_pointer_size_) : klass->GetFirstReferenceInstanceFieldOffset(); MemberOffset end_ref_offset(start_ref_offset.Uint32Value() + num_reference_fields * sizeof(mirror::HeapReference)); MemberOffset current_ref_offset = start_ref_offset; for (size_t i = 0; i < num_fields; i++) { ArtField* field = &fields->At(i); VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance") << " class=" << klass->PrettyClass() << " field=" << field->PrettyField() << " offset=" << field->GetOffsetDuringLinking(); if (i != 0) { ArtField* const prev_field = &fields->At(i - 1); // NOTE: The field names can be the same. This is not possible in the Java language // but it's valid Java/dex bytecode and for example proguard can generate such bytecode. DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0); } Primitive::Type type = field->GetTypeAsPrimitiveType(); bool is_primitive = type != Primitive::kPrimNot; if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") && strcmp("referent", field->GetName()) == 0) { is_primitive = true; // We lied above, so we have to expect a lie here. } MemberOffset offset = field->GetOffsetDuringLinking(); if (is_primitive) { if (offset.Uint32Value() < end_ref_offset.Uint32Value()) { // Shuffled before references. size_t type_size = Primitive::ComponentSize(type); CHECK_LT(type_size, sizeof(mirror::HeapReference)); CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value()); CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value()); CHECK(!IsAligned)>(offset.Uint32Value())); } } else { CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value()); current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() + sizeof(mirror::HeapReference)); } } CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value()); } return true; } bool ClassLinker::LinkInstanceFields(Thread* self, Handle klass) { CHECK(klass != nullptr); return LinkFieldsHelper::LinkFields(this, self, klass, false, nullptr); } bool ClassLinker::LinkStaticFields(Thread* self, Handle klass, size_t* class_size) { CHECK(klass != nullptr); return LinkFieldsHelper::LinkFields(this, self, klass, true, class_size); } enum class RecordElementType : uint8_t { kNames = 0, kTypes = 1, kSignatures = 2, kAnnotationVisibilities = 3, kAnnotations = 4 }; static const char* kRecordElementNames[] = {"componentNames", "componentTypes", "componentSignatures", "componentAnnotationVisibilities", "componentAnnotations"}; class RecordAnnotationVisitor final : public annotations::AnnotationVisitor { public: RecordAnnotationVisitor() {} bool ValidateCounts() { if (is_error_) { return false; } // Verify the counts. bool annotation_element_exists = (signatures_count_ != UINT32_MAX) || (annotations_count_ != UINT32_MAX); if (count_ >= 2) { SetErrorMsg("Record class can't have more than one @Record Annotation"); } else if (names_count_ == UINT32_MAX) { SetErrorMsg("componentNames element is required"); } else if (types_count_ == UINT32_MAX) { SetErrorMsg("componentTypes element is required"); } else if (names_count_ != types_count_) { // Every component must have a name and a type. SetErrorMsg(StringPrintf( "componentTypes is expected to have %i, but has %i types", names_count_, types_count_)); // The other 3 elements are optional, but is expected to have the same count if it exists. } else if (signatures_count_ != UINT32_MAX && signatures_count_ != names_count_) { SetErrorMsg(StringPrintf("componentSignatures size is %i, but is expected to be %i", signatures_count_, names_count_)); } else if (annotation_element_exists && visibilities_count_ != names_count_) { SetErrorMsg( StringPrintf("componentAnnotationVisibilities size is %i, but is expected to be %i", visibilities_count_, names_count_)); } else if (annotation_element_exists && annotations_count_ != names_count_) { SetErrorMsg(StringPrintf("componentAnnotations size is %i, but is expected to be %i", annotations_count_, names_count_)); } return !is_error_; } const std::string& GetErrorMsg() { return error_msg_; } bool IsRecordAnnotationFound() { return count_ != 0; } annotations::VisitorStatus VisitAnnotation(const char* descriptor, uint8_t visibility) override { if (is_error_) { return annotations::VisitorStatus::kVisitBreak; } if (visibility != DexFile::kDexVisibilitySystem) { return annotations::VisitorStatus::kVisitNext; } if (strcmp(descriptor, "Ldalvik/annotation/Record;") != 0) { return annotations::VisitorStatus::kVisitNext; } count_ += 1; if (count_ >= 2) { return annotations::VisitorStatus::kVisitBreak; } return annotations::VisitorStatus::kVisitInner; } annotations::VisitorStatus VisitAnnotationElement(const char* element_name, uint8_t type, [[maybe_unused]] const JValue& value) override { if (is_error_) { return annotations::VisitorStatus::kVisitBreak; } RecordElementType visiting_type; uint32_t* element_count; if (strcmp(element_name, "componentNames") == 0) { visiting_type = RecordElementType::kNames; element_count = &names_count_; } else if (strcmp(element_name, "componentTypes") == 0) { visiting_type = RecordElementType::kTypes; element_count = &types_count_; } else if (strcmp(element_name, "componentSignatures") == 0) { visiting_type = RecordElementType::kSignatures; element_count = &signatures_count_; } else if (strcmp(element_name, "componentAnnotationVisibilities") == 0) { visiting_type = RecordElementType::kAnnotationVisibilities; element_count = &visibilities_count_; } else if (strcmp(element_name, "componentAnnotations") == 0) { visiting_type = RecordElementType::kAnnotations; element_count = &annotations_count_; } else { // ignore this element that could be introduced in the future ART. return annotations::VisitorStatus::kVisitNext; } if ((*element_count) != UINT32_MAX) { SetErrorMsg(StringPrintf("Two %s annotation elements are found but only one is expected", kRecordElementNames[static_cast(visiting_type)])); return annotations::VisitorStatus::kVisitBreak; } if (type != DexFile::kDexAnnotationArray) { SetErrorMsg(StringPrintf("%s must be array type", element_name)); return annotations::VisitorStatus::kVisitBreak; } *element_count = 0; visiting_type_ = visiting_type; return annotations::VisitorStatus::kVisitInner; } annotations::VisitorStatus VisitArrayElement(uint8_t depth, uint32_t index, uint8_t type, [[maybe_unused]] const JValue& value) override { if (is_error_) { return annotations::VisitorStatus::kVisitBreak; } switch (visiting_type_) { case RecordElementType::kNames: { if (depth == 0) { if (!ExpectedTypeOrError( type, DexFile::kDexAnnotationString, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } names_count_++; return annotations::VisitorStatus::kVisitNext; } break; } case RecordElementType::kTypes: { if (depth == 0) { if (!ExpectedTypeOrError( type, DexFile::kDexAnnotationType, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } types_count_++; return annotations::VisitorStatus::kVisitNext; } break; } case RecordElementType::kSignatures: { if (depth == 0) { // kDexAnnotationNull implies no generic signature for the component. if (type != DexFile::kDexAnnotationNull && !ExpectedTypeOrError( type, DexFile::kDexAnnotationAnnotation, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } signatures_count_++; return annotations::VisitorStatus::kVisitNext; } break; } case RecordElementType::kAnnotationVisibilities: { if (depth == 0) { if (!ExpectedTypeOrError( type, DexFile::kDexAnnotationArray, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } visibilities_count_++; return annotations::VisitorStatus::kVisitInner; } else if (depth == 1) { if (!ExpectedTypeOrError( type, DexFile::kDexAnnotationByte, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } return annotations::VisitorStatus::kVisitNext; } break; } case RecordElementType::kAnnotations: { if (depth == 0) { if (!ExpectedTypeOrError( type, DexFile::kDexAnnotationArray, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } annotations_count_++; return annotations::VisitorStatus::kVisitInner; } else if (depth == 1) { if (!ExpectedTypeOrError( type, DexFile::kDexAnnotationAnnotation, visiting_type_, index, depth)) { return annotations::VisitorStatus::kVisitBreak; } return annotations::VisitorStatus::kVisitNext; } break; } } // Should never happen if every next depth level is handled above whenever kVisitInner is // returned. DCHECK(false) << StringPrintf("Unexpected depth %i for element %s", depth, kRecordElementNames[static_cast(visiting_type_)]); return annotations::VisitorStatus::kVisitBreak; } private: bool is_error_ = false; uint32_t count_ = 0; uint32_t names_count_ = UINT32_MAX; uint32_t types_count_ = UINT32_MAX; uint32_t signatures_count_ = UINT32_MAX; uint32_t visibilities_count_ = UINT32_MAX; uint32_t annotations_count_ = UINT32_MAX; std::string error_msg_; RecordElementType visiting_type_; inline bool ExpectedTypeOrError(uint8_t type, uint8_t expected, RecordElementType visiting_type, uint8_t depth, uint32_t index) { if (type == expected) { return true; } SetErrorMsg(StringPrintf( "Expect 0x%02x type but got 0x%02x at the index %i and depth %i for the element %s", expected, type, index, depth, kRecordElementNames[static_cast(visiting_type)])); return false; } void SetErrorMsg(const std::string& msg) { is_error_ = true; error_msg_ = msg; } DISALLOW_COPY_AND_ASSIGN(RecordAnnotationVisitor); }; /** * Set kClassFlagRecord and verify if klass is a record class. * If the verification fails, a pending java exception is thrown. * * @return false if verification fails. If klass isn't a record class, * it should always return true. */ bool ClassLinker::VerifyRecordClass(Handle klass, ObjPtr super) { CHECK(klass != nullptr); // First, we check the conditions specified in java.lang.Class#isRecord(). // If any of the conditions isn't fulfilled, it's not a record class and // ART should treat it as a normal class even if it's inherited from java.lang.Record. if (!klass->IsFinal()) { return true; } if (super == nullptr) { return true; } // Compare the string directly when this ClassLinker is initializing before // WellKnownClasses initializes if (WellKnownClasses::java_lang_Record == nullptr) { if (!super->DescriptorEquals("Ljava/lang/Record;")) { return true; } } else { ObjPtr java_lang_Record = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Record); if (super.Ptr() != java_lang_Record.Ptr()) { return true; } } // Verify @dalvik.annotation.Record // The annotation has a mandatory element componentNames[] and componentTypes[] of the same size. // componentSignatures[], componentAnnotationVisibilities[][], componentAnnotations[][] are // optional, but should have the same size if it exists. RecordAnnotationVisitor visitor; annotations::VisitClassAnnotations(klass, &visitor); if (!visitor.IsRecordAnnotationFound()) { return true; } if (!visitor.ValidateCounts()) { ThrowClassFormatError(klass.Get(), "%s", visitor.GetErrorMsg().c_str()); return false; } // Set kClassFlagRecord. klass->SetRecordClass(); return true; } // Set the bitmap of reference instance field offsets. void ClassLinker::CreateReferenceInstanceOffsets(Handle klass) { uint32_t reference_offsets = 0; ObjPtr super_class = klass->GetSuperClass(); // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially). if (super_class != nullptr) { reference_offsets = super_class->GetReferenceInstanceOffsets(); // Compute reference offsets unless our superclass overflowed. if (reference_offsets != mirror::Class::kClassWalkSuper) { size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking(); if (num_reference_fields != 0u) { // All of the fields that contain object references are guaranteed be grouped in memory // starting at an appropriately aligned address after super class object data. uint32_t start_offset = RoundUp(super_class->GetObjectSize(), sizeof(mirror::HeapReference)); uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) / sizeof(mirror::HeapReference); if (start_bit + num_reference_fields > 32) { reference_offsets = mirror::Class::kClassWalkSuper; } else { reference_offsets |= (0xffffffffu << start_bit) & (0xffffffffu >> (32 - (start_bit + num_reference_fields))); } } } } klass->SetReferenceInstanceOffsets(reference_offsets); } ObjPtr ClassLinker::DoResolveString(dex::StringIndex string_idx, ObjPtr dex_cache) { StackHandleScope<1> hs(Thread::Current()); Handle h_dex_cache(hs.NewHandle(dex_cache)); return DoResolveString(string_idx, h_dex_cache); } ObjPtr ClassLinker::DoResolveString(dex::StringIndex string_idx, Handle dex_cache) { const DexFile& dex_file = *dex_cache->GetDexFile(); uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); ObjPtr string = intern_table_->InternStrong(utf16_length, utf8_data); if (string != nullptr) { dex_cache->SetResolvedString(string_idx, string); } return string; } ObjPtr ClassLinker::DoLookupString(dex::StringIndex string_idx, ObjPtr dex_cache) { DCHECK(dex_cache != nullptr); const DexFile& dex_file = *dex_cache->GetDexFile(); uint32_t utf16_length; const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); ObjPtr string = intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data); if (string != nullptr) { dex_cache->SetResolvedString(string_idx, string); } return string; } ObjPtr ClassLinker::DoLookupResolvedType(dex::TypeIndex type_idx, ObjPtr referrer) { return DoLookupResolvedType(type_idx, referrer->GetDexCache(), referrer->GetClassLoader()); } ObjPtr ClassLinker::DoLookupResolvedType(dex::TypeIndex type_idx, ObjPtr dex_cache, ObjPtr class_loader) { DCHECK(dex_cache->GetClassLoader() == class_loader); const DexFile& dex_file = *dex_cache->GetDexFile(); const char* descriptor = dex_file.StringByTypeIdx(type_idx); ObjPtr type = LookupResolvedType(descriptor, class_loader); if (type != nullptr) { DCHECK(type->IsResolved()); dex_cache->SetResolvedType(type_idx, type); } return type; } ObjPtr ClassLinker::LookupResolvedType(const char* descriptor, ObjPtr class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; ObjPtr type = nullptr; if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. type = LookupPrimitiveClass(descriptor[0]); } else { Thread* const self = Thread::Current(); DCHECK(self != nullptr); const size_t hash = ComputeModifiedUtf8Hash(descriptor); // Find the class in the loaded classes table. type = LookupClass(self, descriptor, hash, class_loader); } return (type != nullptr && type->IsResolved()) ? type : nullptr; } template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, RefType referrer) { StackHandleScope<2> hs(Thread::Current()); Handle dex_cache(hs.NewHandle(referrer->GetDexCache())); Handle class_loader(hs.NewHandle(referrer->GetClassLoader())); return DoResolveType(type_idx, dex_cache, class_loader); } // Instantiate the above. template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, ArtField* referrer); template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, ArtMethod* referrer); template ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, ObjPtr referrer); ObjPtr ClassLinker::DoResolveType(dex::TypeIndex type_idx, Handle dex_cache, Handle class_loader) { DCHECK(dex_cache->GetClassLoader() == class_loader.Get()); Thread* self = Thread::Current(); const char* descriptor = dex_cache->GetDexFile()->StringByTypeIdx(type_idx); ObjPtr resolved = FindClass(self, descriptor, class_loader); if (resolved != nullptr) { // TODO: we used to throw here if resolved's class loader was not the // boot class loader. This was to permit different classes with the // same name to be loaded simultaneously by different loaders dex_cache->SetResolvedType(type_idx, resolved); } else { CHECK(self->IsExceptionPending()) << "Expected pending exception for failed resolution of: " << descriptor; // Convert a ClassNotFoundException to a NoClassDefFoundError. StackHandleScope<1> hs(self); Handle cause(hs.NewHandle(self->GetException())); if (cause->InstanceOf(GetClassRoot(ClassRoot::kJavaLangClassNotFoundException, this))) { DCHECK(resolved == nullptr); // No Handle needed to preserve resolved. self->ClearException(); ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor); self->GetException()->SetCause(cause.Get()); } } DCHECK((resolved == nullptr) || resolved->IsResolved()) << resolved->PrettyDescriptor() << " " << resolved->GetStatus(); return resolved; } ArtMethod* ClassLinker::FindResolvedMethod(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t method_idx) { DCHECK(dex_cache->GetClassLoader() == class_loader); // Search for the method using dex_cache and method_idx. The Class::Find*Method() // functions can optimize the search if the dex_cache is the same as the DexCache // of the class, with fall-back to name and signature search otherwise. ArtMethod* resolved = nullptr; if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(dex_cache, method_idx, image_pointer_size_); } else { resolved = klass->FindClassMethod(dex_cache, method_idx, image_pointer_size_); } DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr); if (resolved != nullptr && // We pass AccessMethod::kNone instead of kLinking to not warn yet on the // access, as we'll be looking if the method can be accessed through an // interface. hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kNone)) { // The resolved method that we have found cannot be accessed due to // hiddenapi (typically it is declared up the hierarchy and is not an SDK // method). Try to find an interface method from the implemented interfaces which is // part of the SDK. ArtMethod* itf_method = klass->FindAccessibleInterfaceMethod(resolved, image_pointer_size_); if (itf_method == nullptr) { // No interface method. Call ShouldDenyAccessToMember again but this time // with AccessMethod::kLinking to ensure that an appropriate warning is // logged. hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kLinking); resolved = nullptr; } else { // We found an interface method that is accessible, continue with the resolved method. } } if (resolved != nullptr) { // In case of jmvti, the dex file gets verified before being registered, so first // check if it's registered before checking class tables. const DexFile& dex_file = *dex_cache->GetDexFile(); DCHECK_IMPLIES( IsDexFileRegistered(Thread::Current(), dex_file), FindClassTable(Thread::Current(), dex_cache) == ClassTableForClassLoader(class_loader)) << "DexFile referrer: " << dex_file.GetLocation() << " ClassLoader: " << DescribeLoaders(class_loader, ""); // Be a good citizen and update the dex cache to speed subsequent calls. dex_cache->SetResolvedMethod(method_idx, resolved); // Disable the following invariant check as the verifier breaks it. b/73760543 // const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); // DCHECK(LookupResolvedType(method_id.class_idx_, dex_cache, class_loader) != nullptr) // << "Method: " << resolved->PrettyMethod() << ", " // << "Class: " << klass->PrettyClass() << " (" << klass->GetStatus() << "), " // << "DexFile referrer: " << dex_file.GetLocation(); } return resolved; } // Returns true if `method` is either null or hidden. // Does not print any warnings if it is hidden. static bool CheckNoSuchMethod(ArtMethod* method, ObjPtr dex_cache, ObjPtr class_loader) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(dex_cache->GetClassLoader().Ptr() == class_loader.Ptr()); return method == nullptr || hiddenapi::ShouldDenyAccessToMember(method, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kNone); // no warnings } ArtMethod* ClassLinker::FindIncompatibleMethod(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t method_idx) { DCHECK(dex_cache->GetClassLoader() == class_loader); if (klass->IsInterface()) { ArtMethod* method = klass->FindClassMethod(dex_cache, method_idx, image_pointer_size_); return CheckNoSuchMethod(method, dex_cache, class_loader) ? nullptr : method; } else { // If there was an interface method with the same signature, we would have // found it in the "copied" methods. Only DCHECK that the interface method // really does not exist. if (kIsDebugBuild) { ArtMethod* method = klass->FindInterfaceMethod(dex_cache, method_idx, image_pointer_size_); CHECK(CheckNoSuchMethod(method, dex_cache, class_loader) || (klass->FindAccessibleInterfaceMethod(method, image_pointer_size_) == nullptr)); } return nullptr; } } ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(uint32_t method_idx, Handle dex_cache, Handle class_loader) { DCHECK(dex_cache->GetClassLoader() == class_loader.Get()); ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx); Thread::PoisonObjectPointersIfDebug(); if (resolved != nullptr) { DCHECK(!resolved->IsRuntimeMethod()); DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); return resolved; } // Fail, get the declaring class. const dex::MethodId& method_id = dex_cache->GetDexFile()->GetMethodId(method_idx); ObjPtr klass = ResolveType(method_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { Thread::Current()->AssertPendingException(); return nullptr; } return FindResolvedMethod(klass, dex_cache.Get(), class_loader.Get(), method_idx); } ArtField* ClassLinker::LookupResolvedField(uint32_t field_idx, ObjPtr dex_cache, ObjPtr class_loader, bool is_static) { DCHECK(dex_cache->GetClassLoader().Ptr() == class_loader.Ptr()); const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); ObjPtr klass = dex_cache->GetResolvedType(field_id.class_idx_); if (klass == nullptr) { klass = LookupResolvedType(field_id.class_idx_, dex_cache, class_loader); } if (klass == nullptr) { // The class has not been resolved yet, so the field is also unresolved. return nullptr; } DCHECK(klass->IsResolved()); return FindResolvedField(klass, dex_cache, class_loader, field_idx, is_static); } ArtField* ClassLinker::ResolveFieldJLS(uint32_t field_idx, Handle dex_cache, Handle class_loader) { DCHECK(dex_cache != nullptr); DCHECK(dex_cache->GetClassLoader() == class_loader.Get()); ArtField* resolved = dex_cache->GetResolvedField(field_idx); Thread::PoisonObjectPointersIfDebug(); if (resolved != nullptr) { return resolved; } const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::FieldId& field_id = dex_file.GetFieldId(field_idx); ObjPtr klass = ResolveType(field_id.class_idx_, dex_cache, class_loader); if (klass == nullptr) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } resolved = FindResolvedFieldJLS(klass, dex_cache.Get(), class_loader.Get(), field_idx); if (resolved == nullptr) { const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); ThrowNoSuchFieldError("", klass, type, name); } return resolved; } ArtField* ClassLinker::FindResolvedField(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t field_idx, bool is_static) { DCHECK(dex_cache->GetClassLoader() == class_loader); ArtField* resolved = is_static ? klass->FindStaticField(dex_cache, field_idx) : klass->FindInstanceField(dex_cache, field_idx); if (resolved != nullptr && hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kLinking)) { resolved = nullptr; } if (resolved != nullptr) { dex_cache->SetResolvedField(field_idx, resolved); } return resolved; } ArtField* ClassLinker::FindResolvedFieldJLS(ObjPtr klass, ObjPtr dex_cache, ObjPtr class_loader, uint32_t field_idx) { DCHECK(dex_cache->GetClassLoader().Ptr() == class_loader.Ptr()); ArtField* resolved = klass->FindField(dex_cache, field_idx); if (resolved != nullptr && hiddenapi::ShouldDenyAccessToMember(resolved, hiddenapi::AccessContext(class_loader, dex_cache), hiddenapi::AccessMethod::kLinking)) { resolved = nullptr; } if (resolved != nullptr) { dex_cache->SetResolvedField(field_idx, resolved); } return resolved; } ObjPtr ClassLinker::ResolveMethodType( Thread* self, dex::ProtoIndex proto_idx, Handle dex_cache, Handle class_loader) { DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); DCHECK(dex_cache != nullptr); DCHECK(dex_cache->GetClassLoader() == class_loader.Get()); ObjPtr resolved = dex_cache->GetResolvedMethodType(proto_idx); if (resolved != nullptr) { return resolved; } StackHandleScope<4> hs(self); // First resolve the return type. const DexFile& dex_file = *dex_cache->GetDexFile(); const dex::ProtoId& proto_id = dex_file.GetProtoId(proto_idx); Handle return_type(hs.NewHandle( ResolveType(proto_id.return_type_idx_, dex_cache, class_loader))); if (return_type == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } // Then resolve the argument types. // // TODO: Is there a better way to figure out the number of method arguments // other than by looking at the shorty ? const size_t num_method_args = strlen(dex_file.StringDataByIdx(proto_id.shorty_idx_)) - 1; ObjPtr array_of_class = GetClassRoot>(this); Handle> method_params(hs.NewHandle( mirror::ObjectArray::Alloc(self, array_of_class, num_method_args))); if (method_params == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } DexFileParameterIterator it(dex_file, proto_id); int32_t i = 0; MutableHandle param_class = hs.NewHandle(nullptr); for (; it.HasNext(); it.Next()) { const dex::TypeIndex type_idx = it.GetTypeIdx(); param_class.Assign(ResolveType(type_idx, dex_cache, class_loader)); if (param_class == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } method_params->Set(i++, param_class.Get()); } DCHECK(!it.HasNext()); Handle type = hs.NewHandle( mirror::MethodType::Create(self, return_type, method_params)); if (type != nullptr) { // Ensure all stores for the newly created MethodType are visible, before we attempt to place // it in the DexCache (b/224733324). std::atomic_thread_fence(std::memory_order_release); dex_cache->SetResolvedMethodType(proto_idx, type.Get()); } return type.Get(); } ObjPtr ClassLinker::ResolveMethodType(Thread* self, dex::ProtoIndex proto_idx, ArtMethod* referrer) { StackHandleScope<2> hs(self); Handle dex_cache(hs.NewHandle(referrer->GetDexCache())); Handle class_loader(hs.NewHandle(referrer->GetClassLoader())); return ResolveMethodType(self, proto_idx, dex_cache, class_loader); } ObjPtr ClassLinker::ResolveMethodHandleForField( Thread* self, const dex::MethodHandleItem& method_handle, ArtMethod* referrer) { DexFile::MethodHandleType handle_type = static_cast(method_handle.method_handle_type_); mirror::MethodHandle::Kind kind; bool is_put; bool is_static; int32_t num_params; switch (handle_type) { case DexFile::MethodHandleType::kStaticPut: { kind = mirror::MethodHandle::Kind::kStaticPut; is_put = true; is_static = true; num_params = 1; break; } case DexFile::MethodHandleType::kStaticGet: { kind = mirror::MethodHandle::Kind::kStaticGet; is_put = false; is_static = true; num_params = 0; break; } case DexFile::MethodHandleType::kInstancePut: { kind = mirror::MethodHandle::Kind::kInstancePut; is_put = true; is_static = false; num_params = 2; break; } case DexFile::MethodHandleType::kInstanceGet: { kind = mirror::MethodHandle::Kind::kInstanceGet; is_put = false; is_static = false; num_params = 1; break; } case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: UNREACHABLE(); } ArtField* target_field = ResolveField(method_handle.field_or_method_idx_, referrer, is_static); if (LIKELY(target_field != nullptr)) { ObjPtr target_class = target_field->GetDeclaringClass(); ObjPtr referring_class = referrer->GetDeclaringClass(); if (UNLIKELY(!referring_class->CanAccessMember(target_class, target_field->GetAccessFlags()))) { ThrowIllegalAccessErrorField(referring_class, target_field); return nullptr; } if (UNLIKELY(is_put && target_field->IsFinal())) { ThrowIllegalAccessErrorField(referring_class, target_field); return nullptr; } } else { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } StackHandleScope<4> hs(self); ObjPtr array_of_class = GetClassRoot>(this); Handle> method_params(hs.NewHandle( mirror::ObjectArray::Alloc(self, array_of_class, num_params))); if (UNLIKELY(method_params == nullptr)) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle constructor_class; Handle return_type; switch (handle_type) { case DexFile::MethodHandleType::kStaticPut: { method_params->Set(0, target_field->ResolveType()); return_type = hs.NewHandle(GetClassRoot(ClassRoot::kPrimitiveVoid, this)); break; } case DexFile::MethodHandleType::kStaticGet: { return_type = hs.NewHandle(target_field->ResolveType()); break; } case DexFile::MethodHandleType::kInstancePut: { method_params->Set(0, target_field->GetDeclaringClass()); method_params->Set(1, target_field->ResolveType()); return_type = hs.NewHandle(GetClassRoot(ClassRoot::kPrimitiveVoid, this)); break; } case DexFile::MethodHandleType::kInstanceGet: { method_params->Set(0, target_field->GetDeclaringClass()); return_type = hs.NewHandle(target_field->ResolveType()); break; } case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: UNREACHABLE(); } for (int32_t i = 0; i < num_params; ++i) { if (UNLIKELY(method_params->Get(i) == nullptr)) { DCHECK(self->IsExceptionPending()); return nullptr; } } if (UNLIKELY(return_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle method_type(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params))); if (UNLIKELY(method_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } uintptr_t target = reinterpret_cast(target_field); return mirror::MethodHandleImpl::Create(self, target, kind, method_type); } ObjPtr ClassLinker::ResolveMethodHandleForMethod( Thread* self, const dex::MethodHandleItem& method_handle, ArtMethod* referrer) { DexFile::MethodHandleType handle_type = static_cast(method_handle.method_handle_type_); mirror::MethodHandle::Kind kind; uint32_t receiver_count = 0; ArtMethod* target_method = nullptr; switch (handle_type) { case DexFile::MethodHandleType::kStaticPut: case DexFile::MethodHandleType::kStaticGet: case DexFile::MethodHandleType::kInstancePut: case DexFile::MethodHandleType::kInstanceGet: UNREACHABLE(); case DexFile::MethodHandleType::kInvokeStatic: { kind = mirror::MethodHandle::Kind::kInvokeStatic; receiver_count = 0; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kStatic); break; } case DexFile::MethodHandleType::kInvokeInstance: { kind = mirror::MethodHandle::Kind::kInvokeVirtual; receiver_count = 1; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kVirtual); break; } case DexFile::MethodHandleType::kInvokeConstructor: { // Constructors are currently implemented as a transform. They // are special cased later in this method. kind = mirror::MethodHandle::Kind::kInvokeTransform; receiver_count = 0; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kDirect); break; } case DexFile::MethodHandleType::kInvokeDirect: { kind = mirror::MethodHandle::Kind::kInvokeDirect; receiver_count = 1; StackHandleScope<2> hs(self); // A constant method handle with type kInvokeDirect can refer to // a method that is private or to a method in a super class. To // disambiguate the two options, we resolve the method ignoring // the invocation type to determine if the method is private. We // then resolve again specifying the intended invocation type to // force the appropriate checks. target_method = ResolveMethodWithoutInvokeType(method_handle.field_or_method_idx_, hs.NewHandle(referrer->GetDexCache()), hs.NewHandle(referrer->GetClassLoader())); if (UNLIKELY(target_method == nullptr)) { break; } if (target_method->IsPrivate()) { kind = mirror::MethodHandle::Kind::kInvokeDirect; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kDirect); } else { kind = mirror::MethodHandle::Kind::kInvokeSuper; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kSuper); if (UNLIKELY(target_method == nullptr)) { break; } // Find the method specified in the parent in referring class // so invoke-super invokes the method in the parent of the // referrer. target_method = referrer->GetDeclaringClass()->FindVirtualMethodForVirtual(target_method, kRuntimePointerSize); } break; } case DexFile::MethodHandleType::kInvokeInterface: { kind = mirror::MethodHandle::Kind::kInvokeInterface; receiver_count = 1; target_method = ResolveMethod(self, method_handle.field_or_method_idx_, referrer, InvokeType::kInterface); break; } } if (UNLIKELY(target_method == nullptr)) { DCHECK(Thread::Current()->IsExceptionPending()); return nullptr; } ObjPtr target_class = target_method->GetDeclaringClass(); ObjPtr referring_class = referrer->GetDeclaringClass(); uint32_t access_flags = target_method->GetAccessFlags(); if (UNLIKELY(!referring_class->CanAccessMember(target_class, access_flags))) { ThrowIllegalAccessErrorMethod(referring_class, target_method); return nullptr; } // Calculate the number of parameters from the method shorty. We add the // receiver count (0 or 1) and deduct one for the return value. uint32_t shorty_length; target_method->GetShorty(&shorty_length); int32_t num_params = static_cast(shorty_length + receiver_count - 1); StackHandleScope<5> hs(self); ObjPtr array_of_class = GetClassRoot>(this); Handle> method_params(hs.NewHandle( mirror::ObjectArray::Alloc(self, array_of_class, num_params))); if (method_params.Get() == nullptr) { DCHECK(self->IsExceptionPending()); return nullptr; } const DexFile* dex_file = referrer->GetDexFile(); const dex::MethodId& method_id = dex_file->GetMethodId(method_handle.field_or_method_idx_); int32_t index = 0; if (receiver_count != 0) { // Insert receiver. Use the class identified in the method handle rather than the declaring // class of the resolved method which may be super class or default interface method // (b/115964401). ObjPtr receiver_class = LookupResolvedType(method_id.class_idx_, referrer); // receiver_class should have been resolved when resolving the target method. DCHECK(receiver_class != nullptr); method_params->Set(index++, receiver_class); } const dex::ProtoId& proto_id = dex_file->GetProtoId(method_id.proto_idx_); DexFileParameterIterator it(*dex_file, proto_id); while (it.HasNext()) { DCHECK_LT(index, num_params); const dex::TypeIndex type_idx = it.GetTypeIdx(); ObjPtr klass = ResolveType(type_idx, referrer); if (nullptr == klass) { DCHECK(self->IsExceptionPending()); return nullptr; } method_params->Set(index++, klass); it.Next(); } Handle return_type = hs.NewHandle(ResolveType(proto_id.return_type_idx_, referrer)); if (UNLIKELY(return_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle method_type(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params))); if (UNLIKELY(method_type.IsNull())) { DCHECK(self->IsExceptionPending()); return nullptr; } if (UNLIKELY(handle_type == DexFile::MethodHandleType::kInvokeConstructor)) { Handle constructor_class = hs.NewHandle(target_method->GetDeclaringClass()); Handle lookup = hs.NewHandle(mirror::MethodHandlesLookup::GetDefault(self)); return lookup->FindConstructor(self, constructor_class, method_type); } uintptr_t target = reinterpret_cast(target_method); return mirror::MethodHandleImpl::Create(self, target, kind, method_type); } ObjPtr ClassLinker::ResolveMethodHandle(Thread* self, uint32_t method_handle_idx, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { const DexFile* const dex_file = referrer->GetDexFile(); const dex::MethodHandleItem& method_handle = dex_file->GetMethodHandle(method_handle_idx); switch (static_cast(method_handle.method_handle_type_)) { case DexFile::MethodHandleType::kStaticPut: case DexFile::MethodHandleType::kStaticGet: case DexFile::MethodHandleType::kInstancePut: case DexFile::MethodHandleType::kInstanceGet: return ResolveMethodHandleForField(self, method_handle, referrer); case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: return ResolveMethodHandleForMethod(self, method_handle, referrer); } } bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const { return (entry_point == GetQuickResolutionStub()) || (quick_resolution_trampoline_ == entry_point); } bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const { return (entry_point == GetQuickToInterpreterBridge()) || (quick_to_interpreter_bridge_trampoline_ == entry_point); } bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const { return (entry_point == GetQuickGenericJniStub()) || (quick_generic_jni_trampoline_ == entry_point); } bool ClassLinker::IsJniDlsymLookupStub(const void* entry_point) const { return entry_point == GetJniDlsymLookupStub() || (jni_dlsym_lookup_trampoline_ == entry_point); } bool ClassLinker::IsJniDlsymLookupCriticalStub(const void* entry_point) const { return entry_point == GetJniDlsymLookupCriticalStub() || (jni_dlsym_lookup_critical_trampoline_ == entry_point); } const void* ClassLinker::GetRuntimeQuickGenericJniStub() const { return GetQuickGenericJniStub(); } void ClassLinker::SetEntryPointsForObsoleteMethod(ArtMethod* method) const { DCHECK(method->IsObsolete()); // We cannot mess with the entrypoints of native methods because they are used to determine how // large the method's quick stack frame is. Without this information we cannot walk the stacks. if (!method->IsNative()) { method->SetEntryPointFromQuickCompiledCode(GetInvokeObsoleteMethodStub()); } } void ClassLinker::DumpForSigQuit(std::ostream& os) { ScopedObjectAccess soa(Thread::Current()); ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_); os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes=" << NumNonZygoteClasses() << "\n"; ReaderMutexLock mu2(soa.Self(), *Locks::dex_lock_); os << "Dumping registered class loaders\n"; size_t class_loader_index = 0; for (const ClassLoaderData& class_loader : class_loaders_) { ObjPtr loader = ObjPtr::DownCast(soa.Self()->DecodeJObject(class_loader.weak_root)); if (loader != nullptr) { os << "#" << class_loader_index++ << " " << loader->GetClass()->PrettyDescriptor() << ": ["; bool saw_one_dex_file = false; for (const auto& entry : dex_caches_) { const DexCacheData& dex_cache = entry.second; if (dex_cache.class_table == class_loader.class_table) { if (saw_one_dex_file) { os << ":"; } saw_one_dex_file = true; os << entry.first->GetLocation(); } } os << "]"; bool found_parent = false; if (loader->GetParent() != nullptr) { size_t parent_index = 0; for (const ClassLoaderData& class_loader2 : class_loaders_) { ObjPtr loader2 = ObjPtr::DownCast( soa.Self()->DecodeJObject(class_loader2.weak_root)); if (loader2 == loader->GetParent()) { os << ", parent #" << parent_index; found_parent = true; break; } parent_index++; } if (!found_parent) { os << ", unregistered parent of type " << loader->GetParent()->GetClass()->PrettyDescriptor(); } } else { os << ", no parent"; } os << "\n"; } } os << "Done dumping class loaders\n"; Runtime* runtime = Runtime::Current(); os << "Classes initialized: " << runtime->GetStat(KIND_GLOBAL_CLASS_INIT_COUNT) << " in " << PrettyDuration(runtime->GetStat(KIND_GLOBAL_CLASS_INIT_TIME)) << "\n"; } class CountClassesVisitor : public ClassLoaderVisitor { public: CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {} void Visit(ObjPtr class_loader) REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) override { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { num_zygote_classes += class_table->NumZygoteClasses(class_loader); num_non_zygote_classes += class_table->NumNonZygoteClasses(class_loader); } } size_t num_zygote_classes; size_t num_non_zygote_classes; }; size_t ClassLinker::NumZygoteClasses() const { CountClassesVisitor visitor; VisitClassLoaders(&visitor); return visitor.num_zygote_classes + boot_class_table_->NumZygoteClasses(nullptr); } size_t ClassLinker::NumNonZygoteClasses() const { CountClassesVisitor visitor; VisitClassLoaders(&visitor); return visitor.num_non_zygote_classes + boot_class_table_->NumNonZygoteClasses(nullptr); } size_t ClassLinker::NumLoadedClasses() { ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); // Only return non zygote classes since these are the ones which apps which care about. return NumNonZygoteClasses(); } pid_t ClassLinker::GetClassesLockOwner() { return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid(); } pid_t ClassLinker::GetDexLockOwner() { return Locks::dex_lock_->GetExclusiveOwnerTid(); } void ClassLinker::SetClassRoot(ClassRoot class_root, ObjPtr klass) { DCHECK(!init_done_); DCHECK(klass != nullptr); DCHECK(klass->GetClassLoader() == nullptr); mirror::ObjectArray* class_roots = class_roots_.Read(); DCHECK(class_roots != nullptr); DCHECK_LT(static_cast(class_root), static_cast(ClassRoot::kMax)); int32_t index = static_cast(class_root); DCHECK(class_roots->Get(index) == nullptr); class_roots->Set(index, klass); } ObjPtr ClassLinker::CreateWellKnownClassLoader( Thread* self, const std::vector& dex_files, Handle loader_class, Handle parent_loader, Handle> shared_libraries, Handle> shared_libraries_after) { CHECK(loader_class.Get() == WellKnownClasses::dalvik_system_PathClassLoader || loader_class.Get() == WellKnownClasses::dalvik_system_DelegateLastClassLoader || loader_class.Get() == WellKnownClasses::dalvik_system_InMemoryDexClassLoader); StackHandleScope<5> hs(self); ArtField* dex_elements_field = WellKnownClasses::dalvik_system_DexPathList_dexElements; Handle dex_elements_class(hs.NewHandle(dex_elements_field->ResolveType())); DCHECK(dex_elements_class != nullptr); DCHECK(dex_elements_class->IsArrayClass()); Handle> h_dex_elements(hs.NewHandle( mirror::ObjectArray::Alloc(self, dex_elements_class.Get(), dex_files.size()))); Handle h_dex_element_class = hs.NewHandle(dex_elements_class->GetComponentType()); ArtField* element_file_field = WellKnownClasses::dalvik_system_DexPathList__Element_dexFile; DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass()); ArtField* cookie_field = WellKnownClasses::dalvik_system_DexFile_cookie; DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->LookupResolvedType()); ArtField* file_name_field = WellKnownClasses::dalvik_system_DexFile_fileName; DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->LookupResolvedType()); // Fill the elements array. int32_t index = 0; for (const DexFile* dex_file : dex_files) { StackHandleScope<4> hs2(self); // CreateWellKnownClassLoader is only used by gtests and compiler. // Index 0 of h_long_array is supposed to be the oat file but we can leave it null. Handle h_long_array = hs2.NewHandle(mirror::LongArray::Alloc( self, kDexFileIndexStart + 1)); DCHECK(h_long_array != nullptr); h_long_array->Set(kDexFileIndexStart, reinterpret_cast64(dex_file)); // Note that this creates a finalizable dalvik.system.DexFile object and a corresponding // FinalizerReference which will never get cleaned up without a started runtime. Handle h_dex_file = hs2.NewHandle( cookie_field->GetDeclaringClass()->AllocObject(self)); DCHECK(h_dex_file != nullptr); cookie_field->SetObject(h_dex_file.Get(), h_long_array.Get()); Handle h_file_name = hs2.NewHandle( mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str())); DCHECK(h_file_name != nullptr); file_name_field->SetObject(h_dex_file.Get(), h_file_name.Get()); Handle h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self)); DCHECK(h_element != nullptr); element_file_field->SetObject(h_element.Get(), h_dex_file.Get()); h_dex_elements->Set(index, h_element.Get()); index++; } DCHECK_EQ(index, h_dex_elements->GetLength()); // Create DexPathList. Handle h_dex_path_list = hs.NewHandle( dex_elements_field->GetDeclaringClass()->AllocObject(self)); DCHECK(h_dex_path_list != nullptr); // Set elements. dex_elements_field->SetObject(h_dex_path_list.Get(), h_dex_elements.Get()); // Create an empty List for the "nativeLibraryDirectories," required for native tests. // Note: this code is uncommon(oatdump)/testing-only, so don't add further WellKnownClasses // elements. { ArtField* native_lib_dirs = dex_elements_field->GetDeclaringClass()-> FindDeclaredInstanceField("nativeLibraryDirectories", "Ljava/util/List;"); DCHECK(native_lib_dirs != nullptr); ObjPtr list_class = FindSystemClass(self, "Ljava/util/ArrayList;"); DCHECK(list_class != nullptr); { StackHandleScope<1> h_list_scope(self); Handle h_list_class(h_list_scope.NewHandle(list_class)); bool list_init = EnsureInitialized(self, h_list_class, true, true); DCHECK(list_init); list_class = h_list_class.Get(); } ObjPtr list_object = list_class->AllocObject(self); // Note: we leave the object uninitialized. This must never leak into any non-testing code, but // is fine for testing. While it violates a Java-code invariant (the elementData field is // normally never null), as long as one does not try to add elements, this will still // work. native_lib_dirs->SetObject(h_dex_path_list.Get(), list_object); } // Create the class loader.. Handle h_class_loader = hs.NewHandle( ObjPtr::DownCast(loader_class->AllocObject(self))); DCHECK(h_class_loader != nullptr); // Set DexPathList. ArtField* path_list_field = WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList; DCHECK(path_list_field != nullptr); path_list_field->SetObject(h_class_loader.Get(), h_dex_path_list.Get()); // Make a pretend boot-classpath. // TODO: Should we scan the image? ArtField* const parent_field = WellKnownClasses::java_lang_ClassLoader_parent; DCHECK(parent_field != nullptr); if (parent_loader.Get() == nullptr) { ObjPtr boot_loader( WellKnownClasses::java_lang_BootClassLoader->AllocObject(self)); parent_field->SetObject(h_class_loader.Get(), boot_loader); } else { parent_field->SetObject(h_class_loader.Get(), parent_loader.Get()); } ArtField* shared_libraries_field = WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoaders; DCHECK(shared_libraries_field != nullptr); shared_libraries_field->SetObject(h_class_loader.Get(), shared_libraries.Get()); ArtField* shared_libraries_after_field = WellKnownClasses::dalvik_system_BaseDexClassLoader_sharedLibraryLoadersAfter; DCHECK(shared_libraries_after_field != nullptr); shared_libraries_after_field->SetObject(h_class_loader.Get(), shared_libraries_after.Get()); return h_class_loader.Get(); } jobject ClassLinker::CreatePathClassLoader(Thread* self, const std::vector& dex_files) { StackHandleScope<3u> hs(self); Handle d_s_pcl = hs.NewHandle(WellKnownClasses::dalvik_system_PathClassLoader.Get()); auto null_parent = hs.NewHandle(nullptr); auto null_libs = hs.NewHandle>(nullptr); ObjPtr class_loader = CreateWellKnownClassLoader(self, dex_files, d_s_pcl, null_parent, null_libs, null_libs); return Runtime::Current()->GetJavaVM()->AddGlobalRef(self, class_loader); } void ClassLinker::DropFindArrayClassCache() { std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot(nullptr)); find_array_class_cache_next_victim_ = 0; } void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const { Thread* const self = Thread::Current(); for (const ClassLoaderData& data : class_loaders_) { // Need to use DecodeJObject so that we get null for cleared JNI weak globals. ObjPtr class_loader = ObjPtr::DownCast( self->DecodeJObject(data.weak_root)); if (class_loader != nullptr) { visitor->Visit(class_loader); } } } void ClassLinker::VisitDexCaches(DexCacheVisitor* visitor) const { Thread* const self = Thread::Current(); for (const auto& it : dex_caches_) { // Need to use DecodeJObject so that we get null for cleared JNI weak globals. ObjPtr dex_cache = ObjPtr::DownCast( self->DecodeJObject(it.second.weak_root)); if (dex_cache != nullptr) { visitor->Visit(dex_cache); } } } void ClassLinker::VisitAllocators(AllocatorVisitor* visitor) const { for (const ClassLoaderData& data : class_loaders_) { LinearAlloc* alloc = data.allocator; if (alloc != nullptr && !visitor->Visit(alloc)) { break; } } } void ClassLinker::InsertDexFileInToClassLoader(ObjPtr dex_file, ObjPtr class_loader) { DCHECK(dex_file != nullptr); Thread* const self = Thread::Current(); WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); ClassTable* const table = ClassTableForClassLoader(class_loader); DCHECK(table != nullptr); if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) { // It was not already inserted, perform the write barrier to let the GC know the class loader's // class table was modified. WriteBarrier::ForEveryFieldWrite(class_loader); } } void ClassLinker::CleanupClassLoaders() { Thread* const self = Thread::Current(); std::list to_delete; // Do the delete outside the lock to avoid lock violation in jit code cache. { WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) { auto this_it = it; ++it; const ClassLoaderData& data = *this_it; // Need to use DecodeJObject so that we get null for cleared JNI weak globals. ObjPtr class_loader = ObjPtr::DownCast(self->DecodeJObject(data.weak_root)); if (class_loader == nullptr) { VLOG(class_linker) << "Freeing class loader"; to_delete.splice(to_delete.end(), class_loaders_, this_it); } } } if (to_delete.empty()) { return; } std::set unregistered_oat_files; JavaVMExt* vm = self->GetJniEnv()->GetVm(); { WriterMutexLock mu(self, *Locks::dex_lock_); for (auto it = dex_caches_.begin(), end = dex_caches_.end(); it != end; ) { const DexFile* dex_file = it->first; const DexCacheData& data = it->second; if (self->DecodeJObject(data.weak_root) == nullptr) { DCHECK(to_delete.end() != std::find_if( to_delete.begin(), to_delete.end(), [&](const ClassLoaderData& cld) { return cld.class_table == data.class_table; })); if (dex_file->GetOatDexFile() != nullptr && dex_file->GetOatDexFile()->GetOatFile() != nullptr && dex_file->GetOatDexFile()->GetOatFile()->IsExecutable()) { unregistered_oat_files.insert(dex_file->GetOatDexFile()->GetOatFile()); } vm->DeleteWeakGlobalRef(self, data.weak_root); it = dex_caches_.erase(it); } else { ++it; } } } { ScopedDebugDisallowReadBarriers sddrb(self); for (ClassLoaderData& data : to_delete) { // CHA unloading analysis and SingleImplementaion cleanups are required. DeleteClassLoader(self, data, /*cleanup_cha=*/ true); } } Runtime* runtime = Runtime::Current(); if (!unregistered_oat_files.empty()) { for (const OatFile* oat_file : unregistered_oat_files) { // Notify the fault handler about removal of the executable code range if needed. DCHECK(oat_file->IsExecutable()); size_t exec_offset = oat_file->GetOatHeader().GetExecutableOffset(); DCHECK_LE(exec_offset, oat_file->Size()); size_t exec_size = oat_file->Size() - exec_offset; if (exec_size != 0u) { runtime->RemoveGeneratedCodeRange(oat_file->Begin() + exec_offset, exec_size); } } } if (runtime->GetStartupLinearAlloc() != nullptr) { // Because the startup linear alloc can contain dex cache arrays associated // to class loaders that got unloaded, we need to delete these // arrays. StartupCompletedTask::DeleteStartupDexCaches(self, /* called_by_gc= */ true); DCHECK_EQ(runtime->GetStartupLinearAlloc(), nullptr); } } class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor { public: FindVirtualMethodHolderVisitor(const ArtMethod* method, PointerSize pointer_size) : method_(method), pointer_size_(pointer_size) {} bool operator()(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) override { if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) { holder_ = klass; } // Return false to stop searching if holder_ is not null. return holder_ == nullptr; } ObjPtr holder_ = nullptr; const ArtMethod* const method_; const PointerSize pointer_size_; }; ObjPtr ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) { ScopedTrace trace(__FUNCTION__); // Since this function is slow, have a trace to notify people. CHECK(method->IsCopied()); FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_); VisitClasses(&visitor); DCHECK(visitor.holder_ != nullptr); return visitor.holder_; } ObjPtr ClassLinker::GetHoldingClassLoaderOfCopiedMethod(Thread* self, ArtMethod* method) { // Note: `GetHoldingClassOfCopiedMethod(method)` is a lot more expensive than finding // the class loader, so we're using it only to verify the result in debug mode. CHECK(method->IsCopied()); gc::Heap* heap = Runtime::Current()->GetHeap(); // Check if the copied method is in the boot class path. if (heap->IsBootImageAddress(method) || GetAllocatorForClassLoader(nullptr)->Contains(method)) { DCHECK(GetHoldingClassOfCopiedMethod(method)->GetClassLoader() == nullptr); return nullptr; } // Check if the copied method is in an app image. // Note: Continuous spaces contain boot image spaces and app image spaces. // However, they are sorted by address, so boot images are not trivial to skip. ArrayRef spaces(heap->GetContinuousSpaces()); DCHECK_GE(spaces.size(), heap->GetBootImageSpaces().size()); for (gc::space::ContinuousSpace* space : spaces) { if (space->IsImageSpace()) { gc::space::ImageSpace* image_space = space->AsImageSpace(); size_t offset = reinterpret_cast(method) - image_space->Begin(); const ImageSection& methods_section = image_space->GetImageHeader().GetMethodsSection(); if (offset - methods_section.Offset() < methods_section.Size()) { // Grab the class loader from the first non-BCP class in the app image class table. // Note: If we allow classes from arbitrary parent or library class loaders in app // images, this shall need to be updated to actually search for the exact class. const ImageSection& class_table_section = image_space->GetImageHeader().GetClassTableSection(); CHECK_NE(class_table_section.Size(), 0u); const uint8_t* ptr = image_space->Begin() + class_table_section.Offset(); size_t read_count = 0; ClassTable::ClassSet class_set(ptr, /*make_copy_of_data=*/ false, &read_count); CHECK(!class_set.empty()); auto it = class_set.begin(); // No read barrier needed for references to non-movable image classes. while ((*it).Read()->IsBootStrapClassLoaded()) { ++it; CHECK(it != class_set.end()); } ObjPtr class_loader = (*it).Read()->GetClassLoader(); DCHECK(GetHoldingClassOfCopiedMethod(method)->GetClassLoader() == class_loader); return class_loader; } } } // Otherwise, the method must be in one of the `LinearAlloc` memory areas. jweak result = nullptr; { ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); for (const ClassLoaderData& data : class_loaders_) { if (data.allocator->Contains(method)) { result = data.weak_root; break; } } } CHECK(result != nullptr) << "Did not find allocator holding the copied method: " << method << " " << method->PrettyMethod(); // The `method` is alive, so the class loader must also be alive. return ObjPtr::DownCast( Runtime::Current()->GetJavaVM()->DecodeWeakGlobalAsStrong(result)); } bool ClassLinker::DenyAccessBasedOnPublicSdk(ArtMethod* art_method ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } bool ClassLinker::DenyAccessBasedOnPublicSdk(ArtField* art_field ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } bool ClassLinker::DenyAccessBasedOnPublicSdk(const char* type_descriptor ATTRIBUTE_UNUSED) const { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } void ClassLinker::SetEnablePublicSdkChecks(bool enabled ATTRIBUTE_UNUSED) { // Should not be called on ClassLinker, only on AotClassLinker that overrides this. LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } void ClassLinker::RemoveDexFromCaches(const DexFile& dex_file) { ReaderMutexLock mu(Thread::Current(), *Locks::dex_lock_); auto it = dex_caches_.find(&dex_file); if (it != dex_caches_.end()) { dex_caches_.erase(it); } } // Instantiate ClassLinker::AllocClass. template ObjPtr ClassLinker::AllocClass( Thread* self, ObjPtr java_lang_Class, uint32_t class_size); template ObjPtr ClassLinker::AllocClass( Thread* self, ObjPtr java_lang_Class, uint32_t class_size); } // namespace art