/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ #include #include #include #include #include #include "base/bit_utils.h" #include "base/locks.h" #include "base/macros.h" #include "base/mem_map.h" #include "base/mutex.h" #include "gc_root.h" #include "obj_ptr.h" #include "offsets.h" #include "read_barrier_option.h" namespace art { class IsMarkedVisitor; class RootInfo; namespace mirror { class Object; } // namespace mirror // Indirect reference definition. This must be interchangeable with JNI's jobject, and it's // convenient to let null be null, so we use void*. // // We need a 2-bit reference kind (global, local, weak global) and the rest of the `IndirectRef` // is used to locate the actual reference storage. // // For global and weak global references, we need a (potentially) large table index and we also // reserve some bits to be used to detect stale indirect references: we put a serial number in // the extra bits, and keep a copy of the serial number in the table. This requires more memory // and additional memory accesses on add/get, but is moving-GC safe. It will catch additional // problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj, lookup iref1. // A pattern based on object bits will miss this. // // Local references use the same bits for the reference kind but the rest of their `IndirectRef` // encoding is different, see `LocalReferenceTable` for details. using IndirectRef = void*; // Indirect reference kind, used as the two low bits of IndirectRef. // // For convenience these match up with enum jobjectRefType from jni.h, except that // we use value 0 for JNI transitions instead of marking invalid reference type. enum IndirectRefKind { kJniTransition = 0, // <> kLocal = 1, // <> kGlobal = 2, // <> kWeakGlobal = 3, // <> kLastKind = kWeakGlobal }; std::ostream& operator<<(std::ostream& os, IndirectRefKind rhs); const char* GetIndirectRefKindString(IndirectRefKind kind); // Maintain a table of indirect references. Used for global and weak global JNI references. // // The table contains object references, where the strong global references are part of the // GC root set (but not the weak global references). When an object is added we return an // `IndirectRef` that is not a valid pointer but can be used to find the original value in O(1) // time. Conversions to and from indirect references are performed in JNI functions and when // returning from native methods to managed code, so they need to be very fast. // // The GC must be able to scan the entire table quickly. // // In summary, these must be very fast: // - adding references // - removing references // - converting an indirect reference back to an Object // These can be a little slower, but must still be pretty quick: // - scanning the entire table straight through // Table definition. // // For the global reference tables, the expected common operations are adding a new entry and // removing a recently-added entry (usually the most-recently-added entry). // // If we delete entries from the middle of the list, we will be left with "holes". We track the // number of holes so that, when adding new elements, we can quickly decide to do a trivial append // or go slot-hunting. // // When the top-most entry is removed, any holes immediately below it are also removed. Thus, // deletion of an entry may reduce "top_index" by more than one. // // Common alternative implementation: make IndirectRef a pointer to the actual reference slot. // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like // determining the type and deleting the reference are more expensive because the table must be // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move // the table when expanding it (so realloc() is out), and tricks like serial number checking to // detect stale references aren't possible (though we may be able to get similar benefits with other // approaches). // // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a // delete. // We associate a few bits of serial number with each reference, for error checking. static constexpr unsigned int kIRTSerialBits = 3; static constexpr uint32_t kIRTMaxSerial = ((1 << kIRTSerialBits) - 1); class IrtEntry { public: void Add(ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_); GcRoot* GetReference() { DCHECK_LE(serial_, kIRTMaxSerial); return &reference_; } const GcRoot* GetReference() const { DCHECK_LE(serial_, kIRTMaxSerial); return &reference_; } uint32_t GetSerial() const { return serial_; } void SetReference(ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_); private: uint32_t serial_; // Incremented for each reuse; checked against reference. GcRoot reference_; }; static_assert(sizeof(IrtEntry) == 2 * sizeof(uint32_t), "Unexpected sizeof(IrtEntry)"); static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)"); class IndirectReferenceTable { public: // Constructs an uninitialized indirect reference table. Use `Initialize()` to initialize it. explicit IndirectReferenceTable(IndirectRefKind kind); // Initialize the indirect reference table. // // Max_count is the requested total capacity (not resizable). The actual total capacity // can be higher to utilize all allocated memory (rounding up to whole pages). bool Initialize(size_t max_count, std::string* error_msg); ~IndirectReferenceTable(); // Add a new entry. "obj" must be a valid non-null object reference. This function will // return null if an error happened (with an appropriate error message set). IndirectRef Add(ObjPtr obj, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_); // Given an IndirectRef in the table, return the Object it refers to. // // This function may abort under error conditions. template ObjPtr Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE; // Updates an existing indirect reference to point to a new object. void Update(IndirectRef iref, ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_); // Remove an existing entry. // // If the entry is not between the current top index and the bottom index // specified by the cookie, we don't remove anything. This is the behavior // required by JNI's DeleteLocalRef function. // // Returns "false" if nothing was removed. bool Remove(IndirectRef iref); void Dump(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::alloc_tracker_lock_); IndirectRefKind GetKind() const { return kind_; } // Return the #of entries in the entire table. This includes holes, and // so may be larger than the actual number of "live" entries. size_t Capacity() const { return top_index_; } // Return the number of non-null entries in the table. Only reliable for a // single segment table. int32_t NEntriesForGlobal() { return top_index_ - current_num_holes_; } // We'll only state here how much is trivially free, without recovering holes. // Thus this is a conservative estimate. size_t FreeCapacity() const; void VisitRoots(RootVisitor* visitor, const RootInfo& root_info) REQUIRES_SHARED(Locks::mutator_lock_); // Release pages past the end of the table that may have previously held references. void Trim() REQUIRES_SHARED(Locks::mutator_lock_); // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind. ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) { return DecodeIndirectRefKind(reinterpret_cast(iref)); } static constexpr uintptr_t GetGlobalOrWeakGlobalMask() { constexpr uintptr_t mask = enum_cast(kGlobal); static_assert(IsPowerOfTwo(mask)); static_assert((mask & kJniTransition) == 0u); static_assert((mask & kLocal) == 0u); static_assert((mask & kGlobal) != 0u); static_assert((mask & kWeakGlobal) != 0u); return mask; } static bool IsGlobalOrWeakGlobalReference(IndirectRef iref) { return (reinterpret_cast(iref) & GetGlobalOrWeakGlobalMask()) != 0u; } static bool IsJniTransitionOrLocalReference(IndirectRef iref) { return !IsGlobalOrWeakGlobalReference(iref); } template static T ClearIndirectRefKind(IndirectRef iref) { static_assert(std::is_pointer_v); return reinterpret_cast( reinterpret_cast(iref) & ~static_cast(kKindMask)); } static constexpr uintptr_t GetIndirectRefKindMask() { return kKindMask; } /* Reference validation for CheckJNI. */ bool IsValidReference(IndirectRef, /*out*/std::string* error_msg) const REQUIRES_SHARED(Locks::mutator_lock_); void SweepJniWeakGlobals(IsMarkedVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::jni_weak_globals_lock_); private: static constexpr uint32_t kShiftedSerialMask = (1u << kIRTSerialBits) - 1; static constexpr size_t kKindBits = MinimumBitsToStore( static_cast(IndirectRefKind::kLastKind)); static constexpr uint32_t kKindMask = (1u << kKindBits) - 1; static constexpr uintptr_t EncodeIndex(uint32_t table_index) { static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size"); DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf() - kIRTSerialBits - kKindBits); return (static_cast(table_index) << kKindBits << kIRTSerialBits); } static constexpr uint32_t DecodeIndex(uintptr_t uref) { return static_cast((uref >> kKindBits) >> kIRTSerialBits); } static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) { return static_cast(kind); } static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) { return static_cast(uref & kKindMask); } static constexpr uintptr_t EncodeSerial(uint32_t serial) { DCHECK_LE(MinimumBitsToStore(serial), kIRTSerialBits); return serial << kKindBits; } static constexpr uint32_t DecodeSerial(uintptr_t uref) { return static_cast(uref >> kKindBits) & kShiftedSerialMask; } constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const { DCHECK_LT(table_index, max_entries_); return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_); } static void ConstexprChecks(); // Extract the table index from an indirect reference. ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) { return DecodeIndex(reinterpret_cast(iref)); } IndirectRef ToIndirectRef(uint32_t table_index) const { DCHECK_LT(table_index, max_entries_); uint32_t serial = table_[table_index].GetSerial(); return reinterpret_cast(EncodeIndirectRef(table_index, serial)); } // Abort if check_jni is not enabled. Otherwise, just log as an error. static void AbortIfNoCheckJNI(const std::string& msg); /* extra debugging checks */ bool CheckEntry(const char*, IndirectRef, uint32_t) const; // Mem map where we store the indirect refs. MemMap table_mem_map_; // Bottom of the stack. Do not directly access the object references // in this as they are roots. Use Get() that has a read barrier. IrtEntry* table_; // Bit mask, ORed into all irefs. const IndirectRefKind kind_; // The "top of stack" index where new references are added. size_t top_index_; // Maximum number of entries allowed. size_t max_entries_; // Some values to retain old behavior with holes. // Description of the algorithm is in the .cc file. // TODO: Consider other data structures for compact tables, e.g., free lists. size_t current_num_holes_; // Number of holes in the current / top segment. }; } // namespace art #endif // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_