/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "object.h" #include #include #include #include "array-alloc-inl.h" #include "array-inl.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "asm_support.h" #include "base/enums.h" #include "class-alloc-inl.h" #include "class-inl.h" #include "class_linker-inl.h" #include "class_linker.h" #include "class_root-inl.h" #include "common_runtime_test.h" #include "dex/dex_file.h" #include "entrypoints/entrypoint_utils-inl.h" #include "gc/accounting/card_table-inl.h" #include "gc/heap.h" #include "handle_scope-inl.h" #include "iftable-inl.h" #include "obj_ptr.h" #include "object-inl.h" #include "object_array-alloc-inl.h" #include "object_array-inl.h" #include "scoped_thread_state_change-inl.h" #include "string-inl.h" namespace art { namespace mirror { class ObjectTest : public CommonRuntimeTest { protected: ObjectTest() { use_boot_image_ = true; // Make the Runtime creation cheaper. } void AssertString(int32_t expected_utf16_length, const char* utf8_in, const char* utf16_expected_le, int32_t expected_hash) REQUIRES_SHARED(Locks::mutator_lock_) { std::unique_ptr utf16_expected(new uint16_t[expected_utf16_length]); for (int32_t i = 0; i < expected_utf16_length; i++) { uint16_t ch = (((utf16_expected_le[i*2 + 0] & 0xff) << 8) | ((utf16_expected_le[i*2 + 1] & 0xff) << 0)); utf16_expected[i] = ch; } Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle string( hs.NewHandle(String::AllocFromModifiedUtf8(self, expected_utf16_length, utf8_in))); ASSERT_EQ(expected_utf16_length, string->GetLength()); ASSERT_EQ(string->IsValueNull(), false); // strlen is necessary because the 1-character string "\x00\x00" is interpreted as "" ASSERT_TRUE(string->Equals(utf8_in) || (expected_utf16_length == 1 && strlen(utf8_in) == 0)); for (int32_t i = 0; i < expected_utf16_length; i++) { EXPECT_EQ(utf16_expected[i], string->CharAt(i)); } EXPECT_EQ(expected_hash, string->GetHashCode()); } template ObjPtr> AllocObjectArray(Thread* self, size_t length) REQUIRES_SHARED(Locks::mutator_lock_) { return mirror::ObjectArray::Alloc( self, GetClassRoot(ClassRoot::kObjectArrayClass, class_linker_), length); } }; // Keep constants in sync. TEST_F(ObjectTest, Constants) { EXPECT_EQ(kObjectReferenceSize, sizeof(HeapReference)); EXPECT_EQ(kObjectHeaderSize, sizeof(Object)); EXPECT_EQ(ART_METHOD_QUICK_CODE_OFFSET_32, ArtMethod::EntryPointFromQuickCompiledCodeOffset(PointerSize::k32). Int32Value()); EXPECT_EQ(ART_METHOD_QUICK_CODE_OFFSET_64, ArtMethod::EntryPointFromQuickCompiledCodeOffset(PointerSize::k64). Int32Value()); } TEST_F(ObjectTest, IsInSamePackage) { // Matches EXPECT_TRUE(Class::IsInSamePackage("Ljava/lang/Object;", "Ljava/lang/Class;")); EXPECT_TRUE(Class::IsInSamePackage("LFoo;", "LBar;")); // Mismatches EXPECT_FALSE(Class::IsInSamePackage("Ljava/lang/Object;", "Ljava/io/File;")); EXPECT_FALSE(Class::IsInSamePackage("Ljava/lang/Object;", "Ljava/lang/reflect/Method;")); } TEST_F(ObjectTest, Clone) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle> a1(hs.NewHandle(AllocObjectArray(soa.Self(), 256))); size_t s1 = a1->SizeOf(); ObjPtr clone = Object::Clone(a1, soa.Self()); EXPECT_EQ(s1, clone->SizeOf()); EXPECT_TRUE(clone->GetClass() == a1->GetClass()); } TEST_F(ObjectTest, AllocObjectArray) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); Handle> oa(hs.NewHandle(AllocObjectArray(soa.Self(), 2))); EXPECT_EQ(2, oa->GetLength()); EXPECT_TRUE(oa->Get(0) == nullptr); EXPECT_TRUE(oa->Get(1) == nullptr); oa->Set(0, oa.Get()); EXPECT_TRUE(oa->Get(0) == oa.Get()); EXPECT_TRUE(oa->Get(1) == nullptr); oa->Set(1, oa.Get()); EXPECT_TRUE(oa->Get(0) == oa.Get()); EXPECT_TRUE(oa->Get(1) == oa.Get()); Handle aioobe = hs.NewHandle( class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/ArrayIndexOutOfBoundsException;")); EXPECT_TRUE(oa->Get(-1) == nullptr); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); EXPECT_TRUE(oa->Get(2) == nullptr); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); ASSERT_TRUE(oa->GetClass() != nullptr); Handle klass(hs.NewHandle(oa->GetClass())); ASSERT_EQ(2U, klass->NumDirectInterfaces()); EXPECT_OBJ_PTR_EQ(class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/Cloneable;"), klass->GetDirectInterface(0)); EXPECT_OBJ_PTR_EQ(class_linker_->FindSystemClass(soa.Self(), "Ljava/io/Serializable;"), klass->GetDirectInterface(1)); } TEST_F(ObjectTest, AllocArray) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); MutableHandle c = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[I")); gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator(); MutableHandle a = hs.NewHandle( Array::Alloc(soa.Self(), c.Get(), 1, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_EQ(1, a->GetLength()); c.Assign(class_linker_->FindSystemClass(soa.Self(), "[Ljava/lang/Object;")); a.Assign(Array::Alloc(soa.Self(), c.Get(), 1, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_EQ(1, a->GetLength()); c.Assign(class_linker_->FindSystemClass(soa.Self(), "[[Ljava/lang/Object;")); a.Assign(Array::Alloc(soa.Self(), c.Get(), 1, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_EQ(1, a->GetLength()); } TEST_F(ObjectTest, AllocArray_FillUsable) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); MutableHandle c = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[B")); gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator(); MutableHandle a = hs.NewHandle( Array::Alloc( soa.Self(), c.Get(), 1, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_LE(1, a->GetLength()); c.Assign(class_linker_->FindSystemClass(soa.Self(), "[I")); a.Assign(Array::Alloc( soa.Self(), c.Get(), 2, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_LE(2, a->GetLength()); c.Assign(class_linker_->FindSystemClass(soa.Self(), "[Ljava/lang/Object;")); a.Assign(Array::Alloc( soa.Self(), c.Get(), 2, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_LE(2, a->GetLength()); c.Assign(class_linker_->FindSystemClass(soa.Self(), "[[Ljava/lang/Object;")); a.Assign(Array::Alloc( soa.Self(), c.Get(), 2, c->GetComponentSizeShift(), allocator_type)); EXPECT_TRUE(c.Get() == a->GetClass()); EXPECT_LE(2, a->GetLength()); } template void TestPrimitiveArray(ClassLinker* cl) { ScopedObjectAccess soa(Thread::Current()); using T = typename ArrayT::ElementType; StackHandleScope<2> hs(soa.Self()); Handle a = hs.NewHandle(ArrayT::Alloc(soa.Self(), 2)); EXPECT_EQ(2, a->GetLength()); EXPECT_EQ(0, a->Get(0)); EXPECT_EQ(0, a->Get(1)); a->Set(0, T(123)); EXPECT_EQ(T(123), a->Get(0)); EXPECT_EQ(0, a->Get(1)); a->Set(1, T(321)); EXPECT_EQ(T(123), a->Get(0)); EXPECT_EQ(T(321), a->Get(1)); Handle aioobe = hs.NewHandle( cl->FindSystemClass(soa.Self(), "Ljava/lang/ArrayIndexOutOfBoundsException;")); EXPECT_EQ(0, a->Get(-1)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); EXPECT_EQ(0, a->Get(2)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); } TEST_F(ObjectTest, PrimitiveArray_Boolean_Alloc) { TestPrimitiveArray(class_linker_); } TEST_F(ObjectTest, PrimitiveArray_Byte_Alloc) { TestPrimitiveArray(class_linker_); } TEST_F(ObjectTest, PrimitiveArray_Char_Alloc) { TestPrimitiveArray(class_linker_); } TEST_F(ObjectTest, PrimitiveArray_Int_Alloc) { TestPrimitiveArray(class_linker_); } TEST_F(ObjectTest, PrimitiveArray_Long_Alloc) { TestPrimitiveArray(class_linker_); } TEST_F(ObjectTest, PrimitiveArray_Short_Alloc) { TestPrimitiveArray(class_linker_); } TEST_F(ObjectTest, PointerArrayWriteRead) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle a32 = hs.NewHandle(ObjPtr::DownCast(IntArray::Alloc(soa.Self(), 1))); ASSERT_TRUE(a32 != nullptr); ASSERT_EQ(1, a32->GetLength()); EXPECT_EQ(0u, (a32->GetElementPtrSize(0u))); EXPECT_EQ(0u, (a32->GetElementPtrSizeUnchecked(0u))); for (uint32_t value : { 0u, 1u, 0x7fffffffu, 0x80000000u, 0xffffffffu }) { a32->SetElementPtrSize(0u, value, PointerSize::k32); EXPECT_EQ(value, (a32->GetElementPtrSize(0u))); EXPECT_EQ(value, (a32->GetElementPtrSizeUnchecked(0u))); // Check that the value matches also when retrieved as `uint64_t`. // This is a regression test for unintended sign-extension. b/155780442 // (Using `uint64_t` rather than `uintptr_t`, so that the 32-bit test checks this too.) EXPECT_EQ(value, (a32->GetElementPtrSize(0u))); EXPECT_EQ(value, (a32->GetElementPtrSizeUnchecked(0u))); } Handle a64 = hs.NewHandle(ObjPtr::DownCast(LongArray::Alloc(soa.Self(), 1))); ASSERT_TRUE(a64 != nullptr); ASSERT_EQ(1, a64->GetLength()); EXPECT_EQ(0u, (a64->GetElementPtrSize(0u))); EXPECT_EQ(0u, (a64->GetElementPtrSizeUnchecked(0u))); for (uint64_t value : { UINT64_C(0), UINT64_C(1), UINT64_C(0x7fffffff), UINT64_C(0x80000000), UINT64_C(0xffffffff), UINT64_C(0x100000000), UINT64_C(0x7fffffffffffffff), UINT64_C(0x8000000000000000), UINT64_C(0xffffffffffffffff) }) { a64->SetElementPtrSize(0u, value, PointerSize::k64); EXPECT_EQ(value, (a64->GetElementPtrSize(0u))); EXPECT_EQ(value, (a64->GetElementPtrSizeUnchecked(0u))); } } TEST_F(ObjectTest, PrimitiveArray_Double_Alloc) { using ArrayT = DoubleArray; ScopedObjectAccess soa(Thread::Current()); using T = typename ArrayT::ElementType; StackHandleScope<2> hs(soa.Self()); Handle a = hs.NewHandle(ArrayT::Alloc(soa.Self(), 2)); EXPECT_EQ(2, a->GetLength()); EXPECT_DOUBLE_EQ(0, a->Get(0)); EXPECT_DOUBLE_EQ(0, a->Get(1)); a->Set(0, T(123)); EXPECT_DOUBLE_EQ(T(123), a->Get(0)); EXPECT_DOUBLE_EQ(0, a->Get(1)); a->Set(1, T(321)); EXPECT_DOUBLE_EQ(T(123), a->Get(0)); EXPECT_DOUBLE_EQ(T(321), a->Get(1)); Handle aioobe = hs.NewHandle( class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/ArrayIndexOutOfBoundsException;")); EXPECT_DOUBLE_EQ(0, a->Get(-1)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); EXPECT_DOUBLE_EQ(0, a->Get(2)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); } TEST_F(ObjectTest, PrimitiveArray_Float_Alloc) { using ArrayT = FloatArray; ScopedObjectAccess soa(Thread::Current()); using T = typename ArrayT::ElementType; StackHandleScope<2> hs(soa.Self()); Handle a = hs.NewHandle(ArrayT::Alloc(soa.Self(), 2)); EXPECT_FLOAT_EQ(2, a->GetLength()); EXPECT_FLOAT_EQ(0, a->Get(0)); EXPECT_FLOAT_EQ(0, a->Get(1)); a->Set(0, T(123)); EXPECT_FLOAT_EQ(T(123), a->Get(0)); EXPECT_FLOAT_EQ(0, a->Get(1)); a->Set(1, T(321)); EXPECT_FLOAT_EQ(T(123), a->Get(0)); EXPECT_FLOAT_EQ(T(321), a->Get(1)); Handle aioobe = hs.NewHandle( class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/ArrayIndexOutOfBoundsException;")); EXPECT_FLOAT_EQ(0, a->Get(-1)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); EXPECT_FLOAT_EQ(0, a->Get(2)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_OBJ_PTR_EQ(aioobe.Get(), soa.Self()->GetException()->GetClass()); soa.Self()->ClearException(); } TEST_F(ObjectTest, CreateMultiArray) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<4> hs(soa.Self()); Handle int_class(hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "I"))); Handle int_array_class = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[I")); MutableHandle dims(hs.NewHandle(IntArray::Alloc(soa.Self(), 1))); dims->Set(0, 1); MutableHandle multi = hs.NewHandle(Array::CreateMultiArray(soa.Self(), int_class, dims)); EXPECT_OBJ_PTR_EQ(int_array_class.Get(), multi->GetClass()); EXPECT_EQ(1, multi->GetLength()); dims->Set(0, -1); multi.Assign(Array::CreateMultiArray(soa.Self(), int_class, dims)); EXPECT_TRUE(soa.Self()->IsExceptionPending()); EXPECT_EQ(mirror::Class::PrettyDescriptor(soa.Self()->GetException()->GetClass()), "java.lang.NegativeArraySizeException"); soa.Self()->ClearException(); dims.Assign(IntArray::Alloc(soa.Self(), 2)); for (int i = 1; i < 20; ++i) { for (int j = 0; j < 20; ++j) { dims->Set(0, i); dims->Set(1, j); multi.Assign(Array::CreateMultiArray(soa.Self(), int_class, dims)); ObjPtr expected_class = class_linker_->FindSystemClass(soa.Self(), "[[I"); EXPECT_OBJ_PTR_EQ(multi->GetClass(), expected_class); EXPECT_EQ(i, multi->GetLength()); for (int k = 0; k < i; ++k) { ObjPtr outer = multi->AsObjectArray()->Get(k); EXPECT_OBJ_PTR_EQ(int_array_class.Get(), outer->GetClass()); EXPECT_EQ(j, outer->GetLength()); } } } } TEST_F(ObjectTest, StaticFieldFromCode) { // pretend we are trying to access 'Static.s0' from StaticsFromCode. ScopedObjectAccess soa(Thread::Current()); jobject class_loader = LoadDex("StaticsFromCode"); const DexFile* dex_file = GetFirstDexFile(class_loader); StackHandleScope<3> hs(soa.Self()); Handle loader(hs.NewHandle(soa.Decode(class_loader))); Handle klass = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LStaticsFromCode;", loader)); ArtMethod* clinit = klass->FindClassInitializer(kRuntimePointerSize); const dex::TypeId* klass_type_id = dex_file->FindTypeId("LStaticsFromCode;"); ASSERT_TRUE(klass_type_id != nullptr); const dex::TypeId* type_type_id = dex_file->FindTypeId("Ljava/lang/Object;"); ASSERT_TRUE(type_type_id != nullptr); const dex::StringId* name_str_id = dex_file->FindStringId("s0"); ASSERT_TRUE(name_str_id != nullptr); const dex::FieldId* field_id = dex_file->FindFieldId( *klass_type_id, *name_str_id, *type_type_id); ASSERT_TRUE(field_id != nullptr); uint32_t field_idx = dex_file->GetIndexForFieldId(*field_id); ArtField* field = FindFieldFromCode(field_idx, clinit, Thread::Current(), sizeof(HeapReference)); ObjPtr s0 = field->GetObj(klass.Get()); EXPECT_TRUE(s0 != nullptr) << field->PrettyField(); Handle char_array(hs.NewHandle(CharArray::Alloc(soa.Self(), 0))); field->SetObj(field->GetDeclaringClass(), char_array.Get()); EXPECT_OBJ_PTR_EQ(char_array.Get(), field->GetObj(klass.Get())); field->SetObj(field->GetDeclaringClass(), nullptr); EXPECT_EQ(nullptr, field->GetObj(klass.Get())); // TODO: more exhaustive tests of all 6 cases of ArtField::*FromCode } TEST_F(ObjectTest, String) { ScopedObjectAccess soa(Thread::Current()); // Test the empty string. AssertString(0, "", "", 0); // Test one-byte characters. AssertString(1, " ", "\x00\x20", 0x20); AssertString(1, "", "\x00\x00", 0); AssertString(1, "\x7f", "\x00\x7f", 0x7f); AssertString(2, "hi", "\x00\x68\x00\x69", (31 * 0x68) + 0x69); // Test two-byte characters. AssertString(1, "\xc2\x80", "\x00\x80", 0x80); AssertString(1, "\xd9\xa6", "\x06\x66", 0x0666); AssertString(1, "\xdf\xbf", "\x07\xff", 0x07ff); AssertString(3, "h\xd9\xa6i", "\x00\x68\x06\x66\x00\x69", (31 * ((31 * 0x68) + 0x0666)) + 0x69); // Test three-byte characters. AssertString(1, "\xe0\xa0\x80", "\x08\x00", 0x0800); AssertString(1, "\xe1\x88\xb4", "\x12\x34", 0x1234); AssertString(1, "\xef\xbf\xbf", "\xff\xff", 0xffff); AssertString(3, "h\xe1\x88\xb4i", "\x00\x68\x12\x34\x00\x69", (31 * ((31 * 0x68) + 0x1234)) + 0x69); // Test four-byte characters. AssertString(2, "\xf0\x9f\x8f\xa0", "\xd8\x3c\xdf\xe0", (31 * 0xd83c) + 0xdfe0); AssertString(2, "\xf0\x9f\x9a\x80", "\xd8\x3d\xde\x80", (31 * 0xd83d) + 0xde80); AssertString(4, "h\xf0\x9f\x9a\x80i", "\x00\x68\xd8\x3d\xde\x80\x00\x69", (31 * (31 * (31 * 0x68 + 0xd83d) + 0xde80) + 0x69)); } TEST_F(ObjectTest, StringEqualsUtf8) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle string(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "android"))); EXPECT_TRUE(string->Equals("android")); EXPECT_FALSE(string->Equals("Android")); EXPECT_FALSE(string->Equals("ANDROID")); EXPECT_FALSE(string->Equals("")); EXPECT_FALSE(string->Equals("and")); EXPECT_FALSE(string->Equals("androids")); Handle empty(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), ""))); EXPECT_TRUE(empty->Equals("")); EXPECT_FALSE(empty->Equals("a")); } TEST_F(ObjectTest, StringEquals) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); Handle string(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "android"))); Handle string_2(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "android"))); EXPECT_TRUE(string->Equals(string_2.Get())); EXPECT_FALSE(string->Equals("Android")); EXPECT_FALSE(string->Equals("ANDROID")); EXPECT_FALSE(string->Equals("")); EXPECT_FALSE(string->Equals("and")); EXPECT_FALSE(string->Equals("androids")); Handle empty(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), ""))); EXPECT_TRUE(empty->Equals("")); EXPECT_FALSE(empty->Equals("a")); } TEST_F(ObjectTest, StringCompareTo) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<5> hs(soa.Self()); Handle string(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "android"))); Handle string_2(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "android"))); Handle string_3(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "Android"))); Handle string_4(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "and"))); Handle string_5(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), ""))); EXPECT_EQ(0, string->CompareTo(string_2.Get())); EXPECT_LT(0, string->CompareTo(string_3.Get())); EXPECT_GT(0, string_3->CompareTo(string.Get())); EXPECT_LT(0, string->CompareTo(string_4.Get())); EXPECT_GT(0, string_4->CompareTo(string.Get())); EXPECT_LT(0, string->CompareTo(string_5.Get())); EXPECT_GT(0, string_5->CompareTo(string.Get())); } TEST_F(ObjectTest, StringLength) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); Handle string(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "android"))); EXPECT_EQ(string->GetLength(), 7); EXPECT_EQ(string->GetModifiedUtf8Length(), 7); } TEST_F(ObjectTest, DescriptorCompare) { // Two classloaders conflicts in compile_time_class_paths_. ScopedObjectAccess soa(Thread::Current()); ClassLinker* linker = class_linker_; jobject jclass_loader_1 = LoadDex("ProtoCompare"); jobject jclass_loader_2 = LoadDex("ProtoCompare2"); StackHandleScope<4> hs(soa.Self()); Handle class_loader_1(hs.NewHandle(soa.Decode(jclass_loader_1))); Handle class_loader_2(hs.NewHandle(soa.Decode(jclass_loader_2))); Handle klass1 = hs.NewHandle(linker->FindClass(soa.Self(), "LProtoCompare;", class_loader_1)); ASSERT_TRUE(klass1 != nullptr); Handle klass2 = hs.NewHandle(linker->FindClass(soa.Self(), "LProtoCompare2;", class_loader_2)); ASSERT_TRUE(klass2 != nullptr); ArtMethod* m1_1 = klass1->GetVirtualMethod(0, kRuntimePointerSize); EXPECT_STREQ(m1_1->GetName(), "m1"); ArtMethod* m2_1 = klass1->GetVirtualMethod(1, kRuntimePointerSize); EXPECT_STREQ(m2_1->GetName(), "m2"); ArtMethod* m3_1 = klass1->GetVirtualMethod(2, kRuntimePointerSize); EXPECT_STREQ(m3_1->GetName(), "m3"); ArtMethod* m4_1 = klass1->GetVirtualMethod(3, kRuntimePointerSize); EXPECT_STREQ(m4_1->GetName(), "m4"); ArtMethod* m1_2 = klass2->GetVirtualMethod(0, kRuntimePointerSize); EXPECT_STREQ(m1_2->GetName(), "m1"); ArtMethod* m2_2 = klass2->GetVirtualMethod(1, kRuntimePointerSize); EXPECT_STREQ(m2_2->GetName(), "m2"); ArtMethod* m3_2 = klass2->GetVirtualMethod(2, kRuntimePointerSize); EXPECT_STREQ(m3_2->GetName(), "m3"); ArtMethod* m4_2 = klass2->GetVirtualMethod(3, kRuntimePointerSize); EXPECT_STREQ(m4_2->GetName(), "m4"); } TEST_F(ObjectTest, StringHashCode) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); Handle empty(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), ""))); Handle A(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "A"))); Handle ABC(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "ABC"))); EXPECT_EQ(0, empty->GetHashCode()); EXPECT_EQ(65, A->GetHashCode()); EXPECT_EQ(64578, ABC->GetHashCode()); } TEST_F(ObjectTest, InstanceOf) { ScopedObjectAccess soa(Thread::Current()); jobject jclass_loader = LoadDex("XandY"); StackHandleScope<10> hs(soa.Self()); Handle class_loader(hs.NewHandle(soa.Decode(jclass_loader))); Handle X = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LX;", class_loader)); Handle Y = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LY;", class_loader)); ASSERT_TRUE(X != nullptr); ASSERT_TRUE(Y != nullptr); Handle x(hs.NewHandle(X->AllocObject(soa.Self()))); Handle y(hs.NewHandle(Y->AllocObject(soa.Self()))); ASSERT_TRUE(x != nullptr); ASSERT_TRUE(y != nullptr); EXPECT_TRUE(x->InstanceOf(X.Get())); EXPECT_FALSE(x->InstanceOf(Y.Get())); EXPECT_TRUE(y->InstanceOf(X.Get())); EXPECT_TRUE(y->InstanceOf(Y.Get())); Handle java_lang_Class = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/Class;")); Handle Object_array_class = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[Ljava/lang/Object;")); EXPECT_FALSE(java_lang_Class->InstanceOf(Object_array_class.Get())); EXPECT_TRUE(Object_array_class->InstanceOf(java_lang_Class.Get())); // All array classes implement Cloneable and Serializable. Handle array = hs.NewHandle(ObjectArray::Alloc(soa.Self(), Object_array_class.Get(), 1)); Handle java_lang_Cloneable = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/Cloneable;")); Handle java_io_Serializable = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/io/Serializable;")); EXPECT_TRUE(array->InstanceOf(java_lang_Cloneable.Get())); EXPECT_TRUE(array->InstanceOf(java_io_Serializable.Get())); } TEST_F(ObjectTest, IsAssignableFrom) { ScopedObjectAccess soa(Thread::Current()); jobject jclass_loader = LoadDex("XandY"); StackHandleScope<5> hs(soa.Self()); Handle class_loader(hs.NewHandle(soa.Decode(jclass_loader))); Handle X = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LX;", class_loader)); Handle Y = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LY;", class_loader)); EXPECT_TRUE(X->IsAssignableFrom(X.Get())); EXPECT_TRUE(X->IsAssignableFrom(Y.Get())); EXPECT_FALSE(Y->IsAssignableFrom(X.Get())); EXPECT_TRUE(Y->IsAssignableFrom(Y.Get())); // class final String implements CharSequence, .. Handle string = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/String;")); Handle charseq = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/CharSequence;")); // Can String be assigned to CharSequence without a cast? EXPECT_TRUE(charseq->IsAssignableFrom(string.Get())); // Can CharSequence be assigned to String without a cast? EXPECT_FALSE(string->IsAssignableFrom(charseq.Get())); // Primitive types are only assignable to themselves const char* prims = "ZBCSIJFD"; std::vector> prim_types(strlen(prims)); for (size_t i = 0; i < strlen(prims); i++) { prim_types[i] = class_linker_->FindPrimitiveClass(prims[i]); } for (size_t i = 0; i < strlen(prims); i++) { for (size_t j = 0; i < strlen(prims); i++) { if (i == j) { EXPECT_TRUE(prim_types[i]->IsAssignableFrom(prim_types[j])); } else { EXPECT_FALSE(prim_types[i]->IsAssignableFrom(prim_types[j])); } } } } TEST_F(ObjectTest, IsAssignableFromArray) { ScopedObjectAccess soa(Thread::Current()); jobject jclass_loader = LoadDex("XandY"); StackHandleScope<14> hs(soa.Self()); Handle class_loader(hs.NewHandle(soa.Decode(jclass_loader))); Handle X = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LX;", class_loader)); Handle Y = hs.NewHandle(class_linker_->FindClass(soa.Self(), "LY;", class_loader)); ASSERT_TRUE(X != nullptr); ASSERT_TRUE(Y != nullptr); Handle YA = hs.NewHandle(class_linker_->FindClass(soa.Self(), "[LY;", class_loader)); Handle YAA = hs.NewHandle(class_linker_->FindClass(soa.Self(), "[[LY;", class_loader)); ASSERT_TRUE(YA != nullptr); ASSERT_TRUE(YAA != nullptr); Handle XAA = hs.NewHandle(class_linker_->FindClass(soa.Self(), "[[LX;", class_loader)); ASSERT_TRUE(XAA != nullptr); Handle O = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/Object;")); Handle OA = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[Ljava/lang/Object;")); Handle OAA = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[[Ljava/lang/Object;")); Handle OAAA = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[[[Ljava/lang/Object;")); ASSERT_TRUE(O != nullptr); ASSERT_TRUE(OA != nullptr); ASSERT_TRUE(OAA != nullptr); ASSERT_TRUE(OAAA != nullptr); Handle S = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "Ljava/io/Serializable;")); Handle SA = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[Ljava/io/Serializable;")); Handle SAA = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[[Ljava/io/Serializable;")); ASSERT_TRUE(S != nullptr); ASSERT_TRUE(SA != nullptr); ASSERT_TRUE(SAA != nullptr); Handle IA = hs.NewHandle(class_linker_->FindSystemClass(soa.Self(), "[I")); ASSERT_TRUE(IA != nullptr); EXPECT_TRUE(YAA->IsAssignableFrom(YAA.Get())); // identity EXPECT_TRUE(XAA->IsAssignableFrom(YAA.Get())); // element superclass EXPECT_FALSE(YAA->IsAssignableFrom(XAA.Get())); EXPECT_FALSE(Y->IsAssignableFrom(YAA.Get())); EXPECT_FALSE(YA->IsAssignableFrom(YAA.Get())); EXPECT_TRUE(O->IsAssignableFrom(YAA.Get())); // everything is an Object EXPECT_TRUE(OA->IsAssignableFrom(YAA.Get())); EXPECT_TRUE(OAA->IsAssignableFrom(YAA.Get())); EXPECT_TRUE(S->IsAssignableFrom(YAA.Get())); // all arrays are Serializable EXPECT_TRUE(SA->IsAssignableFrom(YAA.Get())); EXPECT_FALSE(SAA->IsAssignableFrom(YAA.Get())); // unless Y was Serializable EXPECT_FALSE(IA->IsAssignableFrom(OA.Get())); EXPECT_FALSE(OA->IsAssignableFrom(IA.Get())); EXPECT_TRUE(O->IsAssignableFrom(IA.Get())); } TEST_F(ObjectTest, FindInstanceField) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); Handle s(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "ABC"))); ASSERT_TRUE(s != nullptr); ObjPtr c = s->GetClass(); ASSERT_TRUE(c != nullptr); // Wrong type. EXPECT_TRUE(c->FindDeclaredInstanceField("count", "J") == nullptr); EXPECT_TRUE(c->FindInstanceField("count", "J") == nullptr); // Wrong name. EXPECT_TRUE(c->FindDeclaredInstanceField("Count", "I") == nullptr); EXPECT_TRUE(c->FindInstanceField("Count", "I") == nullptr); // Right name and type. ArtField* f1 = c->FindDeclaredInstanceField("count", "I"); ArtField* f2 = c->FindInstanceField("count", "I"); EXPECT_TRUE(f1 != nullptr); EXPECT_TRUE(f2 != nullptr); EXPECT_EQ(f1, f2); // TODO: check that s.count == 3. // Ensure that we handle superclass fields correctly... c = class_linker_->FindSystemClass(soa.Self(), "Ljava/lang/StringBuilder;"); ASSERT_TRUE(c != nullptr); // No StringBuilder.count... EXPECT_TRUE(c->FindDeclaredInstanceField("count", "I") == nullptr); // ...but there is an AbstractStringBuilder.count. EXPECT_TRUE(c->FindInstanceField("count", "I") != nullptr); } TEST_F(ObjectTest, FindStaticField) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<4> hs(soa.Self()); Handle s(hs.NewHandle(String::AllocFromModifiedUtf8(soa.Self(), "ABC"))); ASSERT_TRUE(s != nullptr); Handle c(hs.NewHandle(s->GetClass())); ASSERT_TRUE(c != nullptr); // Wrong type. EXPECT_TRUE(c->FindDeclaredStaticField("CASE_INSENSITIVE_ORDER", "I") == nullptr); EXPECT_TRUE(c->FindStaticField("CASE_INSENSITIVE_ORDER", "I") == nullptr); // Wrong name. EXPECT_TRUE(c->FindDeclaredStaticField( "cASE_INSENSITIVE_ORDER", "Ljava/util/Comparator;") == nullptr); EXPECT_TRUE(c->FindStaticField("cASE_INSENSITIVE_ORDER", "Ljava/util/Comparator;") == nullptr); // Right name and type. ArtField* f1 = c->FindDeclaredStaticField("CASE_INSENSITIVE_ORDER", "Ljava/util/Comparator;"); ArtField* f2 = c->FindStaticField("CASE_INSENSITIVE_ORDER", "Ljava/util/Comparator;"); EXPECT_TRUE(f1 != nullptr); EXPECT_TRUE(f2 != nullptr); EXPECT_EQ(f1, f2); // TODO: test static fields via superclasses. // TODO: test static fields via interfaces. // TODO: test that interfaces trump superclasses. } TEST_F(ObjectTest, IdentityHashCode) { // Regression test for b/19046417 which had an infinite loop if the // (seed & LockWord::kHashMask) == 0. seed 0 triggered the infinite loop since we did the check // before the CAS which resulted in the same seed the next loop iteration. mirror::Object::SetHashCodeSeed(0); int32_t hash_code = mirror::Object::GenerateIdentityHashCode(); EXPECT_NE(hash_code, 0); } TEST_F(ObjectTest, ObjectPointer) { ScopedObjectAccess soa(Thread::Current()); jobject jclass_loader = LoadDex("XandY"); StackHandleScope<2> hs(soa.Self()); Handle class_loader(hs.NewHandle(soa.Decode(jclass_loader))); Handle h_X( hs.NewHandle(class_linker_->FindClass(soa.Self(), "LX;", class_loader))); if (kObjPtrPoisoning) { ObjPtr null_ptr; EXPECT_TRUE(null_ptr.IsNull()); EXPECT_TRUE(null_ptr.IsValid()); EXPECT_TRUE(null_ptr.Ptr() == nullptr); EXPECT_TRUE(null_ptr == nullptr); EXPECT_TRUE(null_ptr == null_ptr); EXPECT_FALSE(null_ptr != null_ptr); EXPECT_FALSE(null_ptr != nullptr); null_ptr.AssertValid(); ObjPtr X(h_X.Get()); EXPECT_TRUE(!X.IsNull()); EXPECT_TRUE(X.IsValid()); EXPECT_TRUE(X.Ptr() != nullptr); EXPECT_OBJ_PTR_EQ(h_X.Get(), X); // FindClass may cause thread suspension, it should invalidate X. ObjPtr Y(class_linker_->FindClass(soa.Self(), "LY;", class_loader)); EXPECT_TRUE(!Y.IsNull()); EXPECT_TRUE(Y.IsValid()); EXPECT_TRUE(Y.Ptr() != nullptr); // Should IsNull be safe to call on null ObjPtr? I'll allow it for now. EXPECT_TRUE(!X.IsNull()); EXPECT_TRUE(!X.IsValid()); // Make X valid again by copying out of handle. X.Assign(h_X.Get()); EXPECT_TRUE(!X.IsNull()); EXPECT_TRUE(X.IsValid()); EXPECT_OBJ_PTR_EQ(h_X.Get(), X); // Allow thread suspension to invalidate Y. soa.Self()->AllowThreadSuspension(); EXPECT_TRUE(!Y.IsNull()); EXPECT_TRUE(!Y.IsValid()); } else { // Test unpoisoned. ObjPtr unpoisoned; EXPECT_TRUE(unpoisoned.IsNull()); EXPECT_TRUE(unpoisoned.IsValid()); EXPECT_TRUE(unpoisoned.Ptr() == nullptr); EXPECT_TRUE(unpoisoned == nullptr); EXPECT_TRUE(unpoisoned == unpoisoned); EXPECT_FALSE(unpoisoned != unpoisoned); EXPECT_FALSE(unpoisoned != nullptr); unpoisoned = h_X.Get(); EXPECT_FALSE(unpoisoned.IsNull()); EXPECT_TRUE(unpoisoned == h_X.Get()); EXPECT_OBJ_PTR_EQ(unpoisoned, h_X.Get()); } } TEST_F(ObjectTest, PrettyTypeOf) { ScopedObjectAccess soa(Thread::Current()); EXPECT_EQ("null", mirror::Object::PrettyTypeOf(nullptr)); StackHandleScope<2> hs(soa.Self()); Handle s(hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), ""))); EXPECT_EQ("java.lang.String", mirror::Object::PrettyTypeOf(s.Get())); Handle a(hs.NewHandle(mirror::ShortArray::Alloc(soa.Self(), 2))); EXPECT_EQ("short[]", mirror::Object::PrettyTypeOf(a.Get())); ObjPtr c = class_linker_->FindSystemClass(soa.Self(), "[Ljava/lang/String;"); ASSERT_TRUE(c != nullptr); ObjPtr o = mirror::ObjectArray::Alloc(soa.Self(), c, 0); EXPECT_EQ("java.lang.String[]", mirror::Object::PrettyTypeOf(o)); EXPECT_EQ("java.lang.Class", mirror::Object::PrettyTypeOf(o->GetClass())); } } // namespace mirror } // namespace art