/* * Copyright 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include // Glibc v2.19 doesn't include these in fcntl.h so host builds will fail without. #if !defined(FALLOC_FL_PUNCH_HOLE) || !defined(FALLOC_FL_KEEP_SIZE) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "android-base/file.h" #include "android-base/parsebool.h" #include "android-base/parseint.h" #include "android-base/properties.h" #include "android-base/strings.h" #include "base/file_utils.h" #include "base/memfd.h" #include "base/quasi_atomic.h" #include "base/systrace.h" #include "base/utils.h" #include "gc/accounting/mod_union_table-inl.h" #include "gc/collector_type.h" #include "gc/reference_processor.h" #include "gc/space/bump_pointer_space.h" #include "gc/task_processor.h" #include "gc/verification-inl.h" #include "jit/jit_code_cache.h" #include "mark_compact-inl.h" #include "mirror/object-refvisitor-inl.h" #include "read_barrier_config.h" #include "scoped_thread_state_change-inl.h" #include "sigchain.h" #include "thread_list.h" #ifdef ART_TARGET_ANDROID #include "com_android_art.h" #endif #ifndef __BIONIC__ #ifndef MREMAP_DONTUNMAP #define MREMAP_DONTUNMAP 4 #endif #ifndef MAP_FIXED_NOREPLACE #define MAP_FIXED_NOREPLACE 0x100000 #endif #ifndef __NR_userfaultfd #if defined(__x86_64__) #define __NR_userfaultfd 323 #elif defined(__i386__) #define __NR_userfaultfd 374 #elif defined(__aarch64__) #define __NR_userfaultfd 282 #elif defined(__arm__) #define __NR_userfaultfd 388 #else #error "__NR_userfaultfd undefined" #endif #endif // __NR_userfaultfd #endif // __BIONIC__ namespace { using ::android::base::GetBoolProperty; using ::android::base::ParseBool; using ::android::base::ParseBoolResult; } // namespace namespace art { static bool HaveMremapDontunmap() { void* old = mmap(nullptr, kPageSize, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0); CHECK_NE(old, MAP_FAILED); void* addr = mremap(old, kPageSize, kPageSize, MREMAP_MAYMOVE | MREMAP_DONTUNMAP, nullptr); CHECK_EQ(munmap(old, kPageSize), 0); if (addr != MAP_FAILED) { CHECK_EQ(munmap(addr, kPageSize), 0); return true; } else { return false; } } // We require MREMAP_DONTUNMAP functionality of the mremap syscall, which was // introduced in 5.13 kernel version. But it was backported to GKI kernels. static bool gHaveMremapDontunmap = IsKernelVersionAtLeast(5, 13) || HaveMremapDontunmap(); // Bitmap of features supported by userfaultfd. This is obtained via uffd API ioctl. static uint64_t gUffdFeatures = 0; // Both, missing and minor faults on shmem are needed only for minor-fault mode. static constexpr uint64_t kUffdFeaturesForMinorFault = UFFD_FEATURE_MISSING_SHMEM | UFFD_FEATURE_MINOR_SHMEM; static constexpr uint64_t kUffdFeaturesForSigbus = UFFD_FEATURE_SIGBUS; // We consider SIGBUS feature necessary to enable this GC as it's superior than // threading-based implementation for janks. However, since we have the latter // already implemented, for testing purposes, we allow choosing either of the // two at boot time in the constructor below. // Note that having minor-fault feature implies having SIGBUS feature as the // latter was introduced earlier than the former. In other words, having // minor-fault feature implies having SIGBUS. We still want minor-fault to be // available for making jit-code-cache updation concurrent, which uses shmem. static constexpr uint64_t kUffdFeaturesRequired = kUffdFeaturesForMinorFault | kUffdFeaturesForSigbus; bool KernelSupportsUffd() { #ifdef __linux__ if (gHaveMremapDontunmap) { int fd = syscall(__NR_userfaultfd, O_CLOEXEC | UFFD_USER_MODE_ONLY); // On non-android devices we may not have the kernel patches that restrict // userfaultfd to user mode. But that is not a security concern as we are // on host. Therefore, attempt one more time without UFFD_USER_MODE_ONLY. if (!kIsTargetAndroid && fd == -1 && errno == EINVAL) { fd = syscall(__NR_userfaultfd, O_CLOEXEC); } if (fd >= 0) { // We are only fetching the available features, which is returned by the // ioctl. struct uffdio_api api = {.api = UFFD_API, .features = 0, .ioctls = 0}; CHECK_EQ(ioctl(fd, UFFDIO_API, &api), 0) << "ioctl_userfaultfd : API:" << strerror(errno); gUffdFeatures = api.features; close(fd); // Allow this GC to be used only if minor-fault and sigbus feature is available. return (api.features & kUffdFeaturesRequired) == kUffdFeaturesRequired; } } #endif return false; } // The other cases are defined as constexpr in runtime/read_barrier_config.h #if !defined(ART_FORCE_USE_READ_BARRIER) && defined(ART_USE_READ_BARRIER) // Returns collector type asked to be used on the cmdline. static gc::CollectorType FetchCmdlineGcType() { std::string argv; gc::CollectorType gc_type = gc::CollectorType::kCollectorTypeNone; if (android::base::ReadFileToString("/proc/self/cmdline", &argv)) { if (argv.find("-Xgc:CMC") != std::string::npos) { gc_type = gc::CollectorType::kCollectorTypeCMC; } else if (argv.find("-Xgc:CC") != std::string::npos) { gc_type = gc::CollectorType::kCollectorTypeCC; } } return gc_type; } #ifdef ART_TARGET_ANDROID static int GetOverrideCacheInfoFd() { std::string args_str; if (!android::base::ReadFileToString("/proc/self/cmdline", &args_str)) { LOG(WARNING) << "Failed to load /proc/self/cmdline"; return -1; } std::vector args; Split(std::string_view(args_str), /*separator=*/'\0', &args); for (std::string_view arg : args) { if (android::base::ConsumePrefix(&arg, "--cache-info-fd=")) { // This is a dex2oat flag. int fd; if (!android::base::ParseInt(std::string(arg), &fd)) { LOG(ERROR) << "Failed to parse --cache-info-fd (value: '" << arg << "')"; return -1; } return fd; } } return -1; } static bool GetCachedBoolProperty(const std::string& key, bool default_value) { // For simplicity, we don't handle multiple calls because otherwise we would have to reset the fd. static bool called = false; CHECK(!called) << "GetCachedBoolProperty can be called only once"; called = true; std::string cache_info_contents; int fd = GetOverrideCacheInfoFd(); if (fd >= 0) { if (!android::base::ReadFdToString(fd, &cache_info_contents)) { PLOG(ERROR) << "Failed to read cache-info from fd " << fd; return default_value; } } else { std::string path = GetApexDataDalvikCacheDirectory(InstructionSet::kNone) + "/cache-info.xml"; if (!android::base::ReadFileToString(path, &cache_info_contents)) { // If the file is not found, then we are in chroot or in a standalone runtime process (e.g., // IncidentHelper), or odsign/odrefresh failed to generate and sign the cache info. There's // nothing we can do. if (errno != ENOENT) { PLOG(ERROR) << "Failed to read cache-info from the default path"; } return default_value; } } std::optional cache_info = com::android::art::parse(cache_info_contents.c_str()); if (!cache_info.has_value()) { // This should never happen. LOG(ERROR) << "Failed to parse cache-info"; return default_value; } const com::android::art::KeyValuePairList* list = cache_info->getFirstSystemProperties(); if (list == nullptr) { // This should never happen. LOG(ERROR) << "Missing system properties from cache-info"; return default_value; } const std::vector& properties = list->getItem(); for (const com::android::art::KeyValuePair& pair : properties) { if (pair.getK() == key) { ParseBoolResult result = ParseBool(pair.getV()); switch (result) { case ParseBoolResult::kTrue: return true; case ParseBoolResult::kFalse: return false; case ParseBoolResult::kError: return default_value; } } } return default_value; } static bool SysPropSaysUffdGc() { // The phenotype flag can change at time time after boot, but it shouldn't take effect until a // reboot. Therefore, we read the phenotype flag from the cache info, which is generated on boot. return GetCachedBoolProperty("persist.device_config.runtime_native_boot.enable_uffd_gc", GetBoolProperty("ro.dalvik.vm.enable_uffd_gc", false)); } #else // Never called. static bool SysPropSaysUffdGc() { return false; } #endif static bool ShouldUseUserfaultfd() { static_assert(kUseBakerReadBarrier || kUseTableLookupReadBarrier); #ifdef __linux__ // Use CMC/CC if that is being explicitly asked for on cmdline. Otherwise, // always use CC on host. On target, use CMC only if system properties says so // and the kernel supports it. gc::CollectorType gc_type = FetchCmdlineGcType(); return gc_type == gc::CollectorType::kCollectorTypeCMC || (gc_type == gc::CollectorType::kCollectorTypeNone && kIsTargetAndroid && SysPropSaysUffdGc() && KernelSupportsUffd()); #else return false; #endif } const bool gUseUserfaultfd = ShouldUseUserfaultfd(); const bool gUseReadBarrier = !gUseUserfaultfd; #endif namespace gc { namespace collector { // Turn off kCheckLocks when profiling the GC as it slows down the GC // significantly. static constexpr bool kCheckLocks = kDebugLocking; static constexpr bool kVerifyRootsMarked = kIsDebugBuild; // Two threads should suffice on devices. static constexpr size_t kMaxNumUffdWorkers = 2; // Number of compaction buffers reserved for mutator threads in SIGBUS feature // case. It's extremely unlikely that we will ever have more than these number // of mutator threads trying to access the moving-space during one compaction // phase. Using a lower number in debug builds to hopefully catch the issue // before it becomes a problem on user builds. static constexpr size_t kMutatorCompactionBufferCount = kIsDebugBuild ? 256 : 512; // Minimum from-space chunk to be madvised (during concurrent compaction) in one go. static constexpr ssize_t kMinFromSpaceMadviseSize = 1 * MB; // Concurrent compaction termination logic is different (and slightly more efficient) if the // kernel has the fault-retry feature (allowing repeated faults on the same page), which was // introduced in 5.7 (https://android-review.git.corp.google.com/c/kernel/common/+/1540088). // This allows a single page fault to be handled, in turn, by each worker thread, only waking // up the GC thread at the end. static const bool gKernelHasFaultRetry = IsKernelVersionAtLeast(5, 7); std::pair MarkCompact::GetUffdAndMinorFault() { bool uffd_available; // In most cases the gUffdFeatures will already be initialized at boot time // when libart is loaded. On very old kernels we may get '0' from the kernel, // in which case we would be doing the syscalls each time this function is // called. But that's very unlikely case. There are no correctness issues as // the response from kernel never changes after boot. if (UNLIKELY(gUffdFeatures == 0)) { uffd_available = KernelSupportsUffd(); } else { // We can have any uffd features only if uffd exists. uffd_available = true; } bool minor_fault_available = (gUffdFeatures & kUffdFeaturesForMinorFault) == kUffdFeaturesForMinorFault; return std::pair(uffd_available, minor_fault_available); } bool MarkCompact::CreateUserfaultfd(bool post_fork) { if (post_fork || uffd_ == kFdUnused) { // Check if we have MREMAP_DONTUNMAP here for cases where // 'ART_USE_READ_BARRIER=false' is used. Additionally, this check ensures // that userfaultfd isn't used on old kernels, which cause random ioctl // failures. if (gHaveMremapDontunmap) { // Don't use O_NONBLOCK as we rely on read waiting on uffd_ if there isn't // any read event available. We don't use poll. uffd_ = syscall(__NR_userfaultfd, O_CLOEXEC | UFFD_USER_MODE_ONLY); // On non-android devices we may not have the kernel patches that restrict // userfaultfd to user mode. But that is not a security concern as we are // on host. Therefore, attempt one more time without UFFD_USER_MODE_ONLY. if (!kIsTargetAndroid && UNLIKELY(uffd_ == -1 && errno == EINVAL)) { uffd_ = syscall(__NR_userfaultfd, O_CLOEXEC); } if (UNLIKELY(uffd_ == -1)) { uffd_ = kFallbackMode; LOG(WARNING) << "Userfaultfd isn't supported (reason: " << strerror(errno) << ") and therefore falling back to stop-the-world compaction."; } else { DCHECK(IsValidFd(uffd_)); // Initialize uffd with the features which are required and available. struct uffdio_api api = {.api = UFFD_API, .features = gUffdFeatures, .ioctls = 0}; api.features &= use_uffd_sigbus_ ? kUffdFeaturesRequired : kUffdFeaturesForMinorFault; CHECK_EQ(ioctl(uffd_, UFFDIO_API, &api), 0) << "ioctl_userfaultfd: API: " << strerror(errno); } } else { uffd_ = kFallbackMode; } } uffd_initialized_ = !post_fork || uffd_ == kFallbackMode; return IsValidFd(uffd_); } template MarkCompact::LiveWordsBitmap* MarkCompact::LiveWordsBitmap::Create( uintptr_t begin, uintptr_t end) { return static_cast*>( MemRangeBitmap::Create("Concurrent Mark Compact live words bitmap", begin, end)); } static bool IsSigbusFeatureAvailable() { MarkCompact::GetUffdAndMinorFault(); return gUffdFeatures & UFFD_FEATURE_SIGBUS; } MarkCompact::MarkCompact(Heap* heap) : GarbageCollector(heap, "concurrent mark compact"), gc_barrier_(0), lock_("mark compact lock", kGenericBottomLock), bump_pointer_space_(heap->GetBumpPointerSpace()), moving_space_bitmap_(bump_pointer_space_->GetMarkBitmap()), moving_to_space_fd_(kFdUnused), moving_from_space_fd_(kFdUnused), uffd_(kFdUnused), sigbus_in_progress_count_(kSigbusCounterCompactionDoneMask), compaction_in_progress_count_(0), thread_pool_counter_(0), compacting_(false), uffd_initialized_(false), uffd_minor_fault_supported_(false), use_uffd_sigbus_(IsSigbusFeatureAvailable()), minor_fault_initialized_(false), map_linear_alloc_shared_(false) { if (kIsDebugBuild) { updated_roots_.reset(new std::unordered_set()); } // TODO: When using minor-fault feature, the first GC after zygote-fork // requires mapping the linear-alloc again with MAP_SHARED. This leaves a // gap for suspended threads to access linear-alloc when it's empty (after // mremap) and not yet userfaultfd registered. This cannot be fixed by merely // doing uffd registration first. For now, just assert that we are not using // minor-fault. Eventually, a cleanup of linear-alloc update logic to only // use private anonymous would be ideal. CHECK(!uffd_minor_fault_supported_); // TODO: Depending on how the bump-pointer space move is implemented. If we // switch between two virtual memories each time, then we will have to // initialize live_words_bitmap_ accordingly. live_words_bitmap_.reset(LiveWordsBitmap::Create( reinterpret_cast(bump_pointer_space_->Begin()), reinterpret_cast(bump_pointer_space_->Limit()))); // Create one MemMap for all the data structures size_t moving_space_size = bump_pointer_space_->Capacity(); size_t chunk_info_vec_size = moving_space_size / kOffsetChunkSize; size_t nr_moving_pages = moving_space_size / kPageSize; size_t nr_non_moving_pages = heap->GetNonMovingSpace()->Capacity() / kPageSize; std::string err_msg; info_map_ = MemMap::MapAnonymous("Concurrent mark-compact chunk-info vector", chunk_info_vec_size * sizeof(uint32_t) + nr_non_moving_pages * sizeof(ObjReference) + nr_moving_pages * sizeof(ObjReference) + nr_moving_pages * sizeof(uint32_t), PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &err_msg); if (UNLIKELY(!info_map_.IsValid())) { LOG(FATAL) << "Failed to allocate concurrent mark-compact chunk-info vector: " << err_msg; } else { uint8_t* p = info_map_.Begin(); chunk_info_vec_ = reinterpret_cast(p); vector_length_ = chunk_info_vec_size; p += chunk_info_vec_size * sizeof(uint32_t); first_objs_non_moving_space_ = reinterpret_cast(p); p += nr_non_moving_pages * sizeof(ObjReference); first_objs_moving_space_ = reinterpret_cast(p); p += nr_moving_pages * sizeof(ObjReference); pre_compact_offset_moving_space_ = reinterpret_cast(p); } size_t moving_space_alignment = BestPageTableAlignment(moving_space_size); // The moving space is created at a fixed address, which is expected to be // PMD-size aligned. if (!IsAlignedParam(bump_pointer_space_->Begin(), moving_space_alignment)) { LOG(WARNING) << "Bump pointer space is not aligned to " << PrettySize(moving_space_alignment) << ". This can lead to longer stop-the-world pauses for compaction"; } // NOTE: PROT_NONE is used here as these mappings are for address space reservation // only and will be used only after appropriately remapping them. from_space_map_ = MemMap::MapAnonymousAligned("Concurrent mark-compact from-space", moving_space_size, PROT_NONE, /*low_4gb=*/kObjPtrPoisoning, moving_space_alignment, &err_msg); if (UNLIKELY(!from_space_map_.IsValid())) { LOG(FATAL) << "Failed to allocate concurrent mark-compact from-space" << err_msg; } else { from_space_begin_ = from_space_map_.Begin(); } // In some cases (32-bit or kObjPtrPoisoning) it's too much to ask for 3 // heap-sized mappings in low-4GB. So tolerate failure here by attempting to // mmap again right before the compaction pause. And if even that fails, then // running the GC cycle in copy-mode rather than minor-fault. // // This map doesn't have to be aligned to 2MB as we don't mremap on it. if (!kObjPtrPoisoning && uffd_minor_fault_supported_) { // We need this map only if minor-fault feature is supported. But in that case // don't create the mapping if obj-ptr poisoning is enabled as then the mapping // has to be created in low_4gb. Doing this here rather than later causes the // Dex2oatImageTest.TestExtension gtest to fail in 64-bit platforms. shadow_to_space_map_ = MemMap::MapAnonymous("Concurrent mark-compact moving-space shadow", moving_space_size, PROT_NONE, /*low_4gb=*/false, &err_msg); if (!shadow_to_space_map_.IsValid()) { LOG(WARNING) << "Failed to allocate concurrent mark-compact moving-space shadow: " << err_msg; } } const size_t num_pages = 1 + (use_uffd_sigbus_ ? kMutatorCompactionBufferCount : std::min(heap_->GetParallelGCThreadCount(), kMaxNumUffdWorkers)); compaction_buffers_map_ = MemMap::MapAnonymous("Concurrent mark-compact compaction buffers", kPageSize * num_pages, PROT_READ | PROT_WRITE, /*low_4gb=*/kObjPtrPoisoning, &err_msg); if (UNLIKELY(!compaction_buffers_map_.IsValid())) { LOG(FATAL) << "Failed to allocate concurrent mark-compact compaction buffers" << err_msg; } // We also use the first page-sized buffer for the purpose of terminating concurrent compaction. conc_compaction_termination_page_ = compaction_buffers_map_.Begin(); // Touch the page deliberately to avoid userfaults on it. We madvise it in // CompactionPhase() before using it to terminate concurrent compaction. ForceRead(conc_compaction_termination_page_); // In most of the cases, we don't expect more than one LinearAlloc space. linear_alloc_spaces_data_.reserve(1); // Initialize GC metrics. metrics::ArtMetrics* metrics = GetMetrics(); // The mark-compact collector supports only full-heap collections at the moment. gc_time_histogram_ = metrics->FullGcCollectionTime(); metrics_gc_count_ = metrics->FullGcCount(); metrics_gc_count_delta_ = metrics->FullGcCountDelta(); gc_throughput_histogram_ = metrics->FullGcThroughput(); gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput(); gc_throughput_avg_ = metrics->FullGcThroughputAvg(); gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg(); gc_scanned_bytes_ = metrics->FullGcScannedBytes(); gc_scanned_bytes_delta_ = metrics->FullGcScannedBytesDelta(); gc_freed_bytes_ = metrics->FullGcFreedBytes(); gc_freed_bytes_delta_ = metrics->FullGcFreedBytesDelta(); gc_duration_ = metrics->FullGcDuration(); gc_duration_delta_ = metrics->FullGcDurationDelta(); are_metrics_initialized_ = true; } void MarkCompact::AddLinearAllocSpaceData(uint8_t* begin, size_t len) { DCHECK_ALIGNED(begin, kPageSize); DCHECK_ALIGNED(len, kPageSize); DCHECK_GE(len, kPMDSize); size_t alignment = BestPageTableAlignment(len); bool is_shared = false; // We use MAP_SHARED on non-zygote processes for leveraging userfaultfd's minor-fault feature. if (map_linear_alloc_shared_) { void* ret = mmap(begin, len, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED | MAP_FIXED, /*fd=*/-1, /*offset=*/0); CHECK_EQ(ret, begin) << "mmap failed: " << strerror(errno); is_shared = true; } std::string err_msg; MemMap shadow(MemMap::MapAnonymousAligned("linear-alloc shadow map", len, PROT_NONE, /*low_4gb=*/false, alignment, &err_msg)); if (!shadow.IsValid()) { LOG(FATAL) << "Failed to allocate linear-alloc shadow map: " << err_msg; UNREACHABLE(); } MemMap page_status_map(MemMap::MapAnonymous("linear-alloc page-status map", len / kPageSize, PROT_READ | PROT_WRITE, /*low_4gb=*/false, &err_msg)); if (!page_status_map.IsValid()) { LOG(FATAL) << "Failed to allocate linear-alloc page-status shadow map: " << err_msg; UNREACHABLE(); } linear_alloc_spaces_data_.emplace_back(std::forward(shadow), std::forward(page_status_map), begin, begin + len, is_shared); } void MarkCompact::BindAndResetBitmaps() { // TODO: We need to hold heap_bitmap_lock_ only for populating immune_spaces. // The card-table and mod-union-table processing can be done without it. So // change the logic below. Note that the bitmap clearing would require the // lock. TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); accounting::CardTable* const card_table = heap_->GetCardTable(); // Mark all of the spaces we never collect as immune. for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) { CHECK(space->IsZygoteSpace() || space->IsImageSpace()); immune_spaces_.AddSpace(space); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); if (table != nullptr) { table->ProcessCards(); } else { // Keep cards aged if we don't have a mod-union table since we may need // to scan them in future GCs. This case is for app images. // TODO: We could probably scan the objects right here to avoid doing // another scan through the card-table. card_table->ModifyCardsAtomic( space->Begin(), space->End(), [](uint8_t card) { return (card == gc::accounting::CardTable::kCardClean) ? card : gc::accounting::CardTable::kCardAged; }, /* card modified visitor */ VoidFunctor()); } } else { CHECK(!space->IsZygoteSpace()); CHECK(!space->IsImageSpace()); // The card-table corresponding to bump-pointer and non-moving space can // be cleared, because we are going to traverse all the reachable objects // in these spaces. This card-table will eventually be used to track // mutations while concurrent marking is going on. card_table->ClearCardRange(space->Begin(), space->Limit()); if (space != bump_pointer_space_) { CHECK_EQ(space, heap_->GetNonMovingSpace()); non_moving_space_ = space; non_moving_space_bitmap_ = space->GetMarkBitmap(); } } } } void MarkCompact::MarkZygoteLargeObjects() { Thread* self = thread_running_gc_; DCHECK_EQ(self, Thread::Current()); space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace(); if (los != nullptr) { // Pick the current live bitmap (mark bitmap if swapped). accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap(); accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap(); // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept. std::pair range = los->GetBeginEndAtomic(); live_bitmap->VisitMarkedRange(reinterpret_cast(range.first), reinterpret_cast(range.second), [mark_bitmap, los, self](mirror::Object* obj) REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (los->IsZygoteLargeObject(self, obj)) { mark_bitmap->Set(obj); } }); } } void MarkCompact::InitializePhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); mark_stack_ = heap_->GetMarkStack(); CHECK(mark_stack_->IsEmpty()); immune_spaces_.Reset(); moving_first_objs_count_ = 0; non_moving_first_objs_count_ = 0; black_page_count_ = 0; bytes_scanned_ = 0; freed_objects_ = 0; // The first buffer is used by gc-thread. compaction_buffer_counter_.store(1, std::memory_order_relaxed); from_space_slide_diff_ = from_space_begin_ - bump_pointer_space_->Begin(); black_allocations_begin_ = bump_pointer_space_->Limit(); walk_super_class_cache_ = nullptr; // TODO: Would it suffice to read it once in the constructor, which is called // in zygote process? pointer_size_ = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); } class MarkCompact::ThreadFlipVisitor : public Closure { public: explicit ThreadFlipVisitor(MarkCompact* collector) : collector_(collector) {} void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); CHECK(thread == self || thread->GetState() != ThreadState::kRunnable) << thread->GetState() << " thread " << thread << " self " << self; thread->VisitRoots(collector_, kVisitRootFlagAllRoots); // Interpreter cache is thread-local so it needs to be swept either in a // flip, or a stop-the-world pause. CHECK(collector_->compacting_); thread->SweepInterpreterCache(collector_); thread->AdjustTlab(collector_->black_objs_slide_diff_); collector_->GetBarrier().Pass(self); } private: MarkCompact* const collector_; }; class MarkCompact::FlipCallback : public Closure { public: explicit FlipCallback(MarkCompact* collector) : collector_(collector) {} void Run(Thread* thread ATTRIBUTE_UNUSED) override REQUIRES(Locks::mutator_lock_) { collector_->CompactionPause(); } private: MarkCompact* const collector_; }; void MarkCompact::RunPhases() { Thread* self = Thread::Current(); thread_running_gc_ = self; Runtime* runtime = Runtime::Current(); InitializePhase(); GetHeap()->PreGcVerification(this); { ReaderMutexLock mu(self, *Locks::mutator_lock_); MarkingPhase(); } { // Marking pause ScopedPause pause(this); MarkingPause(); if (kIsDebugBuild) { bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked(); } } // To increase likelihood of black allocations. For testing purposes only. if (kIsDebugBuild && heap_->GetTaskProcessor()->GetRunningThread() == thread_running_gc_) { usleep(500'000); } { ReaderMutexLock mu(self, *Locks::mutator_lock_); ReclaimPhase(); PrepareForCompaction(); } if (uffd_ != kFallbackMode && !use_uffd_sigbus_) { heap_->GetThreadPool()->WaitForWorkersToBeCreated(); } { // Compaction pause gc_barrier_.Init(self, 0); ThreadFlipVisitor visitor(this); FlipCallback callback(this); size_t barrier_count = runtime->GetThreadList()->FlipThreadRoots( &visitor, &callback, this, GetHeap()->GetGcPauseListener()); { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_.Increment(self, barrier_count); } } if (IsValidFd(uffd_)) { ReaderMutexLock mu(self, *Locks::mutator_lock_); CompactionPhase(); } FinishPhase(); thread_running_gc_ = nullptr; GetHeap()->PostGcVerification(this); } void MarkCompact::InitMovingSpaceFirstObjects(const size_t vec_len) { // Find the first live word first. size_t to_space_page_idx = 0; uint32_t offset_in_chunk_word; uint32_t offset; mirror::Object* obj; const uintptr_t heap_begin = moving_space_bitmap_->HeapBegin(); size_t chunk_idx; // Find the first live word in the space for (chunk_idx = 0; chunk_info_vec_[chunk_idx] == 0; chunk_idx++) { if (chunk_idx > vec_len) { // We don't have any live data on the moving-space. return; } } // Use live-words bitmap to find the first word offset_in_chunk_word = live_words_bitmap_->FindNthLiveWordOffset(chunk_idx, /*n*/ 0); offset = chunk_idx * kBitsPerVectorWord + offset_in_chunk_word; DCHECK(live_words_bitmap_->Test(offset)) << "offset=" << offset << " chunk_idx=" << chunk_idx << " N=0" << " offset_in_word=" << offset_in_chunk_word << " word=" << std::hex << live_words_bitmap_->GetWord(chunk_idx); // The first object doesn't require using FindPrecedingObject(). obj = reinterpret_cast(heap_begin + offset * kAlignment); // TODO: add a check to validate the object. pre_compact_offset_moving_space_[to_space_page_idx] = offset; first_objs_moving_space_[to_space_page_idx].Assign(obj); to_space_page_idx++; uint32_t page_live_bytes = 0; while (true) { for (; page_live_bytes <= kPageSize; chunk_idx++) { if (chunk_idx > vec_len) { moving_first_objs_count_ = to_space_page_idx; return; } page_live_bytes += chunk_info_vec_[chunk_idx]; } chunk_idx--; page_live_bytes -= kPageSize; DCHECK_LE(page_live_bytes, kOffsetChunkSize); DCHECK_LE(page_live_bytes, chunk_info_vec_[chunk_idx]) << " chunk_idx=" << chunk_idx << " to_space_page_idx=" << to_space_page_idx << " vec_len=" << vec_len; DCHECK(IsAligned(chunk_info_vec_[chunk_idx] - page_live_bytes)); offset_in_chunk_word = live_words_bitmap_->FindNthLiveWordOffset( chunk_idx, (chunk_info_vec_[chunk_idx] - page_live_bytes) / kAlignment); offset = chunk_idx * kBitsPerVectorWord + offset_in_chunk_word; DCHECK(live_words_bitmap_->Test(offset)) << "offset=" << offset << " chunk_idx=" << chunk_idx << " N=" << ((chunk_info_vec_[chunk_idx] - page_live_bytes) / kAlignment) << " offset_in_word=" << offset_in_chunk_word << " word=" << std::hex << live_words_bitmap_->GetWord(chunk_idx); // TODO: Can we optimize this for large objects? If we are continuing a // large object that spans multiple pages, then we may be able to do without // calling FindPrecedingObject(). // // Find the object which encapsulates offset in it, which could be // starting at offset itself. obj = moving_space_bitmap_->FindPrecedingObject(heap_begin + offset * kAlignment); // TODO: add a check to validate the object. pre_compact_offset_moving_space_[to_space_page_idx] = offset; first_objs_moving_space_[to_space_page_idx].Assign(obj); to_space_page_idx++; chunk_idx++; } } void MarkCompact::InitNonMovingSpaceFirstObjects() { accounting::ContinuousSpaceBitmap* bitmap = non_moving_space_->GetLiveBitmap(); uintptr_t begin = reinterpret_cast(non_moving_space_->Begin()); const uintptr_t end = reinterpret_cast(non_moving_space_->End()); mirror::Object* prev_obj; size_t page_idx; { // Find first live object mirror::Object* obj = nullptr; bitmap->VisitMarkedRange(begin, end, [&obj] (mirror::Object* o) { obj = o; }); if (obj == nullptr) { // There are no live objects in the non-moving space return; } page_idx = (reinterpret_cast(obj) - begin) / kPageSize; first_objs_non_moving_space_[page_idx++].Assign(obj); prev_obj = obj; } // TODO: check obj is valid uintptr_t prev_obj_end = reinterpret_cast(prev_obj) + RoundUp(prev_obj->SizeOf(), kAlignment); // For every page find the object starting from which we need to call // VisitReferences. It could either be an object that started on some // preceding page, or some object starting within this page. begin = RoundDown(reinterpret_cast(prev_obj) + kPageSize, kPageSize); while (begin < end) { // Utilize, if any, large object that started in some preceding page, but // overlaps with this page as well. if (prev_obj != nullptr && prev_obj_end > begin) { DCHECK_LT(prev_obj, reinterpret_cast(begin)); first_objs_non_moving_space_[page_idx].Assign(prev_obj); mirror::Class* klass = prev_obj->GetClass(); if (bump_pointer_space_->HasAddress(klass)) { LOG(WARNING) << "found inter-page object " << prev_obj << " in non-moving space with klass " << klass << " in moving space"; } } else { prev_obj_end = 0; // It's sufficient to only search for previous object in the preceding page. // If no live object started in that page and some object had started in // the page preceding to that page, which was big enough to overlap with // the current page, then we wouldn't be in the else part. prev_obj = bitmap->FindPrecedingObject(begin, begin - kPageSize); if (prev_obj != nullptr) { prev_obj_end = reinterpret_cast(prev_obj) + RoundUp(prev_obj->SizeOf(), kAlignment); } if (prev_obj_end > begin) { mirror::Class* klass = prev_obj->GetClass(); if (bump_pointer_space_->HasAddress(klass)) { LOG(WARNING) << "found inter-page object " << prev_obj << " in non-moving space with klass " << klass << " in moving space"; } first_objs_non_moving_space_[page_idx].Assign(prev_obj); } else { // Find the first live object in this page bitmap->VisitMarkedRange( begin, begin + kPageSize, [this, page_idx] (mirror::Object* obj) { first_objs_non_moving_space_[page_idx].Assign(obj); }); } // An empty entry indicates that the page has no live objects and hence // can be skipped. } begin += kPageSize; page_idx++; } non_moving_first_objs_count_ = page_idx; } bool MarkCompact::CanCompactMovingSpaceWithMinorFault() { size_t min_size = (moving_first_objs_count_ + black_page_count_) * kPageSize; return minor_fault_initialized_ && shadow_to_space_map_.IsValid() && shadow_to_space_map_.Size() >= min_size; } class MarkCompact::ConcurrentCompactionGcTask : public SelfDeletingTask { public: explicit ConcurrentCompactionGcTask(MarkCompact* collector, size_t idx) : collector_(collector), index_(idx) {} void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { if (collector_->CanCompactMovingSpaceWithMinorFault()) { collector_->ConcurrentCompaction(/*buf=*/nullptr); } else { // The passed page/buf to ConcurrentCompaction is used by the thread as a // kPageSize buffer for compacting and updating objects into and then // passing the buf to uffd ioctls. uint8_t* buf = collector_->compaction_buffers_map_.Begin() + index_ * kPageSize; collector_->ConcurrentCompaction(buf); } } private: MarkCompact* const collector_; size_t index_; }; void MarkCompact::PrepareForCompaction() { uint8_t* space_begin = bump_pointer_space_->Begin(); size_t vector_len = (black_allocations_begin_ - space_begin) / kOffsetChunkSize; DCHECK_LE(vector_len, vector_length_); for (size_t i = 0; i < vector_len; i++) { DCHECK_LE(chunk_info_vec_[i], kOffsetChunkSize); DCHECK_EQ(chunk_info_vec_[i], live_words_bitmap_->LiveBytesInBitmapWord(i)); } InitMovingSpaceFirstObjects(vector_len); InitNonMovingSpaceFirstObjects(); // TODO: We can do a lot of neat tricks with this offset vector to tune the // compaction as we wish. Originally, the compaction algorithm slides all // live objects towards the beginning of the heap. This is nice because it // keeps the spatial locality of objects intact. // However, sometimes it's desired to compact objects in certain portions // of the heap. For instance, it is expected that, over time, // objects towards the beginning of the heap are long lived and are always // densely packed. In this case, it makes sense to only update references in // there and not try to compact it. // Furthermore, we might have some large objects and may not want to move such // objects. // We can adjust, without too much effort, the values in the chunk_info_vec_ such // that the objects in the dense beginning area aren't moved. OTOH, large // objects, which could be anywhere in the heap, could also be kept from // moving by using a similar trick. The only issue is that by doing this we will // leave an unused hole in the middle of the heap which can't be used for // allocations until we do a *full* compaction. // // At this point every element in the chunk_info_vec_ contains the live-bytes // of the corresponding chunk. For old-to-new address computation we need // every element to reflect total live-bytes till the corresponding chunk. // Live-bytes count is required to compute post_compact_end_ below. uint32_t total; // Update the vector one past the heap usage as it is required for black // allocated objects' post-compact address computation. if (vector_len < vector_length_) { vector_len++; total = 0; } else { // Fetch the value stored in the last element before it gets overwritten by // std::exclusive_scan(). total = chunk_info_vec_[vector_len - 1]; } std::exclusive_scan(chunk_info_vec_, chunk_info_vec_ + vector_len, chunk_info_vec_, 0); total += chunk_info_vec_[vector_len - 1]; for (size_t i = vector_len; i < vector_length_; i++) { DCHECK_EQ(chunk_info_vec_[i], 0u); } post_compact_end_ = AlignUp(space_begin + total, kPageSize); CHECK_EQ(post_compact_end_, space_begin + moving_first_objs_count_ * kPageSize); black_objs_slide_diff_ = black_allocations_begin_ - post_compact_end_; // How do we handle compaction of heap portion used for allocations after the // marking-pause? // All allocations after the marking-pause are considered black (reachable) // for this GC cycle. However, they need not be allocated contiguously as // different mutators use TLABs. So we will compact the heap till the point // where allocations took place before the marking-pause. And everything after // that will be slid with TLAB holes, and then TLAB info in TLS will be // appropriately updated in the pre-compaction pause. // The chunk-info vector entries for the post marking-pause allocations will be // also updated in the pre-compaction pause. bool is_zygote = Runtime::Current()->IsZygote(); if (!uffd_initialized_ && CreateUserfaultfd(/*post_fork*/false)) { if (!use_uffd_sigbus_) { // Register the buffer that we use for terminating concurrent compaction struct uffdio_register uffd_register; uffd_register.range.start = reinterpret_cast(conc_compaction_termination_page_); uffd_register.range.len = kPageSize; uffd_register.mode = UFFDIO_REGISTER_MODE_MISSING; CHECK_EQ(ioctl(uffd_, UFFDIO_REGISTER, &uffd_register), 0) << "ioctl_userfaultfd: register compaction termination page: " << strerror(errno); } if (!uffd_minor_fault_supported_ && shadow_to_space_map_.IsValid()) { // A valid shadow-map for moving space is only possible if we // were able to map it in the constructor. That also means that its size // matches the moving-space. CHECK_EQ(shadow_to_space_map_.Size(), bump_pointer_space_->Capacity()); // Release the shadow map for moving-space if we don't support minor-fault // as it's not required. shadow_to_space_map_.Reset(); } } // For zygote we create the thread pool each time before starting compaction, // and get rid of it when finished. This is expected to happen rarely as // zygote spends most of the time in native fork loop. if (uffd_ != kFallbackMode) { if (!use_uffd_sigbus_) { ThreadPool* pool = heap_->GetThreadPool(); if (UNLIKELY(pool == nullptr)) { // On devices with 2 cores, GetParallelGCThreadCount() will return 1, // which is desired number of workers on such devices. heap_->CreateThreadPool(std::min(heap_->GetParallelGCThreadCount(), kMaxNumUffdWorkers)); pool = heap_->GetThreadPool(); } size_t num_threads = pool->GetThreadCount(); thread_pool_counter_ = num_threads; for (size_t i = 0; i < num_threads; i++) { pool->AddTask(thread_running_gc_, new ConcurrentCompactionGcTask(this, i + 1)); } CHECK_EQ(pool->GetTaskCount(thread_running_gc_), num_threads); } /* * Possible scenarios for mappings: * A) All zygote GCs (or if minor-fault feature isn't available): uses * uffd's copy mode * 1) For moving-space ('to' space is same as the moving-space): * a) Private-anonymous mappings for 'to' and 'from' space are created in * the constructor. * b) In the compaction pause, we mremap(dontunmap) from 'to' space to * 'from' space. This results in moving all pages to 'from' space and * emptying the 'to' space, thereby preparing it for userfaultfd * registration. * * 2) For linear-alloc space: * a) Private-anonymous mappings for the linear-alloc and its 'shadow' * are created by the arena-pool. * b) In the compaction pause, we mremap(dontumap) with similar effect as * (A.1.b) above. * * B) First GC after zygote: uses uffd's copy-mode * 1) For moving-space: * a) If the mmap for shadow-map has been successful in the constructor, * then we remap it (mmap with MAP_FIXED) to get a shared-anonymous * mapping. * b) Else, we create two memfd and ftruncate them to the moving-space * size. * c) Same as (A.1.b) * d) If (B.1.a), then mremap(dontunmap) from shadow-map to * 'to' space. This will make both of them map to the same pages * e) If (B.1.b), then mmap with the first memfd in shared mode on the * 'to' space. * f) At the end of compaction, we will have moved the moving-space * objects to a MAP_SHARED mapping, readying it for minor-fault from next * GC cycle. * * 2) For linear-alloc space: * a) Same as (A.2.b) * b) mmap a shared-anonymous mapping onto the linear-alloc space. * c) Same as (B.1.f) * * C) All subsequent GCs: preferable minor-fault mode. But may also require * using copy-mode. * 1) For moving-space: * a) If the shadow-map is created and no memfd was used, then that means * we are using shared-anonymous. Therefore, mmap a shared-anonymous on * the shadow-space. * b) If the shadow-map is not mapped yet, then mmap one with a size * big enough to hold the compacted moving space. This may fail, in which * case we will use uffd's copy-mode. * c) If (b) is successful, then mmap the free memfd onto shadow-map. * d) Same as (A.1.b) * e) In compaction pause, if the shadow-map was not created, then use * copy-mode. * f) Else, if the created map is smaller than the required-size, then * use mremap (without dontunmap) to expand the size. If failed, then use * copy-mode. * g) Otherwise, same as (B.1.d) and use minor-fault mode. * * 2) For linear-alloc space: * a) Same as (A.2.b) * b) Use minor-fault mode */ auto mmap_shadow_map = [this](int flags, int fd) { void* ret = mmap(shadow_to_space_map_.Begin(), shadow_to_space_map_.Size(), PROT_READ | PROT_WRITE, flags, fd, /*offset=*/0); DCHECK_NE(ret, MAP_FAILED) << "mmap for moving-space shadow failed:" << strerror(errno); }; // Setup all the virtual memory ranges required for concurrent compaction. if (minor_fault_initialized_) { DCHECK(!is_zygote); if (UNLIKELY(!shadow_to_space_map_.IsValid())) { // This case happens only once on the first GC in minor-fault mode, if // we were unable to reserve shadow-map for moving-space in the // beginning. DCHECK_GE(moving_to_space_fd_, 0); // Take extra 4MB to reduce the likelihood of requiring resizing this // map in the pause due to black allocations. size_t reqd_size = std::min(moving_first_objs_count_ * kPageSize + 4 * MB, bump_pointer_space_->Capacity()); // We cannot support memory-tool with shadow-map (as it requires // appending a redzone) in this case because the mapping may have to be expanded // using mremap (in KernelPreparation()), which would ignore the redzone. // MemMap::MapFile() appends a redzone, but MemMap::MapAnonymous() doesn't. std::string err_msg; shadow_to_space_map_ = MemMap::MapAnonymous("moving-space-shadow", reqd_size, PROT_NONE, /*low_4gb=*/kObjPtrPoisoning, &err_msg); if (shadow_to_space_map_.IsValid()) { CHECK(!kMemoryToolAddsRedzones || shadow_to_space_map_.GetRedzoneSize() == 0u); // We want to use MemMap to get low-4GB mapping, if required, but then also // want to have its ownership as we may grow it (in // KernelPreparation()). If the ownership is not taken and we try to // resize MemMap, then it unmaps the virtual range. MemMap temp = shadow_to_space_map_.TakeReservedMemory(shadow_to_space_map_.Size(), /*reuse*/ true); std::swap(temp, shadow_to_space_map_); DCHECK(!temp.IsValid()); } else { LOG(WARNING) << "Failed to create moving space's shadow map of " << PrettySize(reqd_size) << " size. " << err_msg; } } if (LIKELY(shadow_to_space_map_.IsValid())) { int fd = moving_to_space_fd_; int mmap_flags = MAP_SHARED | MAP_FIXED; if (fd == kFdUnused) { // Unused moving-to-space fd means we are using anonymous shared // mapping. DCHECK_EQ(shadow_to_space_map_.Size(), bump_pointer_space_->Capacity()); mmap_flags |= MAP_ANONYMOUS; fd = -1; } // If the map is smaller than required, then we'll do mremap in the // compaction pause to increase the size. mmap_shadow_map(mmap_flags, fd); } for (auto& data : linear_alloc_spaces_data_) { DCHECK_EQ(mprotect(data.shadow_.Begin(), data.shadow_.Size(), PROT_READ | PROT_WRITE), 0) << "mprotect failed: " << strerror(errno); } } else if (!is_zygote && uffd_minor_fault_supported_) { // First GC after zygote-fork. We will still use uffd's copy mode but will // use it to move objects to MAP_SHARED (to prepare for subsequent GCs, which // will use uffd's minor-fault feature). if (shadow_to_space_map_.IsValid() && shadow_to_space_map_.Size() == bump_pointer_space_->Capacity()) { mmap_shadow_map(MAP_SHARED | MAP_FIXED | MAP_ANONYMOUS, /*fd=*/-1); } else { size_t size = bump_pointer_space_->Capacity(); DCHECK_EQ(moving_to_space_fd_, kFdUnused); DCHECK_EQ(moving_from_space_fd_, kFdUnused); const char* name = bump_pointer_space_->GetName(); moving_to_space_fd_ = memfd_create(name, MFD_CLOEXEC); CHECK_NE(moving_to_space_fd_, -1) << "memfd_create: failed for " << name << ": " << strerror(errno); moving_from_space_fd_ = memfd_create(name, MFD_CLOEXEC); CHECK_NE(moving_from_space_fd_, -1) << "memfd_create: failed for " << name << ": " << strerror(errno); // memfds are considered as files from resource limits point of view. // And the moving space could be several hundred MBs. So increase the // limit, if it's lower than moving-space size. bool rlimit_changed = false; rlimit rlim_read; CHECK_EQ(getrlimit(RLIMIT_FSIZE, &rlim_read), 0) << "getrlimit failed: " << strerror(errno); if (rlim_read.rlim_cur < size) { rlimit_changed = true; rlimit rlim = rlim_read; rlim.rlim_cur = size; CHECK_EQ(setrlimit(RLIMIT_FSIZE, &rlim), 0) << "setrlimit failed: " << strerror(errno); } // moving-space will map this fd so that we compact objects into it. int ret = ftruncate(moving_to_space_fd_, size); CHECK_EQ(ret, 0) << "ftruncate failed for moving-space:" << strerror(errno); ret = ftruncate(moving_from_space_fd_, size); CHECK_EQ(ret, 0) << "ftruncate failed for moving-space:" << strerror(errno); if (rlimit_changed) { // reset the rlimit to the original limits. CHECK_EQ(setrlimit(RLIMIT_FSIZE, &rlim_read), 0) << "setrlimit failed: " << strerror(errno); } } } } } class MarkCompact::VerifyRootMarkedVisitor : public SingleRootVisitor { public: explicit VerifyRootMarkedVisitor(MarkCompact* collector) : collector_(collector) { } void VisitRoot(mirror::Object* root, const RootInfo& info) override REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { CHECK(collector_->IsMarked(root) != nullptr) << info.ToString(); } private: MarkCompact* const collector_; }; void MarkCompact::ReMarkRoots(Runtime* runtime) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); DCHECK_EQ(thread_running_gc_, Thread::Current()); Locks::mutator_lock_->AssertExclusiveHeld(thread_running_gc_); MarkNonThreadRoots(runtime); MarkConcurrentRoots(static_cast(kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog), runtime); if (kVerifyRootsMarked) { TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings()); VerifyRootMarkedVisitor visitor(this); runtime->VisitRoots(&visitor); } } void MarkCompact::MarkingPause() { TimingLogger::ScopedTiming t("(Paused)MarkingPause", GetTimings()); Runtime* runtime = Runtime::Current(); Locks::mutator_lock_->AssertExclusiveHeld(thread_running_gc_); { // Handle the dirty objects as we are a concurrent GC WriterMutexLock mu(thread_running_gc_, *Locks::heap_bitmap_lock_); { MutexLock mu2(thread_running_gc_, *Locks::runtime_shutdown_lock_); MutexLock mu3(thread_running_gc_, *Locks::thread_list_lock_); std::list thread_list = runtime->GetThreadList()->GetList(); for (Thread* thread : thread_list) { thread->VisitRoots(this, static_cast(0)); DCHECK_EQ(thread->GetThreadLocalGcBuffer(), nullptr); // Need to revoke all the thread-local allocation stacks since we will // swap the allocation stacks (below) and don't want anybody to allocate // into the live stack. thread->RevokeThreadLocalAllocationStack(); bump_pointer_space_->RevokeThreadLocalBuffers(thread); } } // Fetch only the accumulated objects-allocated count as it is guaranteed to // be up-to-date after the TLAB revocation above. freed_objects_ += bump_pointer_space_->GetAccumulatedObjectsAllocated(); // Capture 'end' of moving-space at this point. Every allocation beyond this // point will be considered as black. // Align-up to page boundary so that black allocations happen from next page // onwards. Also, it ensures that 'end' is aligned for card-table's // ClearCardRange(). black_allocations_begin_ = bump_pointer_space_->AlignEnd(thread_running_gc_, kPageSize); DCHECK(IsAligned(black_allocations_begin_)); black_allocations_begin_ = AlignUp(black_allocations_begin_, kPageSize); // Re-mark root set. Doesn't include thread-roots as they are already marked // above. ReMarkRoots(runtime); // Scan dirty objects. RecursiveMarkDirtyObjects(/*paused*/ true, accounting::CardTable::kCardDirty); { TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); heap_->SwapStacks(); live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); } } // TODO: For PreSweepingGcVerification(), find correct strategy to visit/walk // objects in bump-pointer space when we have a mark-bitmap to indicate live // objects. At the same time we also need to be able to visit black allocations, // even though they are not marked in the bitmap. Without both of these we fail // pre-sweeping verification. As well as we leave windows open wherein a // VisitObjects/Walk on the space would either miss some objects or visit // unreachable ones. These windows are when we are switching from shared // mutator-lock to exclusive and vice-versa starting from here till compaction pause. // heap_->PreSweepingGcVerification(this); // Disallow new system weaks to prevent a race which occurs when someone adds // a new system weak before we sweep them. Since this new system weak may not // be marked, the GC may incorrectly sweep it. This also fixes a race where // interning may attempt to return a strong reference to a string that is // about to be swept. runtime->DisallowNewSystemWeaks(); // Enable the reference processing slow path, needs to be done with mutators // paused since there is no lock in the GetReferent fast path. heap_->GetReferenceProcessor()->EnableSlowPath(); } void MarkCompact::SweepSystemWeaks(Thread* self, Runtime* runtime, const bool paused) { TimingLogger::ScopedTiming t(paused ? "(Paused)SweepSystemWeaks" : "SweepSystemWeaks", GetTimings()); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); runtime->SweepSystemWeaks(this); } void MarkCompact::ProcessReferences(Thread* self) { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings()); } void MarkCompact::Sweep(bool swap_bitmaps) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // Ensure that nobody inserted objects in the live stack after we swapped the // stacks. CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); { TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); // Mark everything allocated since the last GC as live so that we can sweep // concurrently, knowing that new allocations won't be marked as live. accounting::ObjectStack* live_stack = heap_->GetLiveStack(); heap_->MarkAllocStackAsLive(live_stack); live_stack->Reset(); DCHECK(mark_stack_->IsEmpty()); } for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->IsContinuousMemMapAllocSpace() && space != bump_pointer_space_) { space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); TimingLogger::ScopedTiming split( alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings()); RecordFree(alloc_space->Sweep(swap_bitmaps)); } } SweepLargeObjects(swap_bitmaps); } void MarkCompact::SweepLargeObjects(bool swap_bitmaps) { space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace(); if (los != nullptr) { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); RecordFreeLOS(los->Sweep(swap_bitmaps)); } } void MarkCompact::ReclaimPhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); DCHECK(thread_running_gc_ == Thread::Current()); Runtime* const runtime = Runtime::Current(); // Process the references concurrently. ProcessReferences(thread_running_gc_); // TODO: Try to merge this system-weak sweeping with the one while updating // references during the compaction pause. SweepSystemWeaks(thread_running_gc_, runtime, /*paused*/ false); runtime->AllowNewSystemWeaks(); // Clean up class loaders after system weaks are swept since that is how we know if class // unloading occurred. runtime->GetClassLinker()->CleanupClassLoaders(); { WriterMutexLock mu(thread_running_gc_, *Locks::heap_bitmap_lock_); // Reclaim unmarked objects. Sweep(false); // Swap the live and mark bitmaps for each space which we modified space. This is an // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound // bitmaps. SwapBitmaps(); // Unbind the live and mark bitmaps. GetHeap()->UnBindBitmaps(); } } // We want to avoid checking for every reference if it's within the page or // not. This can be done if we know where in the page the holder object lies. // If it doesn't overlap either boundaries then we can skip the checks. template class MarkCompact::RefsUpdateVisitor { public: explicit RefsUpdateVisitor(MarkCompact* collector, mirror::Object* obj, uint8_t* begin, uint8_t* end) : collector_(collector), obj_(obj), begin_(begin), end_(end) { DCHECK(!kCheckBegin || begin != nullptr); DCHECK(!kCheckEnd || end != nullptr); } void operator()(mirror::Object* old ATTRIBUTE_UNUSED, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { bool update = true; if (kCheckBegin || kCheckEnd) { uint8_t* ref = reinterpret_cast(obj_) + offset.Int32Value(); update = (!kCheckBegin || ref >= begin_) && (!kCheckEnd || ref < end_); } if (update) { collector_->UpdateRef(obj_, offset); } } // For object arrays we don't need to check boundaries here as it's done in // VisitReferenes(). // TODO: Optimize reference updating using SIMD instructions. Object arrays // are perfect as all references are tightly packed. void operator()(mirror::Object* old ATTRIBUTE_UNUSED, MemberOffset offset, bool /*is_static*/, bool /*is_obj_array*/) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { collector_->UpdateRef(obj_, offset); } void VisitRootIfNonNull(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { collector_->UpdateRoot(root); } private: MarkCompact* const collector_; mirror::Object* const obj_; uint8_t* const begin_; uint8_t* const end_; }; bool MarkCompact::IsValidObject(mirror::Object* obj) const { mirror::Class* klass = obj->GetClass(); if (!heap_->GetVerification()->IsValidHeapObjectAddress(klass)) { return false; } return heap_->GetVerification()->IsValidClassUnchecked( obj->GetClass()); } template void MarkCompact::VerifyObject(mirror::Object* ref, Callback& callback) const { if (kIsDebugBuild) { mirror::Class* klass = ref->GetClass(); mirror::Class* pre_compact_klass = ref->GetClass(); mirror::Class* klass_klass = klass->GetClass(); mirror::Class* klass_klass_klass = klass_klass->GetClass(); if (bump_pointer_space_->HasAddress(pre_compact_klass) && reinterpret_cast(pre_compact_klass) < black_allocations_begin_) { CHECK(moving_space_bitmap_->Test(pre_compact_klass)) << "ref=" << ref << " post_compact_end=" << static_cast(post_compact_end_) << " pre_compact_klass=" << pre_compact_klass << " black_allocations_begin=" << static_cast(black_allocations_begin_); CHECK(live_words_bitmap_->Test(pre_compact_klass)); } if (!IsValidObject(ref)) { std::ostringstream oss; oss << "Invalid object: " << "ref=" << ref << " klass=" << klass << " klass_klass=" << klass_klass << " klass_klass_klass=" << klass_klass_klass << " pre_compact_klass=" << pre_compact_klass << " from_space_begin=" << static_cast(from_space_begin_) << " pre_compact_begin=" << static_cast(bump_pointer_space_->Begin()) << " post_compact_end=" << static_cast(post_compact_end_) << " black_allocations_begin=" << static_cast(black_allocations_begin_); // Call callback before dumping larger data like RAM and space dumps. callback(oss); oss << " \nobject=" << heap_->GetVerification()->DumpRAMAroundAddress(reinterpret_cast(ref), 128) << " \nklass(from)=" << heap_->GetVerification()->DumpRAMAroundAddress(reinterpret_cast(klass), 128) << "spaces:\n"; heap_->DumpSpaces(oss); LOG(FATAL) << oss.str(); } } } void MarkCompact::CompactPage(mirror::Object* obj, uint32_t offset, uint8_t* addr, bool needs_memset_zero) { DCHECK(moving_space_bitmap_->Test(obj) && live_words_bitmap_->Test(obj)); DCHECK(live_words_bitmap_->Test(offset)) << "obj=" << obj << " offset=" << offset << " addr=" << static_cast(addr) << " black_allocs_begin=" << static_cast(black_allocations_begin_) << " post_compact_addr=" << static_cast(post_compact_end_); uint8_t* const start_addr = addr; // How many distinct live-strides do we have. size_t stride_count = 0; uint8_t* last_stride = addr; uint32_t last_stride_begin = 0; auto verify_obj_callback = [&] (std::ostream& os) { os << " stride_count=" << stride_count << " last_stride=" << static_cast(last_stride) << " offset=" << offset << " start_addr=" << static_cast(start_addr); }; obj = GetFromSpaceAddr(obj); live_words_bitmap_->VisitLiveStrides(offset, black_allocations_begin_, kPageSize, [&addr, &last_stride, &stride_count, &last_stride_begin, verify_obj_callback, this] (uint32_t stride_begin, size_t stride_size, bool /*is_last*/) REQUIRES_SHARED(Locks::mutator_lock_) { const size_t stride_in_bytes = stride_size * kAlignment; DCHECK_LE(stride_in_bytes, kPageSize); last_stride_begin = stride_begin; DCHECK(IsAligned(addr)); memcpy(addr, from_space_begin_ + stride_begin * kAlignment, stride_in_bytes); if (kIsDebugBuild) { uint8_t* space_begin = bump_pointer_space_->Begin(); // We can interpret the first word of the stride as an // obj only from second stride onwards, as the first // stride's first-object may have started on previous // page. The only exception is the first page of the // moving space. if (stride_count > 0 || stride_begin * kAlignment < kPageSize) { mirror::Object* o = reinterpret_cast(space_begin + stride_begin * kAlignment); CHECK(live_words_bitmap_->Test(o)) << "ref=" << o; CHECK(moving_space_bitmap_->Test(o)) << "ref=" << o << " bitmap: " << moving_space_bitmap_->DumpMemAround(o); VerifyObject(reinterpret_cast(addr), verify_obj_callback); } } last_stride = addr; addr += stride_in_bytes; stride_count++; }); DCHECK_LT(last_stride, start_addr + kPageSize); DCHECK_GT(stride_count, 0u); size_t obj_size = 0; uint32_t offset_within_obj = offset * kAlignment - (reinterpret_cast(obj) - from_space_begin_); // First object if (offset_within_obj > 0) { mirror::Object* to_ref = reinterpret_cast(start_addr - offset_within_obj); if (stride_count > 1) { RefsUpdateVisitor visitor(this, to_ref, start_addr, nullptr); obj_size = obj->VisitRefsForCompaction( visitor, MemberOffset(offset_within_obj), MemberOffset(-1)); } else { RefsUpdateVisitor visitor(this, to_ref, start_addr, start_addr + kPageSize); obj_size = obj->VisitRefsForCompaction( visitor, MemberOffset(offset_within_obj), MemberOffset(offset_within_obj + kPageSize)); } obj_size = RoundUp(obj_size, kAlignment); DCHECK_GT(obj_size, offset_within_obj) << "obj:" << obj << " class:" << obj->GetClass() << " to_addr:" << to_ref << " black-allocation-begin:" << reinterpret_cast(black_allocations_begin_) << " post-compact-end:" << reinterpret_cast(post_compact_end_) << " offset:" << offset * kAlignment << " class-after-obj-iter:" << (class_after_obj_iter_ != class_after_obj_ordered_map_.rend() ? class_after_obj_iter_->first.AsMirrorPtr() : nullptr) << " last-reclaimed-page:" << reinterpret_cast(last_reclaimed_page_) << " last-checked-reclaim-page-idx:" << last_checked_reclaim_page_idx_ << " offset-of-last-idx:" << pre_compact_offset_moving_space_[last_checked_reclaim_page_idx_] * kAlignment << " first-obj-of-last-idx:" << first_objs_moving_space_[last_checked_reclaim_page_idx_].AsMirrorPtr(); obj_size -= offset_within_obj; // If there is only one stride, then adjust last_stride_begin to the // end of the first object. if (stride_count == 1) { last_stride_begin += obj_size / kAlignment; } } // Except for the last page being compacted, the pages will have addr == // start_addr + kPageSize. uint8_t* const end_addr = addr; addr = start_addr; size_t bytes_done = obj_size; // All strides except the last one can be updated without any boundary // checks. DCHECK_LE(addr, last_stride); size_t bytes_to_visit = last_stride - addr; DCHECK_LE(bytes_to_visit, kPageSize); while (bytes_to_visit > bytes_done) { mirror::Object* ref = reinterpret_cast(addr + bytes_done); VerifyObject(ref, verify_obj_callback); RefsUpdateVisitor visitor(this, ref, nullptr, nullptr); obj_size = ref->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(-1)); obj_size = RoundUp(obj_size, kAlignment); bytes_done += obj_size; } // Last stride may have multiple objects in it and we don't know where the // last object which crosses the page boundary starts, therefore check // page-end in all of these objects. Also, we need to call // VisitRefsForCompaction() with from-space object as we fetch object size, // which in case of klass requires 'class_size_'. uint8_t* from_addr = from_space_begin_ + last_stride_begin * kAlignment; bytes_to_visit = end_addr - addr; DCHECK_LE(bytes_to_visit, kPageSize); while (bytes_to_visit > bytes_done) { mirror::Object* ref = reinterpret_cast(addr + bytes_done); obj = reinterpret_cast(from_addr); VerifyObject(ref, verify_obj_callback); RefsUpdateVisitor visitor(this, ref, nullptr, start_addr + kPageSize); obj_size = obj->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(end_addr - (addr + bytes_done))); obj_size = RoundUp(obj_size, kAlignment); DCHECK_GT(obj_size, 0u) << "from_addr:" << obj << " from-space-class:" << obj->GetClass() << " to_addr:" << ref << " black-allocation-begin:" << reinterpret_cast(black_allocations_begin_) << " post-compact-end:" << reinterpret_cast(post_compact_end_) << " offset:" << offset * kAlignment << " bytes_done:" << bytes_done << " class-after-obj-iter:" << (class_after_obj_iter_ != class_after_obj_ordered_map_.rend() ? class_after_obj_iter_->first.AsMirrorPtr() : nullptr) << " last-reclaimed-page:" << reinterpret_cast(last_reclaimed_page_) << " last-checked-reclaim-page-idx:" << last_checked_reclaim_page_idx_ << " offset-of-last-idx:" << pre_compact_offset_moving_space_[last_checked_reclaim_page_idx_] * kAlignment << " first-obj-of-last-idx:" << first_objs_moving_space_[last_checked_reclaim_page_idx_].AsMirrorPtr(); from_addr += obj_size; bytes_done += obj_size; } // The last page that we compact may have some bytes left untouched in the // end, we should zero them as the kernel copies at page granularity. if (needs_memset_zero && UNLIKELY(bytes_done < kPageSize)) { std::memset(addr + bytes_done, 0x0, kPageSize - bytes_done); } } // We store the starting point (pre_compact_page - first_obj) and first-chunk's // size. If more TLAB(s) started in this page, then those chunks are identified // using mark bitmap. All this info is prepared in UpdateMovingSpaceBlackAllocations(). // If we find a set bit in the bitmap, then we copy the remaining page and then // use the bitmap to visit each object for updating references. void MarkCompact::SlideBlackPage(mirror::Object* first_obj, const size_t page_idx, uint8_t* const pre_compact_page, uint8_t* dest, bool needs_memset_zero) { DCHECK(IsAligned(pre_compact_page)); size_t bytes_copied; const uint32_t first_chunk_size = black_alloc_pages_first_chunk_size_[page_idx]; mirror::Object* next_page_first_obj = first_objs_moving_space_[page_idx + 1].AsMirrorPtr(); uint8_t* src_addr = reinterpret_cast(GetFromSpaceAddr(first_obj)); uint8_t* pre_compact_addr = reinterpret_cast(first_obj); uint8_t* const pre_compact_page_end = pre_compact_page + kPageSize; uint8_t* const dest_page_end = dest + kPageSize; auto verify_obj_callback = [&] (std::ostream& os) { os << " first_obj=" << first_obj << " next_page_first_obj=" << next_page_first_obj << " first_chunk_sie=" << first_chunk_size << " dest=" << static_cast(dest) << " pre_compact_page=" << static_cast(pre_compact_page); }; // We have empty portion at the beginning of the page. Zero it. if (pre_compact_addr > pre_compact_page) { bytes_copied = pre_compact_addr - pre_compact_page; DCHECK_LT(bytes_copied, kPageSize); if (needs_memset_zero) { std::memset(dest, 0x0, bytes_copied); } dest += bytes_copied; } else { bytes_copied = 0; size_t offset = pre_compact_page - pre_compact_addr; pre_compact_addr = pre_compact_page; src_addr += offset; DCHECK(IsAligned(src_addr)); } // Copy the first chunk of live words std::memcpy(dest, src_addr, first_chunk_size); // Update references in the first chunk. Use object size to find next object. { size_t bytes_to_visit = first_chunk_size; size_t obj_size; // The first object started in some previous page. So we need to check the // beginning. DCHECK_LE(reinterpret_cast(first_obj), pre_compact_addr); size_t offset = pre_compact_addr - reinterpret_cast(first_obj); if (bytes_copied == 0 && offset > 0) { mirror::Object* to_obj = reinterpret_cast(dest - offset); mirror::Object* from_obj = reinterpret_cast(src_addr - offset); // If the next page's first-obj is in this page or nullptr, then we don't // need to check end boundary if (next_page_first_obj == nullptr || (first_obj != next_page_first_obj && reinterpret_cast(next_page_first_obj) <= pre_compact_page_end)) { RefsUpdateVisitor visitor(this, to_obj, dest, nullptr); obj_size = from_obj->VisitRefsForCompaction< /*kFetchObjSize*/true, /*kVisitNativeRoots*/false>(visitor, MemberOffset(offset), MemberOffset(-1)); } else { RefsUpdateVisitor visitor(this, to_obj, dest, dest_page_end); obj_size = from_obj->VisitRefsForCompaction< /*kFetchObjSize*/true, /*kVisitNativeRoots*/false>(visitor, MemberOffset(offset), MemberOffset(offset + kPageSize)); if (first_obj == next_page_first_obj) { // First object is the only object on this page. So there's nothing else left to do. return; } } obj_size = RoundUp(obj_size, kAlignment); obj_size -= offset; dest += obj_size; bytes_to_visit -= obj_size; } bytes_copied += first_chunk_size; // If the last object in this page is next_page_first_obj, then we need to check end boundary bool check_last_obj = false; if (next_page_first_obj != nullptr && reinterpret_cast(next_page_first_obj) < pre_compact_page_end && bytes_copied == kPageSize) { size_t diff = pre_compact_page_end - reinterpret_cast(next_page_first_obj); DCHECK_LE(diff, kPageSize); DCHECK_LE(diff, bytes_to_visit); bytes_to_visit -= diff; check_last_obj = true; } while (bytes_to_visit > 0) { mirror::Object* dest_obj = reinterpret_cast(dest); VerifyObject(dest_obj, verify_obj_callback); RefsUpdateVisitor visitor(this, dest_obj, nullptr, nullptr); obj_size = dest_obj->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(-1)); obj_size = RoundUp(obj_size, kAlignment); bytes_to_visit -= obj_size; dest += obj_size; } DCHECK_EQ(bytes_to_visit, 0u); if (check_last_obj) { mirror::Object* dest_obj = reinterpret_cast(dest); VerifyObject(dest_obj, verify_obj_callback); RefsUpdateVisitor visitor(this, dest_obj, nullptr, dest_page_end); mirror::Object* obj = GetFromSpaceAddr(next_page_first_obj); obj->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(dest_page_end - dest)); return; } } // Probably a TLAB finished on this page and/or a new TLAB started as well. if (bytes_copied < kPageSize) { src_addr += first_chunk_size; pre_compact_addr += first_chunk_size; // Use mark-bitmap to identify where objects are. First call // VisitMarkedRange for only the first marked bit. If found, zero all bytes // until that object and then call memcpy on the rest of the page. // Then call VisitMarkedRange for all marked bits *after* the one found in // this invocation. This time to visit references. uintptr_t start_visit = reinterpret_cast(pre_compact_addr); uintptr_t page_end = reinterpret_cast(pre_compact_page_end); mirror::Object* found_obj = nullptr; moving_space_bitmap_->VisitMarkedRange(start_visit, page_end, [&found_obj](mirror::Object* obj) { found_obj = obj; }); size_t remaining_bytes = kPageSize - bytes_copied; if (found_obj == nullptr) { if (needs_memset_zero) { // No more black objects in this page. Zero the remaining bytes and return. std::memset(dest, 0x0, remaining_bytes); } return; } // Copy everything in this page, which includes any zeroed regions // in-between. std::memcpy(dest, src_addr, remaining_bytes); DCHECK_LT(reinterpret_cast(found_obj), page_end); moving_space_bitmap_->VisitMarkedRange( reinterpret_cast(found_obj) + mirror::kObjectHeaderSize, page_end, [&found_obj, pre_compact_addr, dest, this, verify_obj_callback] (mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { ptrdiff_t diff = reinterpret_cast(found_obj) - pre_compact_addr; mirror::Object* ref = reinterpret_cast(dest + diff); VerifyObject(ref, verify_obj_callback); RefsUpdateVisitor visitor(this, ref, nullptr, nullptr); ref->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(-1)); // Remember for next round. found_obj = obj; }); // found_obj may have been updated in VisitMarkedRange. Visit the last found // object. DCHECK_GT(reinterpret_cast(found_obj), pre_compact_addr); DCHECK_LT(reinterpret_cast(found_obj), page_end); ptrdiff_t diff = reinterpret_cast(found_obj) - pre_compact_addr; mirror::Object* ref = reinterpret_cast(dest + diff); VerifyObject(ref, verify_obj_callback); RefsUpdateVisitor visitor(this, ref, nullptr, dest_page_end); ref->VisitRefsForCompaction( visitor, MemberOffset(0), MemberOffset(page_end - reinterpret_cast(found_obj))); } } template void MarkCompact::MapProcessedPages(uint8_t* to_space_start, Atomic* state_arr, size_t arr_idx, size_t arr_len) { DCHECK(minor_fault_initialized_); DCHECK_LT(arr_idx, arr_len); DCHECK_ALIGNED(to_space_start, kPageSize); // Claim all the contiguous pages, which are ready to be mapped, and then do // so in a single ioctl. This helps avoid the overhead of invoking syscall // several times and also maps the already-processed pages, avoiding // unnecessary faults on them. size_t length = kFirstPageMapping ? kPageSize : 0; if (kFirstPageMapping) { arr_idx++; } // We need to guarantee that we don't end up sucsessfully marking a later // page 'mapping' and then fail to mark an earlier page. To guarantee that // we use acq_rel order. for (; arr_idx < arr_len; arr_idx++, length += kPageSize) { PageState expected_state = PageState::kProcessed; if (!state_arr[arr_idx].compare_exchange_strong( expected_state, PageState::kProcessedAndMapping, std::memory_order_acq_rel)) { break; } } if (length > 0) { // Note: We need the first page to be attempted (to be mapped) by the ioctl // as this function is called due to some mutator thread waiting on the // 'to_space_start' page. Therefore, the ioctl must always be called // with 'to_space_start' as the 'start' address because it can bail out in // the middle (not attempting to map the subsequent pages) if it finds any // page either already mapped in between, or missing on the shadow-map. struct uffdio_continue uffd_continue; uffd_continue.range.start = reinterpret_cast(to_space_start); uffd_continue.range.len = length; uffd_continue.mode = 0; int ret = ioctl(uffd_, UFFDIO_CONTINUE, &uffd_continue); if (UNLIKELY(ret == -1 && errno == EAGAIN)) { // This can happen only in linear-alloc. DCHECK(linear_alloc_spaces_data_.end() != std::find_if(linear_alloc_spaces_data_.begin(), linear_alloc_spaces_data_.end(), [to_space_start](const LinearAllocSpaceData& data) { return data.begin_ <= to_space_start && to_space_start < data.end_; })); // This could happen if userfaultfd couldn't find any pages mapped in the // shadow map. For instance, if there are certain (contiguous) pages on // linear-alloc which are allocated and have first-object set-up but have // not been accessed yet. // Bail out by setting the remaining pages' state back to kProcessed and // then waking up any waiting threads. DCHECK_GE(uffd_continue.mapped, 0); DCHECK_ALIGNED(uffd_continue.mapped, kPageSize); DCHECK_LT(uffd_continue.mapped, static_cast(length)); if (kFirstPageMapping) { // In this case the first page must be mapped. DCHECK_GE(uffd_continue.mapped, static_cast(kPageSize)); } // Nobody would modify these pages' state simultaneously so only atomic // store is sufficient. Use 'release' order to ensure that all states are // modified sequentially. for (size_t remaining_len = length - uffd_continue.mapped; remaining_len > 0; remaining_len -= kPageSize) { arr_idx--; DCHECK_EQ(state_arr[arr_idx].load(std::memory_order_relaxed), PageState::kProcessedAndMapping); state_arr[arr_idx].store(PageState::kProcessed, std::memory_order_release); } uffd_continue.range.start = reinterpret_cast(to_space_start) + uffd_continue.mapped; uffd_continue.range.len = length - uffd_continue.mapped; ret = ioctl(uffd_, UFFDIO_WAKE, &uffd_continue.range); CHECK_EQ(ret, 0) << "ioctl_userfaultfd: wake failed: " << strerror(errno); } else { // We may receive ENOENT if gc-thread unregisters the // range behind our back, which is fine because that // happens only when it knows compaction is done. CHECK(ret == 0 || !kFirstPageMapping || errno == ENOENT) << "ioctl_userfaultfd: continue failed: " << strerror(errno); if (ret == 0) { DCHECK_EQ(uffd_continue.mapped, static_cast(length)); } } if (use_uffd_sigbus_) { // Nobody else would modify these pages' state simultaneously so atomic // store is sufficient. for (; uffd_continue.mapped > 0; uffd_continue.mapped -= kPageSize) { arr_idx--; DCHECK_EQ(state_arr[arr_idx].load(std::memory_order_relaxed), PageState::kProcessedAndMapping); state_arr[arr_idx].store(PageState::kProcessedAndMapped, std::memory_order_release); } } } } void MarkCompact::ZeropageIoctl(void* addr, bool tolerate_eexist, bool tolerate_enoent) { struct uffdio_zeropage uffd_zeropage; DCHECK(IsAligned(addr)); uffd_zeropage.range.start = reinterpret_cast(addr); uffd_zeropage.range.len = kPageSize; uffd_zeropage.mode = 0; int ret = ioctl(uffd_, UFFDIO_ZEROPAGE, &uffd_zeropage); if (LIKELY(ret == 0)) { DCHECK_EQ(uffd_zeropage.zeropage, static_cast(kPageSize)); } else { CHECK((tolerate_enoent && errno == ENOENT) || (tolerate_eexist && errno == EEXIST)) << "ioctl_userfaultfd: zeropage failed: " << strerror(errno) << ". addr:" << addr; } } void MarkCompact::CopyIoctl(void* dst, void* buffer) { struct uffdio_copy uffd_copy; uffd_copy.src = reinterpret_cast(buffer); uffd_copy.dst = reinterpret_cast(dst); uffd_copy.len = kPageSize; uffd_copy.mode = 0; CHECK_EQ(ioctl(uffd_, UFFDIO_COPY, &uffd_copy), 0) << "ioctl_userfaultfd: copy failed: " << strerror(errno) << ". src:" << buffer << " dst:" << dst; DCHECK_EQ(uffd_copy.copy, static_cast(kPageSize)); } template void MarkCompact::DoPageCompactionWithStateChange(size_t page_idx, size_t status_arr_len, uint8_t* to_space_page, uint8_t* page, CompactionFn func) { PageState expected_state = PageState::kUnprocessed; PageState desired_state = kMode == kCopyMode ? PageState::kProcessingAndMapping : PageState::kProcessing; // In the concurrent case (kMode != kFallbackMode) we need to ensure that the update // to moving_spaces_status_[page_idx] is released before the contents of the page are // made accessible to other threads. // // We need acquire ordering here to ensure that when the CAS fails, another thread // has completed processing the page, which is guaranteed by the release below. if (kMode == kFallbackMode || moving_pages_status_[page_idx].compare_exchange_strong( expected_state, desired_state, std::memory_order_acquire)) { func(); if (kMode == kCopyMode) { CopyIoctl(to_space_page, page); if (use_uffd_sigbus_) { // Store is sufficient as no other thread would modify the status at this point. moving_pages_status_[page_idx].store(PageState::kProcessedAndMapped, std::memory_order_release); } } else if (kMode == kMinorFaultMode) { expected_state = PageState::kProcessing; desired_state = PageState::kProcessed; // the CAS needs to be with release order to ensure that stores to the // page makes it to memory *before* other threads observe that it's // ready to be mapped. if (!moving_pages_status_[page_idx].compare_exchange_strong( expected_state, desired_state, std::memory_order_release)) { // Some mutator has requested to map the page after processing it. DCHECK_EQ(expected_state, PageState::kProcessingAndMapping); MapProcessedPages( to_space_page, moving_pages_status_, page_idx, status_arr_len); } } } else { DCHECK_GT(expected_state, PageState::kProcessed); } } void MarkCompact::FreeFromSpacePages(size_t cur_page_idx, int mode) { // Thanks to sliding compaction, bump-pointer allocations, and reverse // compaction (see CompactMovingSpace) the logic here is pretty simple: find // the to-space page up to which compaction has finished, all the from-space // pages corresponding to this onwards can be freed. There are some corner // cases to be taken care of, which are described below. size_t idx = last_checked_reclaim_page_idx_; // Find the to-space page up to which the corresponding from-space pages can be // freed. for (; idx > cur_page_idx; idx--) { PageState state = moving_pages_status_[idx - 1].load(std::memory_order_acquire); if (state == PageState::kMutatorProcessing) { // Some mutator is working on the page. break; } DCHECK(state >= PageState::kProcessed || (state == PageState::kUnprocessed && (mode == kFallbackMode || idx > moving_first_objs_count_))); } DCHECK_LE(idx, last_checked_reclaim_page_idx_); if (idx == last_checked_reclaim_page_idx_) { // Nothing to do. return; } uint8_t* reclaim_begin; uint8_t* idx_addr; // Calculate the first from-space page to be freed using 'idx'. If the // first-object of the idx'th to-space page started before the corresponding // from-space page, which is almost always the case in the compaction portion // of the moving-space, then it indicates that the subsequent pages that are // yet to be compacted will need the from-space pages. Therefore, find the page // (from the already compacted pages) whose first-object is different from // ours. All the from-space pages starting from that one are safe to be // removed. Please note that this iteration is not expected to be long in // normal cases as objects are smaller than page size. if (idx >= moving_first_objs_count_) { // black-allocated portion of the moving-space idx_addr = black_allocations_begin_ + (idx - moving_first_objs_count_) * kPageSize; reclaim_begin = idx_addr; mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr(); if (first_obj != nullptr && reinterpret_cast(first_obj) < reclaim_begin) { size_t idx_len = moving_first_objs_count_ + black_page_count_; for (size_t i = idx + 1; i < idx_len; i++) { mirror::Object* obj = first_objs_moving_space_[i].AsMirrorPtr(); // A null first-object indicates that the corresponding to-space page is // not used yet. So we can compute its from-space page and use that. if (obj != first_obj) { reclaim_begin = obj != nullptr ? AlignUp(reinterpret_cast(obj), kPageSize) : (black_allocations_begin_ + (i - moving_first_objs_count_) * kPageSize); break; } } } } else { DCHECK_GE(pre_compact_offset_moving_space_[idx], 0u); idx_addr = bump_pointer_space_->Begin() + pre_compact_offset_moving_space_[idx] * kAlignment; reclaim_begin = idx_addr; DCHECK_LE(reclaim_begin, black_allocations_begin_); mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr(); if (reinterpret_cast(first_obj) < reclaim_begin) { DCHECK_LT(idx, moving_first_objs_count_); mirror::Object* obj = first_obj; for (size_t i = idx + 1; i < moving_first_objs_count_; i++) { obj = first_objs_moving_space_[i].AsMirrorPtr(); if (first_obj != obj) { DCHECK_LT(first_obj, obj); DCHECK_LT(reclaim_begin, reinterpret_cast(obj)); reclaim_begin = reinterpret_cast(obj); break; } } if (obj == first_obj) { reclaim_begin = black_allocations_begin_; } } reclaim_begin = AlignUp(reclaim_begin, kPageSize); } DCHECK_NE(reclaim_begin, nullptr); DCHECK_ALIGNED(reclaim_begin, kPageSize); DCHECK_ALIGNED(last_reclaimed_page_, kPageSize); // Check if the 'class_after_obj_map_' map allows pages to be freed. for (; class_after_obj_iter_ != class_after_obj_ordered_map_.rend(); class_after_obj_iter_++) { mirror::Object* klass = class_after_obj_iter_->first.AsMirrorPtr(); mirror::Class* from_klass = static_cast(GetFromSpaceAddr(klass)); // Check with class' end to ensure that, if required, the entire class survives. uint8_t* klass_end = reinterpret_cast(klass) + from_klass->SizeOf(); DCHECK_LE(klass_end, last_reclaimed_page_); if (reinterpret_cast(klass_end) >= reclaim_begin) { // Found a class which is in the reclaim range. uint8_t* obj_addr = reinterpret_cast(class_after_obj_iter_->second.AsMirrorPtr()); // NOTE: Don't assert that obj is of 'klass' type as klass could instead // be its super-class. if (obj_addr < idx_addr) { // Its lowest-address object is not compacted yet. Reclaim starting from // the end of this class. reclaim_begin = AlignUp(klass_end, kPageSize); } else { // Continue consuming pairs wherein the lowest address object has already // been compacted. continue; } } // All the remaining class (and thereby corresponding object) addresses are // lower than the reclaim range. break; } ssize_t size = last_reclaimed_page_ - reclaim_begin; if (size >= kMinFromSpaceMadviseSize) { int behavior = minor_fault_initialized_ ? MADV_REMOVE : MADV_DONTNEED; CHECK_EQ(madvise(reclaim_begin + from_space_slide_diff_, size, behavior), 0) << "madvise of from-space failed: " << strerror(errno); last_reclaimed_page_ = reclaim_begin; } last_checked_reclaim_page_idx_ = idx; } void MarkCompact::UpdateClassAfterObjMap() { CHECK(class_after_obj_ordered_map_.empty()); for (const auto& pair : class_after_obj_hash_map_) { auto super_class_iter = super_class_after_class_hash_map_.find(pair.first); ObjReference key = super_class_iter != super_class_after_class_hash_map_.end() ? super_class_iter->second : pair.first; if (std::less{}(pair.second.AsMirrorPtr(), key.AsMirrorPtr()) && bump_pointer_space_->HasAddress(key.AsMirrorPtr())) { auto [ret_iter, success] = class_after_obj_ordered_map_.try_emplace(key, pair.second); // It could fail only if the class 'key' has objects of its own, which are lower in // address order, as well of some of its derived class. In this case // choose the lowest address object. if (!success && std::less{}(pair.second.AsMirrorPtr(), ret_iter->second.AsMirrorPtr())) { ret_iter->second = pair.second; } } } class_after_obj_hash_map_.clear(); super_class_after_class_hash_map_.clear(); } template void MarkCompact::CompactMovingSpace(uint8_t* page) { // For every page we have a starting object, which may have started in some // preceding page, and an offset within that object from where we must start // copying. // Consult the live-words bitmap to copy all contiguously live words at a // time. These words may constitute multiple objects. To avoid the need for // consulting mark-bitmap to find where does the next live object start, we // use the object-size returned by VisitRefsForCompaction. // // We do the compaction in reverse direction so that the pages containing // TLAB and latest allocations are processed first. TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); size_t page_status_arr_len = moving_first_objs_count_ + black_page_count_; size_t idx = page_status_arr_len; uint8_t* to_space_end = bump_pointer_space_->Begin() + page_status_arr_len * kPageSize; uint8_t* shadow_space_end = nullptr; if (kMode == kMinorFaultMode) { shadow_space_end = shadow_to_space_map_.Begin() + page_status_arr_len * kPageSize; } uint8_t* pre_compact_page = black_allocations_begin_ + (black_page_count_ * kPageSize); DCHECK(IsAligned(pre_compact_page)); UpdateClassAfterObjMap(); // These variables are maintained by FreeFromSpacePages(). last_reclaimed_page_ = pre_compact_page; last_checked_reclaim_page_idx_ = idx; class_after_obj_iter_ = class_after_obj_ordered_map_.rbegin(); // Allocated-black pages while (idx > moving_first_objs_count_) { idx--; pre_compact_page -= kPageSize; to_space_end -= kPageSize; if (kMode == kMinorFaultMode) { shadow_space_end -= kPageSize; page = shadow_space_end; } else if (kMode == kFallbackMode) { page = to_space_end; } mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr(); if (first_obj != nullptr) { DoPageCompactionWithStateChange( idx, page_status_arr_len, to_space_end, page, [&]() REQUIRES_SHARED(Locks::mutator_lock_) { SlideBlackPage(first_obj, idx, pre_compact_page, page, kMode == kCopyMode); }); // We are sliding here, so no point attempting to madvise for every // page. Wait for enough pages to be done. if (idx % (kMinFromSpaceMadviseSize / kPageSize) == 0) { FreeFromSpacePages(idx, kMode); } } } DCHECK_EQ(pre_compact_page, black_allocations_begin_); while (idx > 0) { idx--; to_space_end -= kPageSize; if (kMode == kMinorFaultMode) { shadow_space_end -= kPageSize; page = shadow_space_end; } else if (kMode == kFallbackMode) { page = to_space_end; } mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr(); DoPageCompactionWithStateChange( idx, page_status_arr_len, to_space_end, page, [&]() REQUIRES_SHARED(Locks::mutator_lock_) { CompactPage(first_obj, pre_compact_offset_moving_space_[idx], page, kMode == kCopyMode); }); FreeFromSpacePages(idx, kMode); } DCHECK_EQ(to_space_end, bump_pointer_space_->Begin()); } void MarkCompact::UpdateNonMovingPage(mirror::Object* first, uint8_t* page) { DCHECK_LT(reinterpret_cast(first), page + kPageSize); // For every object found in the page, visit the previous object. This ensures // that we can visit without checking page-end boundary. // Call VisitRefsForCompaction with from-space read-barrier as the klass object and // super-class loads require it. // TODO: Set kVisitNativeRoots to false once we implement concurrent // compaction mirror::Object* curr_obj = first; non_moving_space_bitmap_->VisitMarkedRange( reinterpret_cast(first) + mirror::kObjectHeaderSize, reinterpret_cast(page + kPageSize), [&](mirror::Object* next_obj) { // TODO: Once non-moving space update becomes concurrent, we'll // require fetching the from-space address of 'curr_obj' and then call // visitor on that. if (reinterpret_cast(curr_obj) < page) { RefsUpdateVisitor visitor(this, curr_obj, page, page + kPageSize); MemberOffset begin_offset(page - reinterpret_cast(curr_obj)); // Native roots shouldn't be visited as they are done when this // object's beginning was visited in the preceding page. curr_obj->VisitRefsForCompaction( visitor, begin_offset, MemberOffset(-1)); } else { RefsUpdateVisitor visitor(this, curr_obj, page, page + kPageSize); curr_obj->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(-1)); } curr_obj = next_obj; }); MemberOffset end_offset(page + kPageSize - reinterpret_cast(curr_obj)); if (reinterpret_cast(curr_obj) < page) { RefsUpdateVisitor visitor(this, curr_obj, page, page + kPageSize); curr_obj->VisitRefsForCompaction( visitor, MemberOffset(page - reinterpret_cast(curr_obj)), end_offset); } else { RefsUpdateVisitor visitor(this, curr_obj, page, page + kPageSize); curr_obj->VisitRefsForCompaction(visitor, MemberOffset(0), end_offset); } } void MarkCompact::UpdateNonMovingSpace() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // Iterating in reverse ensures that the class pointer in objects which span // across more than one page gets updated in the end. This is necessary for // VisitRefsForCompaction() to work correctly. // TODO: If and when we make non-moving space update concurrent, implement a // mechanism to remember class pointers for such objects off-heap and pass it // to VisitRefsForCompaction(). uint8_t* page = non_moving_space_->Begin() + non_moving_first_objs_count_ * kPageSize; for (ssize_t i = non_moving_first_objs_count_ - 1; i >= 0; i--) { mirror::Object* obj = first_objs_non_moving_space_[i].AsMirrorPtr(); page -= kPageSize; // null means there are no objects on the page to update references. if (obj != nullptr) { UpdateNonMovingPage(obj, page); } } } void MarkCompact::UpdateMovingSpaceBlackAllocations() { // For sliding black pages, we need the first-object, which overlaps with the // first byte of the page. Additionally, we compute the size of first chunk of // black objects. This will suffice for most black pages. Unlike, compaction // pages, here we don't need to pre-compute the offset within first-obj from // where sliding has to start. That can be calculated using the pre-compact // address of the page. Therefore, to save space, we store the first chunk's // size in black_alloc_pages_first_chunk_size_ array. // For the pages which may have holes after the first chunk, which could happen // if a new TLAB starts in the middle of the page, we mark the objects in // the mark-bitmap. So, if the first-chunk size is smaller than kPageSize, // then we use the mark-bitmap for the remainder of the page. uint8_t* const begin = bump_pointer_space_->Begin(); uint8_t* black_allocs = black_allocations_begin_; DCHECK_LE(begin, black_allocs); size_t consumed_blocks_count = 0; size_t first_block_size; // Get the list of all blocks allocated in the bump-pointer space. std::vector* block_sizes = bump_pointer_space_->GetBlockSizes(thread_running_gc_, &first_block_size); DCHECK_LE(first_block_size, (size_t)(black_allocs - begin)); if (block_sizes != nullptr) { size_t black_page_idx = moving_first_objs_count_; uint8_t* block_end = begin + first_block_size; uint32_t remaining_chunk_size = 0; uint32_t first_chunk_size = 0; mirror::Object* first_obj = nullptr; for (size_t block_size : *block_sizes) { block_end += block_size; // Skip the blocks that are prior to the black allocations. These will be // merged with the main-block later. if (black_allocs >= block_end) { consumed_blocks_count++; continue; } mirror::Object* obj = reinterpret_cast(black_allocs); bool set_mark_bit = remaining_chunk_size > 0; // We don't know how many objects are allocated in the current block. When we hit // a null assume it's the end. This works as every block is expected to // have objects allocated linearly using bump-pointer. // BumpPointerSpace::Walk() also works similarly. while (black_allocs < block_end && obj->GetClass() != nullptr) { // Try to keep instructions which access class instance together to // avoid reloading the pointer from object. size_t obj_size = obj->SizeOf(); bytes_scanned_ += obj_size; obj_size = RoundUp(obj_size, kAlignment); UpdateClassAfterObjectMap(obj); if (first_obj == nullptr) { first_obj = obj; } // We only need the mark-bitmap in the pages wherein a new TLAB starts in // the middle of the page. if (set_mark_bit) { moving_space_bitmap_->Set(obj); } // Handle objects which cross page boundary, including objects larger // than page size. if (remaining_chunk_size + obj_size >= kPageSize) { set_mark_bit = false; first_chunk_size += kPageSize - remaining_chunk_size; remaining_chunk_size += obj_size; // We should not store first-object and remaining_chunk_size if there were // unused bytes before this TLAB, in which case we must have already // stored the values (below). if (black_alloc_pages_first_chunk_size_[black_page_idx] == 0) { black_alloc_pages_first_chunk_size_[black_page_idx] = first_chunk_size; first_objs_moving_space_[black_page_idx].Assign(first_obj); } black_page_idx++; remaining_chunk_size -= kPageSize; // Consume an object larger than page size. while (remaining_chunk_size >= kPageSize) { black_alloc_pages_first_chunk_size_[black_page_idx] = kPageSize; first_objs_moving_space_[black_page_idx].Assign(obj); black_page_idx++; remaining_chunk_size -= kPageSize; } first_obj = remaining_chunk_size > 0 ? obj : nullptr; first_chunk_size = remaining_chunk_size; } else { DCHECK_LE(first_chunk_size, remaining_chunk_size); first_chunk_size += obj_size; remaining_chunk_size += obj_size; } black_allocs += obj_size; obj = reinterpret_cast(black_allocs); } DCHECK_LE(black_allocs, block_end); DCHECK_LT(remaining_chunk_size, kPageSize); // consume the unallocated portion of the block if (black_allocs < block_end) { // first-chunk of the current page ends here. Store it. if (first_chunk_size > 0 && black_alloc_pages_first_chunk_size_[black_page_idx] == 0) { black_alloc_pages_first_chunk_size_[black_page_idx] = first_chunk_size; first_objs_moving_space_[black_page_idx].Assign(first_obj); } first_chunk_size = 0; first_obj = nullptr; size_t page_remaining = kPageSize - remaining_chunk_size; size_t block_remaining = block_end - black_allocs; if (page_remaining <= block_remaining) { block_remaining -= page_remaining; // current page and the subsequent empty pages in the block black_page_idx += 1 + block_remaining / kPageSize; remaining_chunk_size = block_remaining % kPageSize; } else { remaining_chunk_size += block_remaining; } black_allocs = block_end; } } if (black_page_idx < bump_pointer_space_->Size() / kPageSize) { // Store the leftover first-chunk, if any, and update page index. if (black_alloc_pages_first_chunk_size_[black_page_idx] > 0) { black_page_idx++; } else if (first_chunk_size > 0) { black_alloc_pages_first_chunk_size_[black_page_idx] = first_chunk_size; first_objs_moving_space_[black_page_idx].Assign(first_obj); black_page_idx++; } } black_page_count_ = black_page_idx - moving_first_objs_count_; delete block_sizes; } // Update bump-pointer space by consuming all the pre-black blocks into the // main one. bump_pointer_space_->SetBlockSizes(thread_running_gc_, post_compact_end_ - begin, consumed_blocks_count); } void MarkCompact::UpdateNonMovingSpaceBlackAllocations() { accounting::ObjectStack* stack = heap_->GetAllocationStack(); const StackReference* limit = stack->End(); uint8_t* const space_begin = non_moving_space_->Begin(); for (StackReference* it = stack->Begin(); it != limit; ++it) { mirror::Object* obj = it->AsMirrorPtr(); if (obj != nullptr && non_moving_space_bitmap_->HasAddress(obj)) { non_moving_space_bitmap_->Set(obj); // Clear so that we don't try to set the bit again in the next GC-cycle. it->Clear(); size_t idx = (reinterpret_cast(obj) - space_begin) / kPageSize; uint8_t* page_begin = AlignDown(reinterpret_cast(obj), kPageSize); mirror::Object* first_obj = first_objs_non_moving_space_[idx].AsMirrorPtr(); if (first_obj == nullptr || (obj < first_obj && reinterpret_cast(first_obj) > page_begin)) { first_objs_non_moving_space_[idx].Assign(obj); } mirror::Object* next_page_first_obj = first_objs_non_moving_space_[++idx].AsMirrorPtr(); uint8_t* next_page_begin = page_begin + kPageSize; if (next_page_first_obj == nullptr || reinterpret_cast(next_page_first_obj) > next_page_begin) { size_t obj_size = RoundUp(obj->SizeOf(), kAlignment); uint8_t* obj_end = reinterpret_cast(obj) + obj_size; while (next_page_begin < obj_end) { first_objs_non_moving_space_[idx++].Assign(obj); next_page_begin += kPageSize; } } // update first_objs count in case we went past non_moving_first_objs_count_ non_moving_first_objs_count_ = std::max(non_moving_first_objs_count_, idx); } } } class MarkCompact::ImmuneSpaceUpdateObjVisitor { public: ImmuneSpaceUpdateObjVisitor(MarkCompact* collector, bool visit_native_roots) : collector_(collector), visit_native_roots_(visit_native_roots) {} ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES(Locks::mutator_lock_) { RefsUpdateVisitor visitor(collector_, obj, /*begin_*/nullptr, /*end_*/nullptr); if (visit_native_roots_) { obj->VisitRefsForCompaction( visitor, MemberOffset(0), MemberOffset(-1)); } else { obj->VisitRefsForCompaction( visitor, MemberOffset(0), MemberOffset(-1)); } } static void Callback(mirror::Object* obj, void* arg) REQUIRES(Locks::mutator_lock_) { reinterpret_cast(arg)->operator()(obj); } private: MarkCompact* const collector_; const bool visit_native_roots_; }; class MarkCompact::ClassLoaderRootsUpdater : public ClassLoaderVisitor { public: explicit ClassLoaderRootsUpdater(MarkCompact* collector) : collector_(collector) {} void Visit(ObjPtr class_loader) override REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) { ClassTable* const class_table = class_loader->GetClassTable(); if (class_table != nullptr) { class_table->VisitRoots(*this); } } void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { collector_->VisitRoots(&root, 1, RootInfo(RootType::kRootVMInternal)); } private: MarkCompact* collector_; }; class MarkCompact::LinearAllocPageUpdater { public: explicit LinearAllocPageUpdater(MarkCompact* collector) : collector_(collector) {} void operator()(uint8_t* page_begin, uint8_t* first_obj) ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_ALIGNED(page_begin, kPageSize); uint8_t* page_end = page_begin + kPageSize; uint32_t obj_size; for (uint8_t* byte = first_obj; byte < page_end;) { TrackingHeader* header = reinterpret_cast(byte); obj_size = header->GetSize(); if (UNLIKELY(obj_size == 0)) { // No more objects in this page to visit. last_page_touched_ = byte >= page_begin; return; } uint8_t* obj = byte + sizeof(TrackingHeader); uint8_t* obj_end = byte + obj_size; if (header->Is16Aligned()) { obj = AlignUp(obj, 16); } uint8_t* begin_boundary = std::max(obj, page_begin); uint8_t* end_boundary = std::min(obj_end, page_end); if (begin_boundary < end_boundary) { VisitObject(header->GetKind(), obj, begin_boundary, end_boundary); } if (ArenaAllocator::IsRunningOnMemoryTool()) { obj_size += ArenaAllocator::kMemoryToolRedZoneBytes; } byte += RoundUp(obj_size, LinearAlloc::kAlignment); } last_page_touched_ = true; } bool WasLastPageTouched() const { return last_page_touched_; } void VisitRootIfNonNull(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Object* old_ref = root->AsMirrorPtr(); DCHECK_NE(old_ref, nullptr); if (collector_->live_words_bitmap_->HasAddress(old_ref)) { mirror::Object* new_ref = old_ref; if (reinterpret_cast(old_ref) >= collector_->black_allocations_begin_) { new_ref = collector_->PostCompactBlackObjAddr(old_ref); } else if (collector_->live_words_bitmap_->Test(old_ref)) { DCHECK(collector_->moving_space_bitmap_->Test(old_ref)) << old_ref; new_ref = collector_->PostCompactOldObjAddr(old_ref); } if (old_ref != new_ref) { root->Assign(new_ref); } } } private: void VisitObject(LinearAllocKind kind, void* obj, uint8_t* start_boundary, uint8_t* end_boundary) const REQUIRES_SHARED(Locks::mutator_lock_) { switch (kind) { case LinearAllocKind::kNoGCRoots: break; case LinearAllocKind::kGCRootArray: { GcRoot* root = reinterpret_cast*>(start_boundary); GcRoot* last = reinterpret_cast*>(end_boundary); for (; root < last; root++) { VisitRootIfNonNull(root->AddressWithoutBarrier()); } } break; case LinearAllocKind::kArtMethodArray: { LengthPrefixedArray* array = static_cast*>(obj); // Old methods are clobbered in debug builds. Check size to confirm if the array // has any GC roots to visit. See ClassLinker::LinkMethodsHelper::ClobberOldMethods() if (array->size() > 0) { if (collector_->pointer_size_ == PointerSize::k64) { ArtMethod::VisitArrayRoots( *this, start_boundary, end_boundary, array); } else { DCHECK_EQ(collector_->pointer_size_, PointerSize::k32); ArtMethod::VisitArrayRoots( *this, start_boundary, end_boundary, array); } } } break; case LinearAllocKind::kArtMethod: ArtMethod::VisitRoots(*this, start_boundary, end_boundary, static_cast(obj)); break; case LinearAllocKind::kArtFieldArray: ArtField::VisitArrayRoots(*this, start_boundary, end_boundary, static_cast*>(obj)); break; case LinearAllocKind::kDexCacheArray: { mirror::DexCachePair* first = reinterpret_cast*>(start_boundary); mirror::DexCachePair* last = reinterpret_cast*>(end_boundary); mirror::DexCache::VisitDexCachePairRoots(*this, first, last); } } } MarkCompact* const collector_; // Whether the last page was touched or not. bool last_page_touched_; }; void MarkCompact::CompactionPause() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Runtime* runtime = Runtime::Current(); non_moving_space_bitmap_ = non_moving_space_->GetLiveBitmap(); if (kIsDebugBuild) { DCHECK_EQ(thread_running_gc_, Thread::Current()); stack_low_addr_ = thread_running_gc_->GetStackEnd(); stack_high_addr_ = reinterpret_cast(stack_low_addr_) + thread_running_gc_->GetStackSize(); } { TimingLogger::ScopedTiming t2("(Paused)UpdateCompactionDataStructures", GetTimings()); ReaderMutexLock rmu(thread_running_gc_, *Locks::heap_bitmap_lock_); // Refresh data-structures to catch-up on allocations that may have // happened since marking-phase pause. // There could be several TLABs that got allocated since marking pause. We // don't want to compact them and instead update the TLAB info in TLS and // let mutators continue to use the TLABs. // We need to set all the bits in live-words bitmap corresponding to allocated // objects. Also, we need to find the objects that are overlapping with // page-begin boundaries. Unlike objects allocated before // black_allocations_begin_, which can be identified via mark-bitmap, we can get // this info only via walking the space past black_allocations_begin_, which // involves fetching object size. // TODO: We can reduce the time spent on this in a pause by performing one // round of this concurrently prior to the pause. UpdateMovingSpaceBlackAllocations(); // TODO: If we want to avoid this allocation in a pause then we will have to // allocate an array for the entire moving-space size, which can be made // part of info_map_. moving_pages_status_ = new Atomic[moving_first_objs_count_ + black_page_count_]; if (kIsDebugBuild) { size_t len = moving_first_objs_count_ + black_page_count_; for (size_t i = 0; i < len; i++) { CHECK_EQ(moving_pages_status_[i].load(std::memory_order_relaxed), PageState::kUnprocessed); } } // Iterate over the allocation_stack_, for every object in the non-moving // space: // 1. Mark the object in live bitmap // 2. Erase the object from allocation stack // 3. In the corresponding page, if the first-object vector needs updating // then do so. UpdateNonMovingSpaceBlackAllocations(); // This store is visible to mutator (or uffd worker threads) as the mutator // lock's unlock guarantees that. compacting_ = true; // Start updating roots and system weaks now. heap_->GetReferenceProcessor()->UpdateRoots(this); } { TimingLogger::ScopedTiming t2("(Paused)UpdateClassLoaderRoots", GetTimings()); ReaderMutexLock rmu(thread_running_gc_, *Locks::classlinker_classes_lock_); { ClassLoaderRootsUpdater updater(this); runtime->GetClassLinker()->VisitClassLoaders(&updater); } } bool has_zygote_space = heap_->HasZygoteSpace(); // TODO: Find out why it's not sufficient to visit native roots of immune // spaces, and why all the pre-zygote fork arenas have to be linearly updated. // Is it possible that some native root starts getting pointed to by some object // in moving space after fork? Or are we missing a write-barrier somewhere // when a native root is updated? GcVisitedArenaPool* arena_pool = static_cast(runtime->GetLinearAllocArenaPool()); if (uffd_ == kFallbackMode || (!has_zygote_space && runtime->IsZygote())) { // Besides fallback-mode, visit linear-alloc space in the pause for zygote // processes prior to first fork (that's when zygote space gets created). if (kIsDebugBuild && IsValidFd(uffd_)) { // All arenas allocated so far are expected to be pre-zygote fork. arena_pool->ForEachAllocatedArena( [](const TrackedArena& arena) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(arena.IsPreZygoteForkArena()); }); } LinearAllocPageUpdater updater(this); arena_pool->VisitRoots(updater); } else { // Clear the flag as we care about this only if arenas are freed during // concurrent compaction. arena_pool->ClearArenasFreed(); arena_pool->ForEachAllocatedArena( [this](const TrackedArena& arena) REQUIRES_SHARED(Locks::mutator_lock_) { // The pre-zygote fork arenas are not visited concurrently in the // zygote children processes. The native roots of the dirty objects // are visited during immune space visit below. if (!arena.IsPreZygoteForkArena()) { uint8_t* last_byte = arena.GetLastUsedByte(); CHECK(linear_alloc_arenas_.insert({&arena, last_byte}).second); } else { LinearAllocPageUpdater updater(this); arena.VisitRoots(updater); } }); } SweepSystemWeaks(thread_running_gc_, runtime, /*paused*/ true); { TimingLogger::ScopedTiming t2("(Paused)UpdateConcurrentRoots", GetTimings()); runtime->VisitConcurrentRoots(this, kVisitRootFlagAllRoots); } { // TODO: don't visit the transaction roots if it's not active. TimingLogger::ScopedTiming t2("(Paused)UpdateNonThreadRoots", GetTimings()); runtime->VisitNonThreadRoots(this); } { // TODO: Immune space updation has to happen either before or after // remapping pre-compact pages to from-space. And depending on when it's // done, we have to invoke VisitRefsForCompaction() with or without // read-barrier. TimingLogger::ScopedTiming t2("(Paused)UpdateImmuneSpaces", GetTimings()); accounting::CardTable* const card_table = heap_->GetCardTable(); for (auto& space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); // Having zygote-space indicates that the first zygote fork has taken // place and that the classes/dex-caches in immune-spaces may have allocations // (ArtMethod/ArtField arrays, dex-cache array, etc.) in the // non-userfaultfd visited private-anonymous mappings. Visit them here. ImmuneSpaceUpdateObjVisitor visitor(this, /*visit_native_roots=*/false); if (table != nullptr) { table->ProcessCards(); table->VisitObjects(ImmuneSpaceUpdateObjVisitor::Callback, &visitor); } else { WriterMutexLock wmu(thread_running_gc_, *Locks::heap_bitmap_lock_); card_table->Scan( live_bitmap, space->Begin(), space->Limit(), visitor, accounting::CardTable::kCardDirty - 1); } } } if (use_uffd_sigbus_) { // Release order wrt to mutator threads' SIGBUS handler load. sigbus_in_progress_count_.store(0, std::memory_order_release); } KernelPreparation(); UpdateNonMovingSpace(); // fallback mode if (uffd_ == kFallbackMode) { CompactMovingSpace(nullptr); int32_t freed_bytes = black_objs_slide_diff_; bump_pointer_space_->RecordFree(freed_objects_, freed_bytes); RecordFree(ObjectBytePair(freed_objects_, freed_bytes)); } else { DCHECK_EQ(compaction_in_progress_count_.load(std::memory_order_relaxed), 0u); DCHECK_EQ(compaction_buffer_counter_.load(std::memory_order_relaxed), 1); if (!use_uffd_sigbus_) { // We must start worker threads before resuming mutators to avoid deadlocks. heap_->GetThreadPool()->StartWorkers(thread_running_gc_); } } stack_low_addr_ = nullptr; } void MarkCompact::KernelPrepareRangeForUffd(uint8_t* to_addr, uint8_t* from_addr, size_t map_size, int fd, uint8_t* shadow_addr) { int mremap_flags = MREMAP_MAYMOVE | MREMAP_FIXED; if (gHaveMremapDontunmap) { mremap_flags |= MREMAP_DONTUNMAP; } void* ret = mremap(to_addr, map_size, map_size, mremap_flags, from_addr); CHECK_EQ(ret, static_cast(from_addr)) << "mremap to move pages failed: " << strerror(errno) << ". space-addr=" << reinterpret_cast(to_addr) << " size=" << PrettySize(map_size); if (shadow_addr != nullptr) { DCHECK_EQ(fd, kFdUnused); DCHECK(gHaveMremapDontunmap); ret = mremap(shadow_addr, map_size, map_size, mremap_flags, to_addr); CHECK_EQ(ret, static_cast(to_addr)) << "mremap from shadow to to-space map failed: " << strerror(errno); } else if (!gHaveMremapDontunmap || fd > kFdUnused) { // Without MREMAP_DONTUNMAP the source mapping is unmapped by mremap. So mmap // the moving space again. int mmap_flags = MAP_FIXED; if (fd == kFdUnused) { // Use MAP_FIXED_NOREPLACE so that if someone else reserves 'to_addr' // mapping in meantime, which can happen when MREMAP_DONTUNMAP isn't // available, to avoid unmapping someone else' mapping and then causing // crashes elsewhere. mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE; // On some platforms MAP_ANONYMOUS expects fd to be -1. fd = -1; } else if (IsValidFd(fd)) { mmap_flags |= MAP_SHARED; } else { DCHECK_EQ(fd, kFdSharedAnon); mmap_flags |= MAP_SHARED | MAP_ANONYMOUS; } ret = mmap(to_addr, map_size, PROT_READ | PROT_WRITE, mmap_flags, fd, 0); CHECK_EQ(ret, static_cast(to_addr)) << "mmap for moving space failed: " << strerror(errno); } } void MarkCompact::KernelPreparation() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); uint8_t* moving_space_begin = bump_pointer_space_->Begin(); size_t moving_space_size = bump_pointer_space_->Capacity(); int mode = kCopyMode; size_t moving_space_register_sz; if (minor_fault_initialized_) { moving_space_register_sz = (moving_first_objs_count_ + black_page_count_) * kPageSize; if (shadow_to_space_map_.IsValid()) { size_t shadow_size = shadow_to_space_map_.Size(); void* addr = shadow_to_space_map_.Begin(); if (shadow_size < moving_space_register_sz) { addr = mremap(addr, shadow_size, moving_space_register_sz, // Don't allow moving with obj-ptr poisoning as the // mapping needs to be in <4GB address space. kObjPtrPoisoning ? 0 : MREMAP_MAYMOVE, /*new_address=*/nullptr); if (addr != MAP_FAILED) { // Succeeded in expanding the mapping. Update the MemMap entry for shadow map. MemMap temp = MemMap::MapPlaceholder( "moving-space-shadow", static_cast(addr), moving_space_register_sz); std::swap(shadow_to_space_map_, temp); } } if (addr != MAP_FAILED) { mode = kMinorFaultMode; } else { // We are not going to use shadow map. So protect it to catch any // potential bugs. DCHECK_EQ(mprotect(shadow_to_space_map_.Begin(), shadow_to_space_map_.Size(), PROT_NONE), 0) << "mprotect failed: " << strerror(errno); } } } else { moving_space_register_sz = moving_space_size; } bool map_shared = minor_fault_initialized_ || (!Runtime::Current()->IsZygote() && uffd_minor_fault_supported_); uint8_t* shadow_addr = nullptr; if (moving_to_space_fd_ == kFdUnused && map_shared) { DCHECK(gHaveMremapDontunmap); DCHECK(shadow_to_space_map_.IsValid()); DCHECK_EQ(shadow_to_space_map_.Size(), moving_space_size); shadow_addr = shadow_to_space_map_.Begin(); } KernelPrepareRangeForUffd(moving_space_begin, from_space_begin_, moving_space_size, moving_to_space_fd_, shadow_addr); if (IsValidFd(uffd_)) { // Register the moving space with userfaultfd. RegisterUffd(moving_space_begin, moving_space_register_sz, mode); // Prepare linear-alloc for concurrent compaction. for (auto& data : linear_alloc_spaces_data_) { bool mmap_again = map_shared && !data.already_shared_; DCHECK_EQ(static_cast(data.shadow_.Size()), data.end_ - data.begin_); // There could be threads running in suspended mode when the compaction // pause is being executed. In order to make the userfaultfd setup atomic, // the registration has to be done *before* moving the pages to shadow map. if (!mmap_again) { // See the comment in the constructor as to why it's conditionally done. RegisterUffd(data.begin_, data.shadow_.Size(), minor_fault_initialized_ ? kMinorFaultMode : kCopyMode); } KernelPrepareRangeForUffd(data.begin_, data.shadow_.Begin(), data.shadow_.Size(), mmap_again ? kFdSharedAnon : kFdUnused); if (mmap_again) { data.already_shared_ = true; RegisterUffd(data.begin_, data.shadow_.Size(), minor_fault_initialized_ ? kMinorFaultMode : kCopyMode); } } } if (map_shared) { // Start mapping linear-alloc MAP_SHARED only after the compaction pause of // the first GC in non-zygote processes. This is the GC which sets up // mappings for using minor-fault in future. Up to this point we run // userfaultfd in copy-mode, which requires the mappings (of linear-alloc) // to be MAP_PRIVATE. map_linear_alloc_shared_ = true; } } template void MarkCompact::ConcurrentCompaction(uint8_t* buf) { DCHECK_NE(kMode, kFallbackMode); DCHECK(kMode != kCopyMode || buf != nullptr); size_t nr_moving_space_used_pages = moving_first_objs_count_ + black_page_count_; while (true) { struct uffd_msg msg; ssize_t nread = read(uffd_, &msg, sizeof(msg)); CHECK_GT(nread, 0); CHECK_EQ(msg.event, UFFD_EVENT_PAGEFAULT); DCHECK_EQ(nread, static_cast(sizeof(msg))); uint8_t* fault_addr = reinterpret_cast(msg.arg.pagefault.address); if (fault_addr == conc_compaction_termination_page_) { // The counter doesn't need to be updated atomically as only one thread // would wake up against the gc-thread's load to this fault_addr. In fact, // the other threads would wake up serially because every exiting thread // will wake up gc-thread, which would retry load but again would find the // page missing. Also, the value will be flushed to caches due to the ioctl // syscall below. uint8_t ret = thread_pool_counter_--; // If 'gKernelHasFaultRetry == true' then only the last thread should map the // zeropage so that the gc-thread can proceed. Otherwise, each thread does // it and the gc-thread will repeat this fault until thread_pool_counter == 0. if (!gKernelHasFaultRetry || ret == 1) { ZeropageIoctl(fault_addr, /*tolerate_eexist=*/false, /*tolerate_enoent=*/false); } else { struct uffdio_range uffd_range; uffd_range.start = msg.arg.pagefault.address; uffd_range.len = kPageSize; CHECK_EQ(ioctl(uffd_, UFFDIO_WAKE, &uffd_range), 0) << "ioctl_userfaultfd: wake failed for concurrent-compaction termination page: " << strerror(errno); } break; } uint8_t* fault_page = AlignDown(fault_addr, kPageSize); if (bump_pointer_space_->HasAddress(reinterpret_cast(fault_addr))) { ConcurrentlyProcessMovingPage(fault_page, buf, nr_moving_space_used_pages); } else if (minor_fault_initialized_) { ConcurrentlyProcessLinearAllocPage( fault_page, (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_MINOR) != 0); } else { ConcurrentlyProcessLinearAllocPage( fault_page, (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_MINOR) != 0); } } } bool MarkCompact::SigbusHandler(siginfo_t* info) { class ScopedInProgressCount { public: explicit ScopedInProgressCount(MarkCompact* collector) : collector_(collector) { // Increment the count only if compaction is not done yet. SigbusCounterType prev = collector_->sigbus_in_progress_count_.load(std::memory_order_relaxed); while ((prev & kSigbusCounterCompactionDoneMask) == 0) { if (collector_->sigbus_in_progress_count_.compare_exchange_strong( prev, prev + 1, std::memory_order_acquire)) { DCHECK_LT(prev, kSigbusCounterCompactionDoneMask - 1); compaction_done_ = false; return; } } compaction_done_ = true; } bool IsCompactionDone() const { return compaction_done_; } ~ScopedInProgressCount() { if (!IsCompactionDone()) { collector_->sigbus_in_progress_count_.fetch_sub(1, std::memory_order_release); } } private: MarkCompact* const collector_; bool compaction_done_; }; DCHECK(use_uffd_sigbus_); if (info->si_code != BUS_ADRERR) { // Userfaultfd raises SIGBUS with BUS_ADRERR. All other causes can't be // handled here. return false; } ScopedInProgressCount spc(this); uint8_t* fault_page = AlignDown(reinterpret_cast(info->si_addr), kPageSize); if (!spc.IsCompactionDone()) { if (bump_pointer_space_->HasAddress(reinterpret_cast(fault_page))) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertSharedHeld(self); size_t nr_moving_space_used_pages = moving_first_objs_count_ + black_page_count_; if (minor_fault_initialized_) { ConcurrentlyProcessMovingPage( fault_page, nullptr, nr_moving_space_used_pages); } else { ConcurrentlyProcessMovingPage( fault_page, self->GetThreadLocalGcBuffer(), nr_moving_space_used_pages); } return true; } else { // Find the linear-alloc space containing fault-addr for (auto& data : linear_alloc_spaces_data_) { if (data.begin_ <= fault_page && data.end_ > fault_page) { if (minor_fault_initialized_) { ConcurrentlyProcessLinearAllocPage(fault_page, false); } else { ConcurrentlyProcessLinearAllocPage(fault_page, false); } return true; } } // Fault address doesn't belong to either moving-space or linear-alloc. return false; } } else { // We may spuriously get SIGBUS fault, which was initiated before the // compaction was finished, but ends up here. In that case, if the fault // address is valid then consider it handled. return bump_pointer_space_->HasAddress(reinterpret_cast(fault_page)) || linear_alloc_spaces_data_.end() != std::find_if(linear_alloc_spaces_data_.begin(), linear_alloc_spaces_data_.end(), [fault_page](const LinearAllocSpaceData& data) { return data.begin_ <= fault_page && data.end_ > fault_page; }); } } static void BackOff(uint32_t i) { static constexpr uint32_t kYieldMax = 5; // TODO: Consider adding x86 PAUSE and/or ARM YIELD here. if (i <= kYieldMax) { sched_yield(); } else { // nanosleep is not in the async-signal-safe list, but bionic implements it // with a pure system call, so it should be fine. NanoSleep(10000ull * (i - kYieldMax)); } } template void MarkCompact::ConcurrentlyProcessMovingPage(uint8_t* fault_page, uint8_t* buf, size_t nr_moving_space_used_pages) { class ScopedInProgressCount { public: explicit ScopedInProgressCount(MarkCompact* collector) : collector_(collector) { collector_->compaction_in_progress_count_.fetch_add(1, std::memory_order_relaxed); } ~ScopedInProgressCount() { collector_->compaction_in_progress_count_.fetch_sub(1, std::memory_order_relaxed); } private: MarkCompact* collector_; }; uint8_t* unused_space_begin = bump_pointer_space_->Begin() + nr_moving_space_used_pages * kPageSize; DCHECK(IsAligned(unused_space_begin)); DCHECK(kMode == kCopyMode || fault_page < unused_space_begin); if (kMode == kCopyMode && fault_page >= unused_space_begin) { // There is a race which allows more than one thread to install a // zero-page. But we can tolerate that. So absorb the EEXIST returned by // the ioctl and move on. ZeropageIoctl(fault_page, /*tolerate_eexist=*/true, /*tolerate_enoent=*/true); return; } size_t page_idx = (fault_page - bump_pointer_space_->Begin()) / kPageSize; mirror::Object* first_obj = first_objs_moving_space_[page_idx].AsMirrorPtr(); if (first_obj == nullptr) { // We should never have a case where two workers are trying to install a // zeropage in this range as we synchronize using moving_pages_status_[page_idx]. PageState expected_state = PageState::kUnprocessed; if (moving_pages_status_[page_idx].compare_exchange_strong( expected_state, PageState::kProcessedAndMapping, std::memory_order_relaxed)) { // Note: ioctl acts as an acquire fence. ZeropageIoctl(fault_page, /*tolerate_eexist=*/false, /*tolerate_enoent=*/true); } else { DCHECK_EQ(expected_state, PageState::kProcessedAndMapping); } return; } PageState state = moving_pages_status_[page_idx].load( use_uffd_sigbus_ ? std::memory_order_acquire : std::memory_order_relaxed); uint32_t backoff_count = 0; while (true) { switch (state) { case PageState::kUnprocessed: { // The increment to the in-progress counter must be done before updating // the page's state. Otherwise, we will end up leaving a window wherein // the GC-thread could observe that no worker is working on compaction // and could end up unregistering the moving space from userfaultfd. ScopedInProgressCount spc(this); // Acquire order to ensure we don't start writing to shadow map, which is // shared, before the CAS is successful. Release order to ensure that the // increment to moving_compactions_in_progress above is not re-ordered // after the CAS. if (moving_pages_status_[page_idx].compare_exchange_strong( state, PageState::kMutatorProcessing, std::memory_order_acq_rel)) { if (kMode == kMinorFaultMode) { DCHECK_EQ(buf, nullptr); buf = shadow_to_space_map_.Begin() + page_idx * kPageSize; } else if (UNLIKELY(buf == nullptr)) { DCHECK_EQ(kMode, kCopyMode); uint16_t idx = compaction_buffer_counter_.fetch_add(1, std::memory_order_relaxed); // The buffer-map is one page bigger as the first buffer is used by GC-thread. CHECK_LE(idx, kMutatorCompactionBufferCount); buf = compaction_buffers_map_.Begin() + idx * kPageSize; DCHECK(compaction_buffers_map_.HasAddress(buf)); Thread::Current()->SetThreadLocalGcBuffer(buf); } if (fault_page < post_compact_end_) { // The page has to be compacted. CompactPage( first_obj, pre_compact_offset_moving_space_[page_idx], buf, kMode == kCopyMode); } else { DCHECK_NE(first_obj, nullptr); DCHECK_GT(pre_compact_offset_moving_space_[page_idx], 0u); uint8_t* pre_compact_page = black_allocations_begin_ + (fault_page - post_compact_end_); DCHECK(IsAligned(pre_compact_page)); SlideBlackPage(first_obj, page_idx, pre_compact_page, buf, kMode == kCopyMode); } // Nobody else would simultaneously modify this page's state so an // atomic store is sufficient. Use 'release' order to guarantee that // loads/stores to the page are finished before this store. moving_pages_status_[page_idx].store(PageState::kProcessedAndMapping, std::memory_order_release); if (kMode == kCopyMode) { CopyIoctl(fault_page, buf); if (use_uffd_sigbus_) { // Store is sufficient as no other thread modifies the status at this stage. moving_pages_status_[page_idx].store(PageState::kProcessedAndMapped, std::memory_order_release); } return; } else { break; } } } continue; case PageState::kProcessing: DCHECK_EQ(kMode, kMinorFaultMode); if (moving_pages_status_[page_idx].compare_exchange_strong( state, PageState::kProcessingAndMapping, std::memory_order_relaxed) && !use_uffd_sigbus_) { // Somebody else took or will take care of finishing the compaction and // then mapping the page. return; } continue; case PageState::kProcessed: // The page is processed but not mapped. We should map it. break; case PageState::kProcessingAndMapping: case PageState::kMutatorProcessing: case PageState::kProcessedAndMapping: if (use_uffd_sigbus_) { // Wait for the page to be mapped before returning. BackOff(backoff_count++); state = moving_pages_status_[page_idx].load(std::memory_order_acquire); continue; } return; case PageState::kProcessedAndMapped: // Somebody else took care of the page. return; } break; } DCHECK_EQ(kMode, kMinorFaultMode); if (state == PageState::kUnprocessed) { MapProcessedPages( fault_page, moving_pages_status_, page_idx, nr_moving_space_used_pages); } else { DCHECK_EQ(state, PageState::kProcessed); MapProcessedPages( fault_page, moving_pages_status_, page_idx, nr_moving_space_used_pages); } } void MarkCompact::MapUpdatedLinearAllocPage(uint8_t* page, uint8_t* shadow_page, Atomic& state, bool page_touched) { DCHECK(!minor_fault_initialized_); if (page_touched) { CopyIoctl(page, shadow_page); } else { // If the page wasn't touched, then it means it is empty and // is most likely not present on the shadow-side. Furthermore, // since the shadow is also userfaultfd registered doing copy // ioctl fail as the copy-from-user in the kernel will cause // userfault. Instead, just map a zeropage, which is not only // correct but also efficient as it avoids unnecessary memcpy // in the kernel. ZeropageIoctl(page, /*tolerate_eexist=*/false, /*tolerate_enoent=*/false); } if (use_uffd_sigbus_) { // Store is sufficient as no other thread can modify the // status of this page at this point. state.store(PageState::kProcessedAndMapped, std::memory_order_release); } } template void MarkCompact::ConcurrentlyProcessLinearAllocPage(uint8_t* fault_page, bool is_minor_fault) { DCHECK(!is_minor_fault || kMode == kMinorFaultMode); auto arena_iter = linear_alloc_arenas_.end(); { TrackedArena temp_arena(fault_page); arena_iter = linear_alloc_arenas_.upper_bound(&temp_arena); arena_iter = arena_iter != linear_alloc_arenas_.begin() ? std::prev(arena_iter) : linear_alloc_arenas_.end(); } if (arena_iter == linear_alloc_arenas_.end() || arena_iter->second <= fault_page) { // Fault page isn't in any of the arenas that existed before we started // compaction. So map zeropage and return. ZeropageIoctl(fault_page, /*tolerate_eexist=*/true, /*tolerate_enoent=*/false); } else { // fault_page should always belong to some arena. DCHECK(arena_iter != linear_alloc_arenas_.end()) << "fault_page:" << static_cast(fault_page) << "is_minor_fault:" << is_minor_fault; // Find the linear-alloc space containing fault-page LinearAllocSpaceData* space_data = nullptr; for (auto& data : linear_alloc_spaces_data_) { if (data.begin_ <= fault_page && fault_page < data.end_) { space_data = &data; break; } } DCHECK_NE(space_data, nullptr); ptrdiff_t diff = space_data->shadow_.Begin() - space_data->begin_; size_t page_idx = (fault_page - space_data->begin_) / kPageSize; Atomic* state_arr = reinterpret_cast*>(space_data->page_status_map_.Begin()); PageState state = state_arr[page_idx].load(use_uffd_sigbus_ ? std::memory_order_acquire : std::memory_order_relaxed); uint32_t backoff_count = 0; while (true) { switch (state) { case PageState::kUnprocessed: { // Acquire order to ensure we don't start writing to shadow map, which is // shared, before the CAS is successful. if (state_arr[page_idx].compare_exchange_strong( state, PageState::kProcessingAndMapping, std::memory_order_acquire)) { if (kMode == kCopyMode || is_minor_fault) { uint8_t* first_obj = arena_iter->first->GetFirstObject(fault_page); DCHECK_NE(first_obj, nullptr); LinearAllocPageUpdater updater(this); updater(fault_page + diff, first_obj + diff); if (kMode == kCopyMode) { MapUpdatedLinearAllocPage(fault_page, fault_page + diff, state_arr[page_idx], updater.WasLastPageTouched()); return; } } else { // Don't touch the page in this case (there is no reason to do so // anyways) as it would mean reading from first_obj, which could be on // another missing page and hence may cause this thread to block, leading // to deadlocks. // Force read the page if it is missing so that a zeropage gets mapped on // the shadow map and then CONTINUE ioctl will map it on linear-alloc. ForceRead(fault_page + diff); } MapProcessedPages( fault_page, state_arr, page_idx, space_data->page_status_map_.Size()); return; } } continue; case PageState::kProcessing: DCHECK_EQ(kMode, kMinorFaultMode); if (state_arr[page_idx].compare_exchange_strong( state, PageState::kProcessingAndMapping, std::memory_order_relaxed) && !use_uffd_sigbus_) { // Somebody else took or will take care of finishing the updates and // then mapping the page. return; } continue; case PageState::kProcessed: // The page is processed but not mapped. We should map it. break; case PageState::kMutatorProcessing: UNREACHABLE(); case PageState::kProcessingAndMapping: case PageState::kProcessedAndMapping: if (use_uffd_sigbus_) { // Wait for the page to be mapped before returning. BackOff(backoff_count++); state = state_arr[page_idx].load(std::memory_order_acquire); continue; } return; case PageState::kProcessedAndMapped: // Somebody else took care of the page. return; } break; } DCHECK_EQ(kMode, kMinorFaultMode); DCHECK_EQ(state, PageState::kProcessed); if (!is_minor_fault) { // Force read the page if it is missing so that a zeropage gets mapped on // the shadow map and then CONTINUE ioctl will map it on linear-alloc. ForceRead(fault_page + diff); } MapProcessedPages( fault_page, state_arr, page_idx, space_data->page_status_map_.Size()); } } void MarkCompact::ProcessLinearAlloc() { GcVisitedArenaPool* arena_pool = static_cast(Runtime::Current()->GetLinearAllocArenaPool()); for (auto& pair : linear_alloc_arenas_) { const TrackedArena* arena = pair.first; size_t arena_size; uint8_t* arena_begin; ptrdiff_t diff; bool others_processing; { // Acquire arena-pool's lock so that the arena being worked cannot be // deallocated at the same time. std::lock_guard lock(arena_pool->GetLock()); // If any arenas were freed since compaction pause then skip them from // visiting. if (arena_pool->AreArenasFreed() && !arena_pool->FindAllocatedArena(arena)) { continue; } uint8_t* last_byte = pair.second; DCHECK_ALIGNED(last_byte, kPageSize); others_processing = false; arena_begin = arena->Begin(); arena_size = arena->Size(); // Find the linear-alloc space containing the arena LinearAllocSpaceData* space_data = nullptr; for (auto& data : linear_alloc_spaces_data_) { if (data.begin_ <= arena_begin && arena_begin < data.end_) { space_data = &data; break; } } DCHECK_NE(space_data, nullptr); diff = space_data->shadow_.Begin() - space_data->begin_; auto visitor = [space_data, last_byte, diff, this, &others_processing]( uint8_t* page_begin, uint8_t* first_obj) REQUIRES_SHARED(Locks::mutator_lock_) { // No need to process pages past last_byte as they already have updated // gc-roots, if any. if (page_begin >= last_byte) { return; } LinearAllocPageUpdater updater(this); size_t page_idx = (page_begin - space_data->begin_) / kPageSize; DCHECK_LT(page_idx, space_data->page_status_map_.Size()); Atomic* state_arr = reinterpret_cast*>(space_data->page_status_map_.Begin()); PageState expected_state = PageState::kUnprocessed; PageState desired_state = minor_fault_initialized_ ? PageState::kProcessing : PageState::kProcessingAndMapping; // Acquire order to ensure that we don't start accessing the shadow page, // which is shared with other threads, prior to CAS. Also, for same // reason, we used 'release' order for changing the state to 'processed'. if (state_arr[page_idx].compare_exchange_strong( expected_state, desired_state, std::memory_order_acquire)) { updater(page_begin + diff, first_obj + diff); expected_state = PageState::kProcessing; if (!minor_fault_initialized_) { MapUpdatedLinearAllocPage( page_begin, page_begin + diff, state_arr[page_idx], updater.WasLastPageTouched()); } else if (!state_arr[page_idx].compare_exchange_strong( expected_state, PageState::kProcessed, std::memory_order_release)) { DCHECK_EQ(expected_state, PageState::kProcessingAndMapping); // Force read in case the page was missing and updater didn't touch it // as there was nothing to do. This will ensure that a zeropage is // faulted on the shadow map. ForceRead(page_begin + diff); MapProcessedPages( page_begin, state_arr, page_idx, space_data->page_status_map_.Size()); } } else { others_processing = true; } }; arena->VisitRoots(visitor); } // If we are not in minor-fault mode and if no other thread was found to be // processing any pages in this arena, then we can madvise the shadow size. // Otherwise, we will double the memory use for linear-alloc. if (!minor_fault_initialized_ && !others_processing) { ZeroAndReleasePages(arena_begin + diff, arena_size); } } } void MarkCompact::RegisterUffd(void* addr, size_t size, int mode) { DCHECK(IsValidFd(uffd_)); struct uffdio_register uffd_register; uffd_register.range.start = reinterpret_cast(addr); uffd_register.range.len = size; uffd_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (mode == kMinorFaultMode) { uffd_register.mode |= UFFDIO_REGISTER_MODE_MINOR; } CHECK_EQ(ioctl(uffd_, UFFDIO_REGISTER, &uffd_register), 0) << "ioctl_userfaultfd: register failed: " << strerror(errno) << ". start:" << static_cast(addr) << " len:" << PrettySize(size); } void MarkCompact::UnregisterUffd(uint8_t* start, size_t len) { DCHECK(IsValidFd(uffd_)); struct uffdio_range range; range.start = reinterpret_cast(start); range.len = len; CHECK_EQ(ioctl(uffd_, UFFDIO_UNREGISTER, &range), 0) << "ioctl_userfaultfd: unregister failed: " << strerror(errno) << ". addr:" << static_cast(start) << " len:" << PrettySize(len); // Due to an oversight in the kernel implementation of 'unregister', the // waiting threads are woken up only for copy uffds. Therefore, for now, we // have to explicitly wake up the threads in minor-fault case. // TODO: The fix in the kernel is being worked on. Once the kernel version // containing the fix is known, make it conditional on that as well. if (minor_fault_initialized_) { CHECK_EQ(ioctl(uffd_, UFFDIO_WAKE, &range), 0) << "ioctl_userfaultfd: wake failed: " << strerror(errno) << ". addr:" << static_cast(start) << " len:" << PrettySize(len); } } void MarkCompact::CompactionPhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); { int32_t freed_bytes = black_objs_slide_diff_; bump_pointer_space_->RecordFree(freed_objects_, freed_bytes); RecordFree(ObjectBytePair(freed_objects_, freed_bytes)); } if (CanCompactMovingSpaceWithMinorFault()) { CompactMovingSpace(/*page=*/nullptr); } else { CompactMovingSpace(compaction_buffers_map_.Begin()); } // Make sure no mutator is reading from the from-space before unregistering // userfaultfd from moving-space and then zapping from-space. The mutator // and GC may race to set a page state to processing or further along. The two // attempts are ordered. If the collector wins, then the mutator will see that // and not access the from-space page. If the muator wins, then the // compaction_in_progress_count_ increment by the mutator happens-before the test // here, and we will not see a zero value until the mutator has completed. for (uint32_t i = 0; compaction_in_progress_count_.load(std::memory_order_acquire) > 0; i++) { BackOff(i); } size_t moving_space_size = bump_pointer_space_->Capacity(); UnregisterUffd(bump_pointer_space_->Begin(), minor_fault_initialized_ ? (moving_first_objs_count_ + black_page_count_) * kPageSize : moving_space_size); // Release all of the memory taken by moving-space's from-map if (minor_fault_initialized_) { if (IsValidFd(moving_from_space_fd_)) { // A strange behavior is observed wherein between GC cycles the from-space' // first page is accessed. But the memfd that is mapped on from-space, is // used on to-space in next GC cycle, causing issues with userfaultfd as the // page isn't missing. A possible reason for this could be prefetches. The // mprotect ensures that such accesses don't succeed. int ret = mprotect(from_space_begin_, moving_space_size, PROT_NONE); CHECK_EQ(ret, 0) << "mprotect(PROT_NONE) for from-space failed: " << strerror(errno); // madvise(MADV_REMOVE) needs PROT_WRITE. Use fallocate() instead, which // does the same thing. ret = fallocate(moving_from_space_fd_, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, /*offset=*/0, moving_space_size); CHECK_EQ(ret, 0) << "fallocate for from-space failed: " << strerror(errno); } else { // We don't have a valid fd, so use madvise(MADV_REMOVE) instead. mprotect // is not required in this case as we create fresh // MAP_SHARED+MAP_ANONYMOUS mapping in each GC cycle. int ret = madvise(from_space_begin_, moving_space_size, MADV_REMOVE); CHECK_EQ(ret, 0) << "madvise(MADV_REMOVE) failed for from-space map:" << strerror(errno); } } else { from_space_map_.MadviseDontNeedAndZero(); } // mprotect(PROT_NONE) all maps except to-space in debug-mode to catch any unexpected accesses. if (shadow_to_space_map_.IsValid()) { DCHECK_EQ(mprotect(shadow_to_space_map_.Begin(), shadow_to_space_map_.Size(), PROT_NONE), 0) << "mprotect(PROT_NONE) for shadow-map failed:" << strerror(errno); } if (!IsValidFd(moving_from_space_fd_)) { // The other case is already mprotected above. DCHECK_EQ(mprotect(from_space_begin_, moving_space_size, PROT_NONE), 0) << "mprotect(PROT_NONE) for from-space failed: " << strerror(errno); } ProcessLinearAlloc(); if (use_uffd_sigbus_) { // Set compaction-done bit so that no new mutator threads start compaction // process in the SIGBUS handler. SigbusCounterType count = sigbus_in_progress_count_.fetch_or(kSigbusCounterCompactionDoneMask, std::memory_order_acq_rel); // Wait for SIGBUS handlers already in play. for (uint32_t i = 0; count > 0; i++) { BackOff(i); count = sigbus_in_progress_count_.load(std::memory_order_acquire); count &= ~kSigbusCounterCompactionDoneMask; } } else { DCHECK(IsAligned(conc_compaction_termination_page_)); // We will only iterate once if gKernelHasFaultRetry is true. do { // madvise the page so that we can get userfaults on it. ZeroAndReleasePages(conc_compaction_termination_page_, kPageSize); // The following load triggers 'special' userfaults. When received by the // thread-pool workers, they will exit out of the compaction task. This fault // happens because we madvised the page. ForceRead(conc_compaction_termination_page_); } while (thread_pool_counter_ > 0); } // Unregister linear-alloc spaces for (auto& data : linear_alloc_spaces_data_) { DCHECK_EQ(data.end_ - data.begin_, static_cast(data.shadow_.Size())); UnregisterUffd(data.begin_, data.shadow_.Size()); // madvise linear-allocs's page-status array data.page_status_map_.MadviseDontNeedAndZero(); // Madvise the entire linear-alloc space's shadow. In copy-mode it gets rid // of the pages which are still mapped. In minor-fault mode this unmaps all // pages, which is good in reducing the mremap (done in STW pause) time in // next GC cycle. data.shadow_.MadviseDontNeedAndZero(); if (minor_fault_initialized_) { DCHECK_EQ(mprotect(data.shadow_.Begin(), data.shadow_.Size(), PROT_NONE), 0) << "mprotect failed: " << strerror(errno); } } if (!use_uffd_sigbus_) { heap_->GetThreadPool()->StopWorkers(thread_running_gc_); } } template class MarkCompact::ThreadRootsVisitor : public RootVisitor { public: explicit ThreadRootsVisitor(MarkCompact* mark_compact, Thread* const self) : mark_compact_(mark_compact), self_(self) {} ~ThreadRootsVisitor() { Flush(); } void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { for (size_t i = 0; i < count; i++) { mirror::Object* obj = *roots[i]; if (mark_compact_->MarkObjectNonNullNoPush(obj)) { Push(obj); } } } void VisitRoots(mirror::CompressedReference** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { for (size_t i = 0; i < count; i++) { mirror::Object* obj = roots[i]->AsMirrorPtr(); if (mark_compact_->MarkObjectNonNullNoPush(obj)) { Push(obj); } } } private: void Flush() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { StackReference* start; StackReference* end; { MutexLock mu(self_, mark_compact_->lock_); // Loop here because even after expanding once it may not be sufficient to // accommodate all references. It's almost impossible, but there is no harm // in implementing it this way. while (!mark_compact_->mark_stack_->BumpBack(idx_, &start, &end)) { mark_compact_->ExpandMarkStack(); } } while (idx_ > 0) { *start++ = roots_[--idx_]; } DCHECK_EQ(start, end); } void Push(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { if (UNLIKELY(idx_ >= kBufferSize)) { Flush(); } roots_[idx_++].Assign(obj); } StackReference roots_[kBufferSize]; size_t idx_ = 0; MarkCompact* const mark_compact_; Thread* const self_; }; class MarkCompact::CheckpointMarkThreadRoots : public Closure { public: explicit CheckpointMarkThreadRoots(MarkCompact* mark_compact) : mark_compact_(mark_compact) {} void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS { ScopedTrace trace("Marking thread roots"); // Note: self is not necessarily equal to thread since thread may be // suspended. Thread* const self = Thread::Current(); CHECK(thread == self || thread->IsSuspended() || thread->GetState() == ThreadState::kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; { ThreadRootsVisitor visitor(mark_compact_, self); thread->VisitRoots(&visitor, kVisitRootFlagAllRoots); } // Clear page-buffer to prepare for compaction phase. thread->SetThreadLocalGcBuffer(nullptr); // If thread is a running mutator, then act on behalf of the garbage // collector. See the code in ThreadList::RunCheckpoint. mark_compact_->GetBarrier().Pass(self); } private: MarkCompact* const mark_compact_; }; void MarkCompact::MarkRootsCheckpoint(Thread* self, Runtime* runtime) { // We revote TLABs later during paused round of marking. TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); CheckpointMarkThreadRoots check_point(this); ThreadList* thread_list = runtime->GetThreadList(); gc_barrier_.Init(self, 0); // Request the check point is run on all threads returning a count of the threads that must // run through the barrier including self. size_t barrier_count = thread_list->RunCheckpoint(&check_point); // Release locks then wait for all mutator threads to pass the barrier. // If there are no threads to wait which implys that all the checkpoint functions are finished, // then no need to release locks. if (barrier_count == 0) { return; } Locks::heap_bitmap_lock_->ExclusiveUnlock(self); Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_.Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); Locks::heap_bitmap_lock_->ExclusiveLock(self); } void MarkCompact::MarkNonThreadRoots(Runtime* runtime) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); runtime->VisitNonThreadRoots(this); } void MarkCompact::MarkConcurrentRoots(VisitRootFlags flags, Runtime* runtime) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); runtime->VisitConcurrentRoots(this, flags); } void MarkCompact::RevokeAllThreadLocalBuffers() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); bump_pointer_space_->RevokeAllThreadLocalBuffers(); } class MarkCompact::ScanObjectVisitor { public: explicit ScanObjectVisitor(MarkCompact* const mark_compact) ALWAYS_INLINE : mark_compact_(mark_compact) {} void operator()(ObjPtr obj) const ALWAYS_INLINE REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { mark_compact_->ScanObject(obj.Ptr()); } private: MarkCompact* const mark_compact_; }; void MarkCompact::UpdateAndMarkModUnion() { accounting::CardTable* const card_table = heap_->GetCardTable(); for (const auto& space : immune_spaces_.GetSpaces()) { const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : "UpdateAndMarkImageModUnionTable"; DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space; TimingLogger::ScopedTiming t(name, GetTimings()); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); if (table != nullptr) { // UpdateAndMarkReferences() doesn't visit Reference-type objects. But // that's fine because these objects are immutable enough (referent can // only be cleared) and hence the only referents they can have are intra-space. table->UpdateAndMarkReferences(this); } else { // No mod-union table, scan all dirty/aged cards in the corresponding // card-table. This can only occur for app images. card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), ScanObjectVisitor(this), gc::accounting::CardTable::kCardAged); } } } void MarkCompact::MarkReachableObjects() { UpdateAndMarkModUnion(); // Recursively mark all the non-image bits set in the mark bitmap. ProcessMarkStack(); } class MarkCompact::CardModifiedVisitor { public: explicit CardModifiedVisitor(MarkCompact* const mark_compact, accounting::ContinuousSpaceBitmap* const bitmap, accounting::CardTable* const card_table) : visitor_(mark_compact), bitmap_(bitmap), card_table_(card_table) {} void operator()(uint8_t* card, uint8_t expected_value, uint8_t new_value ATTRIBUTE_UNUSED) const { if (expected_value == accounting::CardTable::kCardDirty) { uintptr_t start = reinterpret_cast(card_table_->AddrFromCard(card)); bitmap_->VisitMarkedRange(start, start + accounting::CardTable::kCardSize, visitor_); } } private: ScanObjectVisitor visitor_; accounting::ContinuousSpaceBitmap* bitmap_; accounting::CardTable* const card_table_; }; void MarkCompact::ScanDirtyObjects(bool paused, uint8_t minimum_age) { accounting::CardTable* card_table = heap_->GetCardTable(); for (const auto& space : heap_->GetContinuousSpaces()) { const char* name = nullptr; switch (space->GetGcRetentionPolicy()) { case space::kGcRetentionPolicyNeverCollect: name = paused ? "(Paused)ScanGrayImmuneSpaceObjects" : "ScanGrayImmuneSpaceObjects"; break; case space::kGcRetentionPolicyFullCollect: name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; break; case space::kGcRetentionPolicyAlwaysCollect: name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; break; default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } TimingLogger::ScopedTiming t(name, GetTimings()); ScanObjectVisitor visitor(this); const bool is_immune_space = space->IsZygoteSpace() || space->IsImageSpace(); if (paused) { DCHECK_EQ(minimum_age, gc::accounting::CardTable::kCardDirty); // We can clear the card-table for any non-immune space. if (is_immune_space) { card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); } else { card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); } } else { DCHECK_EQ(minimum_age, gc::accounting::CardTable::kCardAged); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); if (table) { table->ProcessCards(); card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); } else { CardModifiedVisitor card_modified_visitor(this, space->GetMarkBitmap(), card_table); // For the alloc spaces we should age the dirty cards and clear the rest. // For image and zygote-space without mod-union-table, age the dirty // cards but keep the already aged cards unchanged. // In either case, visit the objects on the cards that were changed from // dirty to aged. if (is_immune_space) { card_table->ModifyCardsAtomic(space->Begin(), space->End(), [](uint8_t card) { return (card == gc::accounting::CardTable::kCardClean) ? card : gc::accounting::CardTable::kCardAged; }, card_modified_visitor); } else { card_table->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), card_modified_visitor); } } } } } void MarkCompact::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) { ScanDirtyObjects(paused, minimum_age); ProcessMarkStack(); } void MarkCompact::MarkRoots(VisitRootFlags flags) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Runtime* runtime = Runtime::Current(); // Make sure that the checkpoint which collects the stack roots is the first // one capturning GC-roots. As this one is supposed to find the address // everything allocated after that (during this marking phase) will be // considered 'marked'. MarkRootsCheckpoint(thread_running_gc_, runtime); MarkNonThreadRoots(runtime); MarkConcurrentRoots(flags, runtime); } void MarkCompact::PreCleanCards() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); CHECK(!Locks::mutator_lock_->IsExclusiveHeld(thread_running_gc_)); MarkRoots(static_cast(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); RecursiveMarkDirtyObjects(/*paused*/ false, accounting::CardTable::kCardDirty - 1); } // In a concurrent marking algorithm, if we are not using a write/read barrier, as // in this case, then we need a stop-the-world (STW) round in the end to mark // objects which were written into concurrently while concurrent marking was // performed. // In order to minimize the pause time, we could take one of the two approaches: // 1. Keep repeating concurrent marking of dirty cards until the time spent goes // below a threshold. // 2. Do two rounds concurrently and then attempt a paused one. If we figure // that it's taking too long, then resume mutators and retry. // // Given the non-trivial fixed overhead of running a round (card table and root // scan), it might be better to go with approach 2. void MarkCompact::MarkingPhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); DCHECK_EQ(thread_running_gc_, Thread::Current()); WriterMutexLock mu(thread_running_gc_, *Locks::heap_bitmap_lock_); BindAndResetBitmaps(); MarkZygoteLargeObjects(); MarkRoots( static_cast(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); MarkReachableObjects(); // Pre-clean dirtied cards to reduce pauses. PreCleanCards(); // Setup reference processing and forward soft references once before enabling // slow path (in MarkingPause) ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor(); bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences(); rp->Setup(thread_running_gc_, this, /*concurrent=*/ true, clear_soft_references); if (!clear_soft_references) { // Forward as many SoftReferences as possible before inhibiting reference access. rp->ForwardSoftReferences(GetTimings()); } } class MarkCompact::RefFieldsVisitor { public: ALWAYS_INLINE explicit RefFieldsVisitor(MarkCompact* const mark_compact) : mark_compact_(mark_compact) {} ALWAYS_INLINE void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckLocks) { Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); } mark_compact_->MarkObject(obj->GetFieldObject(offset), obj, offset); } void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { mark_compact_->DelayReferenceReferent(klass, ref); } void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckLocks) { Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); } mark_compact_->MarkObject(root->AsMirrorPtr()); } private: MarkCompact* const mark_compact_; }; template size_t MarkCompact::LiveWordsBitmap::LiveBytesInBitmapWord(size_t chunk_idx) const { const size_t index = chunk_idx * kBitmapWordsPerVectorWord; size_t words = 0; for (uint32_t i = 0; i < kBitmapWordsPerVectorWord; i++) { words += POPCOUNT(Bitmap::Begin()[index + i]); } return words * kAlignment; } void MarkCompact::UpdateLivenessInfo(mirror::Object* obj, size_t obj_size) { DCHECK(obj != nullptr); DCHECK_EQ(obj_size, obj->SizeOf()); uintptr_t obj_begin = reinterpret_cast(obj); UpdateClassAfterObjectMap(obj); size_t size = RoundUp(obj_size, kAlignment); uintptr_t bit_index = live_words_bitmap_->SetLiveWords(obj_begin, size); size_t chunk_idx = (obj_begin - live_words_bitmap_->Begin()) / kOffsetChunkSize; // Compute the bit-index within the chunk-info vector word. bit_index %= kBitsPerVectorWord; size_t first_chunk_portion = std::min(size, (kBitsPerVectorWord - bit_index) * kAlignment); chunk_info_vec_[chunk_idx++] += first_chunk_portion; DCHECK_LE(first_chunk_portion, size); for (size -= first_chunk_portion; size > kOffsetChunkSize; size -= kOffsetChunkSize) { DCHECK_EQ(chunk_info_vec_[chunk_idx], 0u); chunk_info_vec_[chunk_idx++] = kOffsetChunkSize; } chunk_info_vec_[chunk_idx] += size; freed_objects_--; } template void MarkCompact::ScanObject(mirror::Object* obj) { // The size of `obj` is used both here (to update `bytes_scanned_`) and in // `UpdateLivenessInfo`. As fetching this value can be expensive, do it once // here and pass that information to `UpdateLivenessInfo`. size_t obj_size = obj->SizeOf(); bytes_scanned_ += obj_size; RefFieldsVisitor visitor(this); DCHECK(IsMarked(obj)) << "Scanning marked object " << obj << "\n" << heap_->DumpSpaces(); if (kUpdateLiveWords && moving_space_bitmap_->HasAddress(obj)) { UpdateLivenessInfo(obj, obj_size); } obj->VisitReferences(visitor, visitor); } // Scan anything that's on the mark stack. void MarkCompact::ProcessMarkStack() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // TODO: try prefetch like in CMS while (!mark_stack_->IsEmpty()) { mirror::Object* obj = mark_stack_->PopBack(); DCHECK(obj != nullptr); ScanObject(obj); } } void MarkCompact::ExpandMarkStack() { const size_t new_size = mark_stack_->Capacity() * 2; std::vector> temp(mark_stack_->Begin(), mark_stack_->End()); mark_stack_->Resize(new_size); for (auto& ref : temp) { mark_stack_->PushBack(ref.AsMirrorPtr()); } DCHECK(!mark_stack_->IsFull()); } inline void MarkCompact::PushOnMarkStack(mirror::Object* obj) { if (UNLIKELY(mark_stack_->IsFull())) { ExpandMarkStack(); } mark_stack_->PushBack(obj); } inline void MarkCompact::MarkObjectNonNull(mirror::Object* obj, mirror::Object* holder, MemberOffset offset) { DCHECK(obj != nullptr); if (MarkObjectNonNullNoPush(obj, holder, offset)) { PushOnMarkStack(obj); } } template inline bool MarkCompact::MarkObjectNonNullNoPush(mirror::Object* obj, mirror::Object* holder, MemberOffset offset) { // We expect most of the referenes to be in bump-pointer space, so try that // first to keep the cost of this function minimal. if (LIKELY(moving_space_bitmap_->HasAddress(obj))) { return kParallel ? !moving_space_bitmap_->AtomicTestAndSet(obj) : !moving_space_bitmap_->Set(obj); } else if (non_moving_space_bitmap_->HasAddress(obj)) { return kParallel ? !non_moving_space_bitmap_->AtomicTestAndSet(obj) : !non_moving_space_bitmap_->Set(obj); } else if (immune_spaces_.ContainsObject(obj)) { DCHECK(IsMarked(obj) != nullptr); return false; } else { // Must be a large-object space, otherwise it's a case of heap corruption. if (!IsAligned(obj)) { // Objects in large-object space are page aligned. So if we have an object // which doesn't belong to any space and is not page-aligned as well, then // it's memory corruption. // TODO: implement protect/unprotect in bump-pointer space. heap_->GetVerification()->LogHeapCorruption(holder, offset, obj, /*fatal*/ true); } DCHECK_NE(heap_->GetLargeObjectsSpace(), nullptr) << "ref=" << obj << " doesn't belong to any of the spaces and large object space doesn't exist"; accounting::LargeObjectBitmap* los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); DCHECK(los_bitmap->HasAddress(obj)); if (kParallel) { los_bitmap->AtomicTestAndSet(obj); } else { los_bitmap->Set(obj); } // We only have primitive arrays in large object space. So there is no // reason to push into mark-stack. DCHECK(obj->IsString() || (obj->IsArrayInstance() && !obj->IsObjectArray())); return false; } } inline void MarkCompact::MarkObject(mirror::Object* obj, mirror::Object* holder, MemberOffset offset) { if (obj != nullptr) { MarkObjectNonNull(obj, holder, offset); } } mirror::Object* MarkCompact::MarkObject(mirror::Object* obj) { MarkObject(obj, nullptr, MemberOffset(0)); return obj; } void MarkCompact::MarkHeapReference(mirror::HeapReference* obj, bool do_atomic_update ATTRIBUTE_UNUSED) { MarkObject(obj->AsMirrorPtr(), nullptr, MemberOffset(0)); } void MarkCompact::VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info) { if (compacting_) { for (size_t i = 0; i < count; ++i) { UpdateRoot(roots[i], info); } } else { for (size_t i = 0; i < count; ++i) { MarkObjectNonNull(*roots[i]); } } } void MarkCompact::VisitRoots(mirror::CompressedReference** roots, size_t count, const RootInfo& info) { // TODO: do we need to check if the root is null or not? if (compacting_) { for (size_t i = 0; i < count; ++i) { UpdateRoot(roots[i], info); } } else { for (size_t i = 0; i < count; ++i) { MarkObjectNonNull(roots[i]->AsMirrorPtr()); } } } mirror::Object* MarkCompact::IsMarked(mirror::Object* obj) { if (moving_space_bitmap_->HasAddress(obj)) { const bool is_black = reinterpret_cast(obj) >= black_allocations_begin_; if (compacting_) { if (is_black) { return PostCompactBlackObjAddr(obj); } else if (live_words_bitmap_->Test(obj)) { return PostCompactOldObjAddr(obj); } else { return nullptr; } } return (is_black || moving_space_bitmap_->Test(obj)) ? obj : nullptr; } else if (non_moving_space_bitmap_->HasAddress(obj)) { return non_moving_space_bitmap_->Test(obj) ? obj : nullptr; } else if (immune_spaces_.ContainsObject(obj)) { return obj; } else { DCHECK(heap_->GetLargeObjectsSpace()) << "ref=" << obj << " doesn't belong to any of the spaces and large object space doesn't exist"; accounting::LargeObjectBitmap* los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); if (los_bitmap->HasAddress(obj)) { DCHECK(IsAligned(obj)); return los_bitmap->Test(obj) ? obj : nullptr; } else { // The given obj is not in any of the known spaces, so return null. This could // happen for instance in interpreter caches wherein a concurrent updation // to the cache could result in obj being a non-reference. This is // tolerable because SweepInterpreterCaches only updates if the given // object has moved, which can't be the case for the non-reference. return nullptr; } } } bool MarkCompact::IsNullOrMarkedHeapReference(mirror::HeapReference* obj, bool do_atomic_update ATTRIBUTE_UNUSED) { mirror::Object* ref = obj->AsMirrorPtr(); if (ref == nullptr) { return true; } return IsMarked(ref); } // Process the 'referent' field in a java.lang.ref.Reference. If the referent // has not yet been marked, put it on the appropriate list in the heap for later // processing. void MarkCompact::DelayReferenceReferent(ObjPtr klass, ObjPtr ref) { heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this); } void MarkCompact::FinishPhase() { GetCurrentIteration()->SetScannedBytes(bytes_scanned_); bool is_zygote = Runtime::Current()->IsZygote(); compacting_ = false; minor_fault_initialized_ = !is_zygote && uffd_minor_fault_supported_; // Madvise compaction buffers. When using threaded implementation, skip the first page, // which is used by the gc-thread for the next iteration. Otherwise, we get into a // deadlock due to userfault on it in the next iteration. This page is not consuming any // physical memory because we already madvised it above and then we triggered a read // userfault, which maps a special zero-page. if (use_uffd_sigbus_ || !minor_fault_initialized_ || !shadow_to_space_map_.IsValid() || shadow_to_space_map_.Size() < (moving_first_objs_count_ + black_page_count_) * kPageSize) { size_t adjustment = use_uffd_sigbus_ ? 0 : kPageSize; ZeroAndReleasePages(compaction_buffers_map_.Begin() + adjustment, compaction_buffers_map_.Size() - adjustment); } else if (shadow_to_space_map_.Size() == bump_pointer_space_->Capacity()) { // Now that we are going to use minor-faults from next GC cycle, we can // unmap the buffers used by worker threads. compaction_buffers_map_.SetSize(kPageSize); } info_map_.MadviseDontNeedAndZero(); live_words_bitmap_->ClearBitmap(); // TODO: We can clear this bitmap right before compaction pause. But in that // case we need to ensure that we don't assert on this bitmap afterwards. // Also, we would still need to clear it here again as we may have to use the // bitmap for black-allocations (see UpdateMovingSpaceBlackAllocations()). moving_space_bitmap_->Clear(); if (UNLIKELY(is_zygote && IsValidFd(uffd_))) { heap_->DeleteThreadPool(); // This unregisters all ranges as a side-effect. close(uffd_); uffd_ = kFdUnused; uffd_initialized_ = false; } CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. mark_stack_->Reset(); DCHECK_EQ(thread_running_gc_, Thread::Current()); if (kIsDebugBuild) { MutexLock mu(thread_running_gc_, lock_); if (updated_roots_.get() != nullptr) { updated_roots_->clear(); } } class_after_obj_ordered_map_.clear(); delete[] moving_pages_status_; linear_alloc_arenas_.clear(); { ReaderMutexLock mu(thread_running_gc_, *Locks::mutator_lock_); WriterMutexLock mu2(thread_running_gc_, *Locks::heap_bitmap_lock_); heap_->ClearMarkedObjects(); } std::swap(moving_to_space_fd_, moving_from_space_fd_); if (IsValidFd(moving_to_space_fd_)) { // Confirm that the memfd to be used on to-space in next GC cycle is empty. struct stat buf; DCHECK_EQ(fstat(moving_to_space_fd_, &buf), 0) << "fstat failed: " << strerror(errno); DCHECK_EQ(buf.st_blocks, 0u); } } } // namespace collector } // namespace gc } // namespace art